HCL_CMinALHess_d implements the Augmented Lagrangian algorithm
![]() | Display () Print current status |
![]() | LastEval () Return a reference to the last evaluation object, thus giving access to all of the information at the computed solution |
![]() | Minimize ( HCL_FunctionalHess_d & f, HCL_OpDeriv2Adj_d & G, HCL_Vector_d & x ) Minimize attempts to solve the problem of minimizing f(x) subject to the constraint G(x) = 0 |
![]() | Parameters () Access to parameter table |
![]() | SetScaling ( HCL_LinearOpAdjInv_d * SS, HCL_LinearOpAdj_d * CC = NULL ) Alternate version of SetScaling. |
![]() | UnSetScaling () UnSetScaling returns the inner product to the default. |
![]() | Constructors and destructor
|
![]() | StoppingTest ( HCL_EvalALFcnlHess_d & Feval ) Check stopping criterion |
HCL_CMinALHess_d implements the Augmented Lagrangian algorithm. This is a Sequential Unconstrained Minimization Technique, and so requires an HCL_UMinHess_d object.
double GradTol
double ConstrTol
int DispFlag
int DumpFlag
char DumpFile[81]
int DispPrecision
int DumpPrecision
double PenParam
double PenParamIncFac
Constructors and destructor
virtual Table& Parameters()
virtual void Display()
virtual HCL_EvalALFcnlHess_d& LastEval()
virtual void SetScaling( HCL_LinearOpAdjInv_d * SS, HCL_LinearOpAdj_d * CC = NULL )
virtual void UnSetScaling()
virtual int Minimize( HCL_FunctionalHess_d & f, HCL_OpDeriv2Adj_d & G, HCL_Vector_d & x )
this page has been generated automatically by doc++
(c)opyright by Malte Zöckler, Roland Wunderling
contact: doc++@zib.de