The class HCL_UMinTR_d implements a generic algorithm for solving unconstrained minimization problems using a trust region method
![]() | HCL_UMinSubspaceHess_d ( char * fname=NULL ) Usual constructor |
![]() | HCL_UMinTR_d ( HCL_TrustRegionSolver_d * trs, char * fname = NULL ) Usual constructor |
![]() | LastEval () LastEval returns a reference to the functional's evaluation object at the most recent point |
![]() | LastEval () LastEval returns a reference to the functional's evaluation object at the most recent point |
![]() | Minimize ( HCL_FunctionalProductDomainHess_d & f, HCL_ProductVector_d & x ) Minimize attempts to find a local minimizer of the functional f, using x as a starting guess |
![]() | Minimize ( HCL_FunctionalHess_d & f, HCL_Vector_d & x0 ) Minimize attempts to find a local minimizer of the functional f, using x as a starting guess |
![]() | Parameters () Access to parameter table |
![]() | Parameters () Access to parameter table |
![]() | SetScaling ( HCL_LinearOpAdjInv_d * S ) Alternate version of SetScaling. |
![]() | SetScaling ( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver ) SetScaling defines a new inner product in terms of a symmetric, positive definite operator S: <x,y> = (x,Sy) |
![]() | SetScaling ( HCL_LinearOpAdjInv_d * S ) Alternate version of SetScaling. |
![]() | SetScaling ( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver ) SetScaling defines a new inner product in terms of a symmetric, positive definite operator S: <x,y> = (x,Sy) |
![]() | UnSetScaling () UnSetScaling returns the inner product to the default. |
![]() | UnSetScaling () UnSetScaling returns the inner product to the default. |
![]() | Basis () Compute the basis for the subspace |
![]() | ProjectedProblem ( HCL_BasisProductSpace_d & Bas, HCL_SymMat_d* & B, HCL_RnVector_d* & g ) Compute the projected operator and gradient |
enum return codes (TermCode)
The class HCL_UMinTR_d implements a generic algorithm for solving unconstrained minimization problems using a trust region method. A HCL_TrustRegionSolver_d, which implements an algorithm for solving the trust region subproblem, is required to construct the minimizer. If the user does not provide a trust region solver, the HCL_TRCG_d, which implements the Steihaug-Toint algorithm, is used by default.The three important methods of this class are:
- Minimize This method takes a HCL_FunctionalHess_d and a starting point, and attempts to locate a local minimizer of the functional. The return value of the method is the termination code, which indicates why the algorithm terminated. See the documentation for the termination codes for details.
- Parameters This method returns a reference to the parameter table, and allows the programmer to access or change the parameters that control the iteration. See the documentation on input parameters for details about algorithmic parameters.
- LastEval This method returns a reference to the evaluation object at the best point found by the algorithm, thus giving the calling routine access to the function value, gradient, and Hessian at the final point. It is an error to call LastEval before Minimize.
double Typf
double TypxNorm
double GradTol
double MinStep
double MaxStep
int CscMaxLimit
int DispFlag
int DumpFlag
char DumpFile[81]
int DispPrecision
int DumpPrecision
int TraceSteps
char StepFile[81]
int KrylovSubspaceLevel
double LowerTol
double UpperTol
int Reorthogonalize
void ProjectedProblem( HCL_BasisProductSpace_d & Bas, HCL_SymMat_d* & B, HCL_RnVector_d* & g )
HCL_UMinSubspaceHess_d( char * fname=NULL )
virtual Table& Parameters()
virtual HCL_EvalFunctionalProductDomainHess_d& LastEval()
virtual void SetScaling( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver )
virtual void SetScaling( HCL_LinearOpAdjInv_d * S )
virtual void UnSetScaling()
virtual int Minimize( HCL_FunctionalProductDomainHess_d & f, HCL_ProductVector_d & x )
Input Parameters
int MaxItn
double Typf
double TypxNorm
double GradTol
double MinStep
double MaxStep
int CscMaxLimit
int DumpFlag
char DumpFile[81]
int DispPrecision
int DumpPrecision
int TraceSteps
char StepFile[81]
double LowerTol
double UpperTol
HCL_UMinTR_d( HCL_TrustRegionSolver_d * trs, char * fname = NULL )
fname - Parameter file name or NULL. If given, this file
contains algorithmic parameters (such as stopping tolerances),
a full list of which is given elsewhere in the documentation
of this class. For example, to set the maximum number of
iterations to 100, the file should contain a line of the
form UMinTR::MaxItn = 100 or, alternately, UMin::MaxItn = 100.
If the line seach is not provided, then this file will also
be passed to the line search constructor, and so can contain
entries such as TRSolver::DispFlag = 1. Table& Parameters()
virtual HCL_EvaluateFunctionalHess_d& LastEval()
virtual void SetScaling( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver )
virtual void SetScaling( HCL_LinearOpAdjInv_d * S )
virtual void UnSetScaling()
int Minimize( HCL_FunctionalHess_d & f, HCL_Vector_d & x0 )
this page has been generated automatically by doc++
(c)opyright by Malte Zöckler, Roland Wunderling
contact: doc++@zib.de