Reducing the cost of extended waveform inversion by multiscale adaptive methods

Lei Fu, William W. Symes

The Rice Inversion Project (TRIP)

May 1, 2015
Overview

Objective

Recover Earth model by extended waveform inversion

Problems

Computational cost

Solution

Multiscale method

Adaptive approach
Extended modeling concept

Abstract setting for forward map \(\mathcal{F} : \mathcal{M} \rightarrow \mathcal{D} \)

\[
\mathcal{F}[m] = d
\]

\(F \): forward modeling operator
\(m \): model \((v, r)\)
\(d \): sampled pressure data at receivers

Extended forward map \(\bar{\mathcal{F}} : \bar{\mathcal{M}} \rightarrow \mathcal{D} \) [Symes, 2008]

\[
\bar{\mathcal{F}}[\bar{m}] = d
\]

\(\bar{F} \): extended forward modeling operator
\(\bar{m} \): extended model \((v(x), \bar{r}(x, h), ...)\)
\(d \): sampled pressure data at receivers
Extended linearized acoustic modeling $\bar{F}[v] \bar{r}$

u - reference (incident) pressure field

$$\left(\frac{1}{v^2(x)} \frac{\partial^2}{\partial t^2} - \nabla^2 \right) u(t, x; x_s) = w(t) \delta(x - x_s)$$

δu - scattered (perturbation) pressure field

$$\left(\frac{1}{v^2(x)} \frac{\partial^2}{\partial t^2} - \nabla^2 \right) \delta u(t, x; x_s) = \frac{\partial^2}{\partial t^2} \int dh \frac{2\delta \bar{v}(x, h)}{v(x + h)v^2(x - h)} u(t, x; x_s)$$

$w(t)$: source function
v: velocity of seismic waves
x: position in earth model
x_s: source location
$
\bar{r}(x, h) = \frac{\delta \bar{v}(x, h)}{v(x)}$: extended reflectivity ($\delta \bar{v}(x, h)$: extended velocity perturbation)
Why $\bar{F}[\nu] \bar{r}$ expensive?

Express the solution of equation (2) as:

$$
\bar{F}_H[\nu] \delta \bar{v}(t, x_r; x_s) = \frac{\partial^2}{\partial t^2} \int dx \int_{-H}^H dh \int d\tau \frac{2\delta \bar{v}(x, h)}{v(x + h)v^2(x - h)}
G(t - \tau, x + h; x_r)G(\tau, x - h; x_s) \ast w(\tau)
$$

Computational cost

Increase with number of grid points in $h \ (N_h = \frac{2H}{dh})$

$N_h \downarrow \iff dh \uparrow$ coarse grid

$N_h \downarrow \iff H \downarrow \iff$ velocity error \downarrow
Extended full waveform inversion (EFWI)

Objective function:

\[
\min_{v, \bar{r}} J[v, \bar{r}] = \frac{1}{2} \| \bar{F}[v] \bar{r} - d \|^2 + \frac{\alpha^2}{2} \| A \bar{r} \|^2
\]

\(A \): annihilator, differential semblance operator, subsurface offset \(h \).

Separable least-squares, solved with variable projection method [Golub and Pereyra, 1973]. The inverse problem is solved by a nested optimization approach:

- **Inner loop**, optimize \(J[v, \bar{r}] \) over \(\bar{r} \).
- **Outer loop**, optimize reduced objective function \(J[v, \bar{r}[v]] \) over \(v \).
Inner loop, optimize J over \bar{r}

Gradient of the objective function $J[v, \bar{r}]$ with respective to \bar{r}:

$$\nabla_{\bar{r}} J[v, \bar{r}] = \bar{F}[v]^*(\bar{F}[v]\bar{r} - d) + \alpha^2 A^* A \bar{r}$$

where $*$ denotes adjoint.

Setting the gradient function to zero, least-squares extended reverse time migration (LSERTM), solved by a linear iterative method, e.g. conjugate gradient method.

$$\bar{N}[v]\bar{r} = \bar{F}[v]^* d$$

where $\bar{N}[v] = \bar{F}[v]^* \bar{F}[v] + \alpha^2 A^* A$
Outer loop, update v

The gradient of the reduced objective function $J[v, \bar{r}[v]]$ respect to v:

$$\nabla_v J[v, \bar{r}[v]] = \Lambda^{-2s} D\bar{F}[v]^T (\bar{r}[v], \bar{F}[v] \bar{r} - d)$$

(3)

where Λ^{-2s} is a smoothing operator for positive s [Symes and Kern, 1994].
\[\vec{r} = \tilde{N}[v]^{-1} \tilde{F}[v]^* d \] at different \(v_{mig} \)

Figure: (a) \(v_{mig} = 0.9v \), (b) \(0.8v \), (c) \(0.7v \), (d) \(1.1v \), (e) \(1.2v \), (f) \(1.3v \)
Multiscale adaptive method for determining h

1: loop
2: // Outer loop
3: $d_{obs}, w \leftarrow \text{low-pass}(f_{\text{min}} - f)$ on d_{obs} and w
4: $\bar{r} \leftarrow \bar{N}_H[v]\bar{r} = \bar{F}_H[v]*d$
5: // Inner loop
6: $\Delta d_{H/2}, \Delta d_H \leftarrow \bar{F}_{H/2}[v]\bar{r} - d_{obs}, \bar{F}_H[v]\bar{r} - d_{obs}$
7: if $\Delta d_H < X$ and $\Delta d_{H/2} < X$ then
8: $dh \leftarrow dh/2, H \leftarrow H/2, dx \leftarrow dx/2, f \leftarrow 2f, dt \leftarrow dt/2$
9: else if $\Delta d_H < X$ and $\Delta d_{H/2} \geq X$ then
10: exit
11: else
12: $H \leftarrow 2H$, go to 4 // $\Delta d_{H/2} \geq \Delta d_H \geq X$
13: $\Delta v \leftarrow \nabla_v = \Lambda^{-2s}D\bar{F}[v]^T (\bar{r}[v], \bar{F}[v]\bar{r} - d)$
14: $v \leftarrow v + \Delta v$
15: end loop
Figure: a) velocity model, (b) the original source wavelet \((3 - 24 \text{ Hz})\), (c) source wavelet filtered \(3 - 8 \text{ Hz}\), (d) source wavelet filtered \(3 - 16 \text{ Hz}\)
Step 1: $v_{mig} = 2.4 \text{ km/s}$, start with $H = 320 \text{ m}$

Figure: Step 1: $dh = dx = dz = 40 \text{ m}$, $f : 3 - 8 \text{ Hz}$, $dt = 6 \text{ ms}$ (a) extended RTM image, (b) 20 iteration of LSERTM with slower velocity
Step 1: \(v_{mig} = 2.4 \text{ km/s} \)

\[
\Delta d_{160} \geq \Delta d_{320} \geq X, \ H \leftarrow 2H = 640 \text{ m}
\]

\[
\Delta d_{640} < X \text{ and } \Delta d_{320} \geq X, \text{ exit}
\]

Figure: Step 1: \(dh = dx = dz = 40 \text{ m}, f : 3 - 8 \text{ Hz}, dt = 6 \text{ ms} \) (a) LSERTM result of 20 CG iterations, (b) the relative data residual
Step 2: \(v_{mig} = 2.6 \text{ km/s} \)

\[\Delta d_{640} < X \text{ and } \Delta d_{320} < X, \quad dh \leftarrow dh/2, \quad H \leftarrow H/2, \quad dx \leftarrow dx/2, \quad f \leftarrow 2f, \quad dt \leftarrow dt/2 \]

\[\Delta d_{320} < X \text{ and } \Delta d_{160} \geq X, \text{ exit} \]

Figure: Step 2: \(dh = dx = dz = 20 \text{ m}, \ f : 3 - 16 \text{ Hz}, \ dt = 3 \text{ ms} \), (a) LSERTM result of 25 CG iterations, (b) the relative data residual
Step 3: $v_{mig} = 2.8 \text{ km/s}$

$\Delta d_{320} < X$ and $\Delta d_{160} < X$, $dh \leftarrow dh/2$, $H \leftarrow H/2$, $dx \leftarrow dx/2$, $f \leftarrow 2f$, $dt \leftarrow dt/2$

$\Delta d_{160} < X$ and $\Delta d_{80} \geq X$, exit

Figure: Step 3: $dh = dx = dz = 10 \text{ m}$, $dt = 1.5 \text{ ms}$, the original data and source function (a) LSERTM result of 40 CG iterations, (b) the relative data residual
Summary

Reduce computational cost of EFWI

- Step 1: \(\left(\frac{1}{4} \right)^3 \approx 0.39\% \)
- Step 2: \(\left(\frac{1}{2} \right)^3 = 12.5\% \)

Methods:

- Multiscale method
- Adaptive approach

Future work

- Good preconditioner
- Implementation in IWave
Acknowledgement

Thanks to
TRIP SPONSORS AND MEMBERS
