// lsqr.hh // created by WWS 26.01.14 /************************************************************************* Copyright Rice University, 2014. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder. **************************************************************************/ #ifndef __RVLALG_UMIN_LSQR__ #define __RVLALG_UMIN_LSQR__ #include "alg.hh" #include "terminator.hh" #include "linop.hh" #include "table.hh" using namespace RVLAlg; namespace RVLUmin { using namespace RVL; using namespace RVLAlg; /** Single step of LSQR iteration for solution of the normal equations, per Paige & Saunders, ACM TOMS v. 8(1), 1982, pp. 43-71. On construction, internal workspace allocated and initialized. Each step updates internal state of LSQRStep object. Since solution vector, residual norm, and normal residual norm are stored as mutable references to external objects, these external objects are updated as well. IMPORTANT NOTE: this version of the algorithm assumes that the solution vector reference (internal data member x) refers to a zero vector on initialization. To accommodate nontrivial initial guess, modify the right-hand-side vector (argument _b) externally. Solution vector (x), iteration count, residual norm, and normal residual (gradient) norm are all references to external objects, which may be monitored by appropriate terminators to build a LoopAlg out of this Algorithm. See LSQRAlg for description of a fully functional algorithm class, combining this step with a Terminator to make a LoopAlg. */ template class LSQRStep : public Algorithm { typedef typename ScalarFieldTraits::AbsType atype; public: LSQRStep(LinearOp const & _A, Vector & _x, Vector const & _b, atype & _rnorm, atype & _nrnorm) : A(_A), x(_x), b(_b), rnorm(_rnorm), nrnorm(_nrnorm), v(A.getDomain()), alphav(A.getDomain()), u(A.getRange()), betau(A.getRange()), w(A.getDomain()) { // NOTE: initial x assumed to be zero vector // method body implements step one in P&S p. 8 beta=b.norm(); rnorm=beta; atype tmp; if (ProtectedDivision(ScalarFieldTraits::One(),beta,tmp)) { RVLException e; e<<"Error: LSQRStep constructor\n"; e<<" RHS has vanishing norm\n"; throw e; } u.scale(tmp,b); A.applyAdjOp(u,v); alpha = v.norm(); nrnorm = alpha*rnorm; if (ProtectedDivision(ScalarFieldTraits::One(),alpha,tmp)) { RVLException e; e<<"Error: LSQRStep constructor\n"; e<<" Normal residual has vanishing norm\n"; throw e; } v.scale(tmp); w.copy(v); phibar = beta; rhobar = alpha; } /** Run a single step of Paige-Saunders - notation as on p. 8 of TOMS paper */ void run() { try { // 3a store Av_i over betau A.applyOp(v,betau); // increment with -alpha_i u_i Scalar stmp = -alpha; betau.linComb(stmp,u); // beta_{i+1} = norm beta=betau.norm(); atype tmp; if (ProtectedDivision(ScalarFieldTraits::One(),beta,tmp)) { RVLException e; e<<"Error: LSQRStep::run\n"; e<<" beta vanishes\n"; throw e; } // u_{i+1} = unit vector stmp = tmp; u.scale(stmp,betau); // 3b. store A^Tu_{i+1} over alphav A.applyAdjOp(u,alphav); // increment with -beta_{i+1} v_i stmp = -beta; alphav.linComb(stmp,v); // alpha_{i+1}=norm alpha = alphav.norm(); if (ProtectedDivision(ScalarFieldTraits::One(),alpha,tmp)) { RVLException e; e<<"Error: LSQRStep::run\n"; e<<" beta vanishes\n"; throw e; } // v_{i+1} = unit vector stmp=tmp; v.scale(tmp,alphav); // 4 (a) atype rho = sqrt(rhobar*rhobar + beta*beta); // 4 (b) atype c = rhobar/rho; // 4 (c) atype s = beta/rho; // 4 (d) atype theta = s*alpha; // 4 (e) rhobar = - c*alpha; // 4 (f) atype phi = c*phibar; // 4 (g) phibar = s*phibar; // 5 (a) x.linComb(phi/rho,w); // 5 (b) w.scale(-theta/rho); w.linComb(ScalarFieldTraits::One(),v); // assign residual, normal residual rnorm = phibar; nrnorm = phibar*alpha*abs(c); } catch (RVLException & e) { e<<"\ncalled from CGNEStep::run()\n"; throw e; } } ~LSQRStep() {} private: // references to external objects LinearOp const & A; Vector & x; Vector const & b; atype & rnorm; atype & nrnorm; // need six work vectors and four scalars as persistent object data Vector u; Vector v; Vector betau; Vector alphav; Vector w; atype alpha; atype beta; atype rhobar; atype phibar; }; /** This is Algorithm LSQR as stated in Paige and Saunders, ACM TOMS vol. 8 pp. 43-72 1982 (see p. 8). We use variable names aping Paige and Saunder's notation insofar as possible. Structure and function: Combines LSQRStep with a Terminator which displays iteration count, residual norm, and normal residual norm on output stream (constructor argument _str), and terminates if iteration count exceeds max or residual norm or normal residual norm fall below threshhold (default = 10*sqrt(macheps)). Also terminates if the length of the solution vector exceeds a specified bound (maxstep argument to constructor). In this latter case, the computed step is projected onto the ball of radius maxstep centered at the initial estimate. This maximum step limit and projection turns the algorithm into an approximate trust region subproblem solver, similar to Steihaug-Toint. The default choice of maxstep is the max Scalar, which effectively turns off the trust region feature. Usage: construct LSQRAlg object by supplying appropriate arguments to constructor. On return from constructor, solution vector initialized to zero, residual norm to norm of RHS, and normal residual norm to norm of image of RHS under adjoint of operator. Then call run() method. Progress of iteration written on output unit. On return from run(), solution vector stores final estimate of solution, and residual norm and normal residual norm scalars have corresponding values. Typical Use: see functional test source. IMPORTANT NOTE: This class is also an RVLAlg::Terminator subclass. Its query() method returns true if the trust region constraint was binding (raw LS solution larger than trust radius), else false. IMPORTANT NOTE: The solution vector and residual and normal residual scalars are external objects, for which this algorithm stores mutable references. These objects are updated by constructing a LSQRAlg object, and by calling its run() method. IMPORTANT NOTE: this version of the algorithm initializes the solution vector to zero. To accommodate nontrivial initial guess, modify the right-hand-side vector (argument _rhs) externally. IMPORTANT NOTE: in order that this algorithm function properly for complex scalar types, a careful distinction is maintained between the main template parameter (Scalar) type and its absolute value type. All of the scalars appearing in the algorithm are actually of the latter type. See constructor documentation for description of parameters. */ template class LSQRAlg: public Algorithm, public Terminator { typedef typename ScalarFieldTraits::AbsType atype; public: /** Constructor @param _x - mutable reference to solution vector (external), initialized to zero vector on construction, estimated solution on return from LSQRAlg::run(). @param _inA - const reference to LinearOp (external) defining problem @param _rhs - const reference to RHS or target vector (external) @param _rnorm - mutable reference to residual norm scalar (external), initialized to norm of RHS on construction, norm of estimated residual at solution on return from LSQRAlg::run() @param _nrnorm - mutable reference to normal residual (least squares gradient) norm scalar (external), initialized to morm of image of RHS under adjoint of problem LinearOp on construction, norm of estimated normal residual at solution on return from LSQRAlg::run() @param _rtol - stopping threshold for residual norm, default value = 100.0*macheps @param _nrtol - stopping threshold for normal residual norm, default value = 100.0*macheps @param _maxcount - max number of iterations permitted, default value = 10 @param _maxstep - max permitted step length (trust radius), default value = max absval scalar (which makes the trust region feature inactive) @param _str - output stream */ LSQRAlg(RVL::Vector & _x, LinearOp const & _inA, Vector const & _rhs, atype & _rnorm, atype & _nrnorm, atype _rtol = 100.0*numeric_limits::epsilon(), atype _nrtol = 100.0*numeric_limits::epsilon(), int _maxcount = 10, atype _maxstep = numeric_limits::max(), ostream & _str = cout) : inA(_inA), x(_x), rhs(_rhs), rnorm(_rnorm), nrnorm(_nrnorm), rtol(_rtol), nrtol(_nrtol), maxstep(_maxstep), maxcount(_maxcount), count(0), proj(false), str(_str), step(inA,x,rhs,rnorm,nrnorm) { x.zero(); } ~LSQRAlg() {} bool query() { return proj; } void run() { // terminator for LSQR iteration vector names(2); vector nums(2); vector tols(2); names[0]="Residual Norm"; nums[0]=&rnorm; tols[0]=rtol; names[1]="Gradient Norm"; nums[1]=&nrnorm; tols[1]=nrtol; str<<"========================== BEGIN LSQR =========================\n"; VectorCountingThresholdIterationTable stop1(maxcount,names,nums,tols,str); stop1.init(); // terminator for Trust Region test and projection // BallProjTerminator stop2(x,maxstep,str); BallProjTerminator stop2(x,maxstep,str); // terminate if either OrTerminator stop(stop1,stop2); // loop LoopAlg doit(step,stop); doit.run(); // must recompute residual if scaling occured proj = stop2.query(); if (proj) { Vector temp(inA.getRange()); inA.applyOp(x,temp); temp.linComb(-1.0,rhs); rnorm=temp.norm(); Vector temp1(inA.getDomain()); inA.applyAdjOp(temp,temp1); nrnorm=temp1.norm(); } count = stop1.getCount(); str<<"=========================== END LSQR ==========================\n"; } int getCount() const { return count; } private: LinearOp const & inA; // operator Vector & x; // state - solution vector Vector const & rhs; // reference to rhs atype & rnorm; // residual norm atype & nrnorm; // gradient norm atype rtol; // tolerance residual norm atype nrtol; // tolerance gradient norm atype maxstep; // upper bound for net step x-x0 int maxcount; // upper bound for iteration count int count; // actual iteration count mutable bool proj; // whether step is projected onto TR boundary ostream & str; // stream for report output LSQRStep step; // single step of LSQR // disable default, copy constructors LSQRAlg(); LSQRAlg(LSQRAlg const &); }; /** data class for LSQR policy */ template class LSQRPolicyData { typedef typename ScalarFieldTraits::AbsType atype; public: atype rtol; atype nrtol; atype Delta; int maxcount; bool verbose; LSQRPolicyData(atype _rtol = numeric_limits::max(), atype _nrtol = numeric_limits::max(), atype _Delta = numeric_limits::max(), int _maxcount = 0, bool _verbose = false) : rtol(_rtol), nrtol(_nrtol), Delta(_Delta), maxcount(_maxcount), verbose(_verbose) {} LSQRPolicyData(LSQRPolicyData const & a) : rtol(a.rtol), nrtol(a.nrtol), Delta(a.Delta), maxcount(a.maxcount), verbose(a.verbose) {} ostream & write(ostream & str) const { str<<"\n"; str<<"==============================================\n"; str<<"LSQRPolicyData: \n"; str<<"rtol = "< class LSQRPolicy { typedef typename ScalarFieldTraits::AbsType atype; public: /** build method - see TRGNAlg specs @param x - solution vector, initialize to zero on input, estimated solution on output @param A - Linear Operator of least squares problem @param d - data vector of least squares problem @param rnorm - reference to residual norm scalar, norm of RHS on input, of residual on output @param nrnorm - reference to normal residual norm scalar, norm of normal residual (least squares gradient) on input, updated to estimated solution on output @param str - verbose output stream */ LSQRAlg * build(Vector & x, LinearOp const & A, Vector const & d, atype & rnorm, atype & nrnorm, ostream & str) const { if (verbose) return new LSQRAlg(x,A,d,rnorm,nrnorm,rtol,nrtol,maxcount,Delta,str); else return new LSQRAlg(x,A,d,rnorm,nrnorm,rtol,nrtol,maxcount,Delta,nullstr); } /** post-construction initialization @param _rtol - residual norm stopping threshhold @param _nrtol - normal residual (LS gradient) norm stopping threshhold @param _maxcount - max number of permitted iterations */ void assign(atype _rtol, atype _nrtol, atype _Delta, int _maxcount, bool _verbose) { rtol=_rtol; nrtol=_nrtol; Delta=_Delta; maxcount=_maxcount; verbose=_verbose; } /** parameter table overload */ void assign(Table const & t) { rtol=getValueFromTable(t,"LSQR_ResTol"); nrtol=getValueFromTable(t,"LSQR_GradTol"); Delta=getValueFromTable(t,"TR_Delta"); maxcount=getValueFromTable(t,"LSQR_MaxItn"); verbose=getValueFromTable(t,"LSQR_Verbose"); } /** data struct overload */ void assign(LSQRPolicyData const & s) { rtol=s.rtol; nrtol=s.nrtol; Delta=s.Delta; maxcount=s.maxcount; verbose=s.verbose; } /** only Delta need be changed repeatedly, as opposed to set post-construction. Simplest way to do this - make it public */ mutable atype Delta; /** main constructor - acts as default. Default values of parameters set to result in immediate return, no iteration. Note that policy design requires that default construction must be valid, and all run-time instance data be initiated post-construction, in this case by the assign function, to be called by drivers of user classes (subclassed from this and with this as template param). */ LSQRPolicy(atype _rtol = numeric_limits::max(), atype _nrtol = numeric_limits::max(), atype _Delta = numeric_limits::max(), int _maxcount = 0, bool _verbose = true) : Delta(_Delta), rtol(_rtol), nrtol(_nrtol), maxcount(_maxcount), verbose(_verbose), nullstr(0) {} LSQRPolicy(LSQRPolicy const & p) : Delta(p.Delta), rtol(p.rtol), nrtol(p.nrtol), maxcount(p.maxcount), verbose(p.verbose), nullstr(0) {} private: mutable atype rtol; mutable atype nrtol; mutable int maxcount; mutable bool verbose; mutable std::ostream nullstr; }; } #endif