HCL_UMinGradMethod provides easy access to the UMinGrad methods
![]() | HCL_UMinAlternationGrad_d ( int n, char * fname=NULL ) Usual constructor |
![]() | HCL_UMinAlternationHess_d ( int n, char * fname=NULL ) Usual constructor |
![]() | LastEval () LastEval returns a reference to the functional's evaluation object at the most recent point |
![]() | LastEval () LastEval returns a reference to the functional's evaluation object at the most recent point |
![]() | Minimize ( HCL_FunctionalProductDomainGrad_d & f, HCL_ProductVector_d & x ) Minimize attempts to find a local minimizer of the functional f, using x as a starting guess |
![]() | Minimize ( HCL_FunctionalProductDomainHess_d & f, HCL_ProductVector_d & x ) Minimize attempts to find a local minimizer of the functional f, using x as a starting guess |
![]() | Parameters () Access to parameter table |
![]() | Parameters () Access to parameter table |
![]() | SetNext ( HCL_UMinHess_d * um ) SetNext sets the next minimization algorithm to be set |
![]() | SetNext ( HCL_UMinGrad_d * um ) SetNext sets the next minimization algorithm to be set |
![]() | SetScaling ( HCL_LinearOpAdjInv_d * S ) Alternate version of SetScaling. |
![]() | SetScaling ( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver ) SetScaling defines a new inner product in terms of a symmetric, positive definite operator S: <x,y> = (x,Sy) |
![]() | SetScaling ( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver ) SetScaling defines a new inner product in terms of a symmetric, positive definite operator S: <x,y> = (x,Sy) |
![]() | SetScaling ( HCL_LinearOpAdjInv_d * S ) Alternate version of SetScaling. |
![]() | UnSetScaling () UnSetScaling returns the inner product to the default. |
![]() | UnSetScaling () UnSetScaling returns the inner product to the default. |
![]() | Constructors and destructor
|
HCL_UMinGradMethod provides easy access to the UMinGrad methods. The available choices of direction update and line search, by name, form the parameter list of the constructor, which invokes the appropriate constructor for the method combination chosen by the user.Since the base class for unconstrained minimization, HCL_UMin, is divided explicitly into a base class for functions with gradient only and another for functions with Hessian also, this method-chooser class perforce splits in the same way.
IMPORTANT NOTE: this version (9/97) does not enable specification of various sorts of preconditioning options offered by the UMin constructors. For the moment users wishing to use these features will need to use the UMin constructors directly.
double Typf
double TypxNorm
double GradTol
double MinStep
double MaxStep
int CscMaxLimit
int DispFlag
int DumpFlag
char DumpFile[81]
int DispPrecision
int DumpPrecision
int TraceSteps
char StepFile[81]
virtual Table& Parameters()
virtual HCL_EvalFunctionalProductDomainGrad_d& LastEval()
void SetNext( HCL_UMinGrad_d * um )
virtual void SetScaling( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver )
virtual void SetScaling( HCL_LinearOpAdjInv_d * S )
virtual void UnSetScaling()
virtual int Minimize( HCL_FunctionalProductDomainGrad_d & f, HCL_ProductVector_d & x )
Input Parameters
int MaxItn
double Typf
double TypxNorm
double GradTol
double MinStep
double MaxStep
int CscMaxLimit
int DispFlag
int DumpFlag
char DumpFile[81]
int DispPrecision
int DumpPrecision
int TraceSteps
char StepFile[81]
HCL_UMinAlternationHess_d( int n, char * fname=NULL )
virtual Table& Parameters()
virtual HCL_EvalFunctionalProductDomainHess_d& LastEval()
void SetNext( HCL_UMinHess_d * um )
virtual void SetScaling( HCL_LinearOpAdj_d * S, HCL_LinearSolver_d * lsolver )
virtual void SetScaling( HCL_LinearOpAdjInv_d * S )
virtual void UnSetScaling()
virtual int Minimize( HCL_FunctionalProductDomainHess_d & f, HCL_ProductVector_d & x )
Constructors and destructor
HCL_UMinGradMethod_d()
HCL_UMinGradMethod_d( const HCL_UMinGradMethod_d & um )
HCL_UMinGradMethod_d( char * UpdateMethod, char * LineSearchMethod, char * ParameterFile)
Legal choices of LineSearchMethod:
See the documentation for the classes implementing these algorithms for
more information (HCL_UMin_d, HCL_LineSearch_d).
this page has been generated automatically by doc++
(c)opyright by Malte Zöckler, Roland Wunderling
contact: doc++@zib.de