RICE UNIVERSITY

Software Design for Simulation Driven Optimization
by
Anthony D Padula

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

William W. Symes, Chairman
Noah Harding Professor of Computational
and Applied Mathematics

Matthias Heinkenschloss
Associate Professor of Computational and
Applied Mathematics

Danny C. Sorensen
Noah Harding Professor of Computational
and Applied Mathematics

Keith Cooper
Professor of Computer Science

HousToN, TEXAS

May, 2005

Abstract

Software Design for Simulation Driven
Optimization

by

Anthony D Padula

This thesis describes a flexible framework for abstract numerical algorithms which
treats algorithms as objects and makes them reusable, composable, and modifiable.
These algorithm objects are implemented using the Rice Vector Library (RVL) inter-
face, decoupling the algorithmic code from the details of linear algebra and calculus
in Hilbert Space. I made many improvements to the RVL design, including abstract
return types for reductions. These improvements allowed me to demonstrate the
breadth of this design by incorporating semantically similar objects from other pack-
ages which had significant syntatic differences to the RVL objects. By adapting other
libraries, 1 gain access to a variety of tools, including parallel linear algebra imple-
mentations. The benefits of the algorithm framework can be seen when abstract
numerical algorithms are coupled with parallel simulators without needing to modify

either the algorithm or the simulator.

Acknowledgements

This work was supported in part by:
e Exxonmobil Upstream Research Co.

e the Department of Energy under Contract Nos. 74837-001-03 49 and 86192-
001-04 49 from the Los Alamos National Laboratory.

e the Rice Terascale Cluster funded by NSF under Grant EIA-0216467, Intel, and
HP.

I’d like to thank the following for assistance with this thesis: William W. Symes,
Roscoe Bartlett, Bart van Bloemen Waander, Mike Heroux, Sharon Padula, Denis

Ridzal, and Hala Dajani.

Contents

Abstract ii
Acknowledgements iii
List of Figures viii
List of Tables ix

1 Introduction 1
2 History and Background 7
2.1 Early Functional Programming, ... 7
2.2 Structured Data Types oo 10
2.3 Object-Orientation 0o 11

3 General Design Principles 14
3.1 Beneficial Design Strategies 14
3.1.1 Documentation and Naming 15

3.1.2 UML and Design Patterns 16

3.1.3 Reuse 18

3.2 Object—Orientation is your friend 19
3.3 Encapsulation Lo Lo 22

3.4 Pitfalls in a Software Design L 0. 23

3.4.1 Too much can be worse than too little
3.4.2 Code Obesity oo
3.5 Summary of General Design Principles
RVL
4.1 HCL e
4.2 RVL 1.0 e
4.2.1 Vectorsand Spaces 0.
4.2.2 FunctionObject oo
4.2.3 Operator and Evaluations
4.2.4 Generic Programmingin RVL
4.3 Modificationsto RVL 0oL
4.3.1 Improved Evaluation Behavior
43.2 Addingconst
4.3.3 Removing unneeded templates
4.3.4 Abstract Return Type 0o
4.3.5 Generalized Function Objects
4.3.6 Streamableo o L oL
Competitors
5.1 Template Numerical Toolkit
52 O0QP e
53 PETSc e
5.4 TSFCore o e
5.5 Epetraand Tpetra 0o
5.5.1 Future upgrade to Tpetra
5.6 Multivectoro

2.7

Is RVL Unique? o

23
26
26

29
30
32
33
36
37
38
39
40
43
44
46
49
92

6 Adaptation

6.1 General Strategy oL o
6.2 TSFCoreand RVL
6.2.1 Original Behavior oL
6.2.2 Evaluation on Opposites
6.2.3 Higher Level Interoperability
6.2.4 Putting a TransientNonlinearProblem under TSOpt
6.2.5 Example Logistics Problem
6.3 Epetraand RVL
6.3.1 Adapting Epetra_Vector and Epetra_MultiVector
6.3.2 Adapting Linear Operators
6.3.3 Data transfer using Epetra0
6.3.4 Combination Data Containers
6.3.5 Example applications
6.4 Other Adaptations Lo
6.41 HCLand RVL.
6.4.2 OOQP and RVL or TSFCore
6.43 OOQPand HCL
6.5 What was Learned o o000
6.5.1 Roadblocks to Adaptation

A Recursive Framework for Flexible Algorithm Design

7.1 Definition and description 0 Lo
7.1.1 What is an Algorithm
7.1.2 Loop Control,

7.2 Abstract Algorithm Design o0

7.3 Benefits

7.4 T'll take the high road, and you take the low road

7.5 'The Conjugate Gradient Method

vi

69
72
75
7
84
38
93
95
98
98
101
103
105
106
106
107
108
110
111
113

76.1 CGNE
7.6.2 ConOptStep
7.6.3 Line Search 0.
7.6.4 Generalized Pattern Search
7.6.5 Quasi—-Newton Limited-Memory BFGS
7.6.6 Sequential Quadratic Programming

7.7 Lingering Issues oo

8 Master—Slave Parallel Algorithms
81 Basicldea o
8.2 Abstraction using RVL and RVLAlg.
8.3 Isolation of the Communication Layer
84 A Variation
8.5 Epetra Implementation oL
8.6 Example Applications o0
8.7 How to implement a Master—Slave Algorithm

8.7.1 Building a Master—Slave configuration into an event loop . . .

9 Parallel Functional with Implicit FE Constraint
9.1 Advection-Diffusion Problem
9.2 Optimization Algorithm and Functional
9.3 Building a Functional 0 00000
9.4 Denis Ridzal’s Trilcode in the Problem Holder
9.5 Implement Function Objects using AztecOO
9.6 Results.

10 Conclusions

Bibliography

vii

137
137
138
139
141
144
145
147

149
150
152
154
156
159
161
162
163

165
166
168
170
171
172
174

180

184

List of Figures

3.1 The RVL Vector Structure 17
4.1 The RVL Vector Structure, 34
4.2 Evaluating RVLRandomize on a Vector 35
6.1 6-pack Grounded Adapter Plugs by Franzus 71
6.2 An adapter from RTOpPack: :RTOp to RVL: :FunctionObject 72
6.3 Applying an RTOp to a parallel TSFCore:: Vector 78
6.4 Applying an RTOp to an out—of—core TSFCore:: Vector 79
6.5 Evaluating a RVL::FunctionObject on a RVL::DataContainer 81
6.6 Evaluating a FunctionObject on a TSFCore:: _‘Vector 85
6.7 Sequence of calls to apply a RTOp to a RVL::DataContainer 87
6.8 Sequence of calls to apply a RVL::LinearOp to a TSFCore::Vector . . 90
6.9 Sequence of calls to apply a TSFCore::LinearOp to a RVL::Vector . . 92
6.10 Class interaction diagram for the Logistics Problem 97
6.11 Epetra Maps for Data Transfers 103
9.1 Airport model obtained from Sandia National Labs. 167
9.2 Runtimes over various preconditioners 177

9.3 Runtimes over various residual tolerances 178

List of Tables

6.1 Adapters between RVL and TSFCore

9.1 Wall clock runtimes for Advection—diffusion problem

Chapter 1

Introduction

This thesis concerns the possibility of writing reusable computer source code for
high-level scientific computation. Reusability allows high—quality implementations
of algorithms and data structures to propagate. This thesis deems code reusable
across a set of contexts if it can be used without alteration at the source level in
any of these contexts. LAPACK is an important example of truly reusable scientific
code [1]. LAPACK provides generic interfaces to efficient dense linear algebra algo-
rithms. These interfaces involve only arrays of data, array lengths, strides, and the
like, which describe the mathematical objects occurring in dense, in—core computa-
tional realizations of solution algorithms for linear systems and related problems —
namely vectors and matrices identifiable with in—core arrays. This choice of inter-
face design and data structures makes LAPACK reusable across an entire domain of
problems.

The problem domain considered in this thesis is the large, simulation—driven non-
linear program (NLP)

minf(z) s.t. g(x) =0

in which the objective f and the constraint g may be itself the result of extensive
computations, such as the numerical solution of a system of partial differential equa-

tions. The solution = is a wector, and f and g are assumed to be mappings on a

subset of a vector space, and appropriately often differentiable. The solution algo-
rithms which scale well to large problems tend to be coordinate-free, that is, they
depend only on the behavior of the mathematical objects defining the problem, and
not the particular details which implement this behavior. Some examples of such
algorithms are the Quasi-Newton methods and Krylov—subspace methods. The al-
gorithms can be expressed entirely using calculus in Hilbert space with no reference
to coordinates. Following the nomenclature in [11], I call these abstract numerical
algorithms (ANAs).

Although both the problem definitions and solution algorithms can be written
abstractly, there must always be concrete data structures implemented underneath
the abstraction. A wide range of data structures occur naturally in simulation driven
optimization problems — for example gridded data, finite—element bases, and seismic
traces. These data structures have a variety of meta—data, such as times, spatial
locations, and grid descriptions, which are necessary for the proper implementation of
the simulation. Further, the data may be out—of—core or distributed. The LAPACK—
style interface is not sufficient for this problem domain, as no high-level programming
language has intrinsic types or the ability to express a small set of concrete types which
encapsulate all such data structures appearing in simulation—driven optimization.

However, abstract numerical algorithms can’t require access to all the details of
the data structures, as they are built around mathematical constructs which don’t
refer to such details. Computational expression of these algorithms requires a set
of types that mimic the attributes of the mathematical constructs out of which the
algorithms are built. These types should have only those attributes common to all
implementations — insofar as possible those of the mathematical counterparts — if
they are to represent reusably all such implementations. Such a type, divorced from
implementation and described only by its attributes (behavior), is an abstract type.
The interface to an abstract type is the code expressing these common attributes.

When implementations of ANAs only depend on the interfaces to abstract types,

then these implementations are reusable across a variety of storage modalities and
problem domain data structures. In addition, concrete data structures implementing
an abstract type are reusable across all ANAs written in terms of that abstract type.

The Rice Vector Library (RVL) is a set of interfaces defining abstract types usable
in NLPs. RVL addresses the abstract type issue more cleanly than other similar
packages in the scientific community. I added a number of refinements to the initial
version of RVL, expanding the variety of abstract types it encompasses. In addition, I
created an entirely independent ALG library for the abstract expression of algorithms,
which complements the RVL interfaces for the abstract expression of NLPs. When
combined, these two libraries permit the modular construction of abstract algorithms,
which results in reusable implementations of NLP algorithms.

I offer two ‘proofs’ that the reusability goal is met by my design. First, I will
demonstrate the reuse of algorithm code written in RVL/ALG across several prob-
lems, data structures, and execution environments. The abstract algorithm code is
fully functional without any modification in both serial and parallel contexts on a
variety of data structures. The particular parallel context described in this thesis
is a generic fluid dynamics control problem. I created concrete implementations of
the RVL interfaces which are dependent on the parallel environment, but the algo-
rithm implementation depends only on the abstract types and so is independent of
the execution environment.

Second, I show how semantically similar but syntactically incompatible libraries
can be combined using adapter objects in order to leverage the development efforts
of other groups. This reuse complements the first proof by incorporating algorithms
and data structures I did not create into the abstract framework. Further, I identify
the factors that enable or impede such an adaptation, both in the RVL/ALG design

and in the other packages.

Agenda

This project is naturally dependent on the choice of programming language, which
makes it important to understand the features of a programming language which aid
my goals and how these features were developed as the languages evolved. Although
FORTRAN 77 is known to create very efficient compiled code, it does not support
abstraction. Other interpreted languages provide support for abstraction, but the
interpreters are usually slower than compiled programs for performing a given task.
C++ retains much of the efficiency of FORTRAN, as it is compiled instead of in-
terpreted, and supports object—oriented programming. Further, using C++ I can
program using mixed languages, retaining FORTRAN 77 for the computational core
in order to gain efficiency benefits and reuse existing numerical libraries.

I lay out some general design principles which I've identified throughout the course
of this project. I have found several tools, including UML diagrams [46] and design
patterns [15] which are extremely helpful in designing good interfaces. Part of the
difficulty in design is the lack of a concrete objective — ‘a good design’ is a vague
concept. However, designs which are flexible, composable, and reusable have some
common features that can be used as indicators for separating good designs from bad
ones. For example, a bad design incorporates methods in an abstract base class which
may not be appropriate for all realizations of that interface. Children that cannot
implement these methods are expected to print error messages or throw exceptions.
Such a design removes much of the flexibility of an abstract interface, as we cannot
assume that all implementations of the interface provide the same functionality. A
good design includes only the methods which are common across all children in the
base interface. Specializations of the interface add additional functionality, creating
a tree—structured hierarchy of classes.

The RVL project followed an iterative design process which is common to many
software packages, growing out of the Hilbert Class Library (HCL) [17]. HCL intro-

duced several important concepts, including the use of vector spaces as explicit objects

in code. However, the authors eventually recognized some fundamental design short-
comings in HCL. RVL carried over the successful ideas from HCL, but was a fresh
design from the ground up. RVL capitalized on ISO C++ language features to avoid
some of the headaches suffered with HCL. Since my involvement in the RVL project,
I've made further improvements to broaden the scope of the package to include a
large domain of objects and operations.

RVL is not the only abstract interface package for defining NLPs. There are
many competing packages, primarily created at the national laboratories — possibly
the biggest producers and consumers of large simulation and optimization codes in
the United States. Many packages were designed with a particular application or
computing environment in mind, limiting their reusability. I present a critical exami-
nation of several competing packages, showing that only a few offer the possibility of
potentially reusable code.

Even those packages which do not support reusable code for ANAs (in the sense
of this thesis), provide many useful tools written using their interfaces which can be
reused — such as parallel data structures, finite-elements codes, and optimization
algorithms. In order to access these tools, I adapt their interfaces to RVL. Such an
adaptation helps to prove the flexibility of the RVL design by demonstrating it as a
sort of superset around the other interfaces.

While RVL provides the interfaces representing the abstractions appearing in NLP
algorithms, it does not provide interfaces for the algorithms themselves. Therefore,
I introduced an independent library (ALG) of abstract interfaces which permit NLP
(and many other kinds of) algorithms to be expressed naturally and modularly as
objects. Algorithm objects have many advantages over procedural implementations.
Algorithm objects can have persistent internal state and can be instantiated and ma-
nipulated at runtime. Inheritance and abstraction can be used to define interfaces
which are satisfied by several concrete algorithm implementations that behave differ-

ently but solve the same problem (e. g. line searches). My design severs the algorithm

steps from the stopping criteria. This separation makes both the algorithm steps and
the stopping criteria reusable and modular.

The algorithm interfaces are not restricted to optimization and simulation algo-
rithms. The interfaces are general enough to include utility algorithm constructions,
like the Master and Slave algorithms for task—level parallelism. The base Master and
Slave algorithms are fully implemented except for the data specific methods, which
are left for concrete children to implement. My design encapsulates the problem
dependent details away from the generic code for the Master and Slave.

Finally, while task-level parallelism can be an extremely efficient and straightfor-
ward method for parallelizing some applications, it is not well suited for all problems.
Some cases, for example tight couplings in simulation code, necessitate sharing and
communication between processes in the parallel environment. However, the details of
such parallelism affect only the low—level implementations of linear algebra and data
structures. I show that by adapting a parallel linear algebra library, it is possible to
wrap a parallel simulation inside a functional, completely obfuscating the parallelism
from the solution algorithm. As an example of reuse, I use an unmodified abstract
unconstrained minimization algorithm, which previously had only been run in serial,
to optimize this parallel functional. I demonstrate that this implementation is scal-
able by solving a large problem (more than a million nodes) on the Rice Terascale

Cluster.

Chapter 2

History and Background

Before discussing software design and coding issues, I will review the development of
the language features which I will be using. Object—oriented languages did not simply
spring from the forehead of a computer scientist full-formed. The languages have
grown slowly over the past several decades, following an almost biological evolution
in response to many factors — adapting, growing, and learning from one another.
The software packages discussed later grew in a similar manner, albeit over a shorter

time-span.

2.1 Early Functional Programming

The earliest programming was done in machine code, consisting of numerical codes
for operations and absolute addresses for data and branch targets. The numerical
codes made a program very difficult to read. Absolute addressing made a program
extremely difficult to maintain, since one inserted line affects all the following branch
targets.

The introduction of assembly code added symbolic names to the language, for
both code locations and data storage. Although there is not a unified standard

assembly code, most such languages have similar features. Each machine instruction

is represented with a short mnemonic string. Data is accessed through direct memory
addressing or a variable name which represents such an address. Symbolic labels
are permitted to indicate branch targets, avoiding the pitfalls of absolute addressing.
Assembly code is translated fairly directly into machine code, with some preprocessing
to compute numerical addresses for the variable names and tags. Most assembly
languages evolved during the early 1950’s as an alternative to interpreted languages,
which were easier to use than machine code but also extremely slow [42].

Although assembly code is still widely used and is an improvement over straight
machine code, it still leaves much to be desired. The instruction codes are often
cryptic acronyms, due to both line length restrictions imposed by punchcards as well
as the necessity of saving space in the assembler itself, where RAM was extremely
limited. Hennessy and Patterson, the standard textbook for computer architecture,
uses a more modern assembly language which is fairly readable, but still requires a
reader to mentally translate BNEZ into “branch not equal zero” [22]. The programmer
must mentally manage register and memory usage, which usually results in a far
sub—optimal utilization. Also, as most machines only have integer and floating point
registers, any work in other data types (complex numbers or long integers for example)
must be simulated in software by the programmer.

The development of floating—point operations in hardware was the death of the
early interpreted languages and the primary motivation for the development of FOR-
TRAN. The first version, FORTRAN I, was developed around 1956 [5] and included
I/O formatting, six character variable names, IF statements, DO loops, and user—
defined subroutines [6]. Later versions of FORTRAN added independent compilation
of subroutines, explicit type declarations for variables, a logical IF construct, and
many other improvements. FORTRAN 77 became the standard version in 1978 and
is still widely used today, although more often through old library functions than for
writing new code.

FORTRAN allows a total of six data types: integer, real, double precision, com-

plex, logical, and character. It also permits the usage of arrays of these six native
data types. The limited data types along with several other important design de-
cisions (such as not allowing recursive subroutine calls) permitted the creation of
very good compilers containing many code optimizations, resulting in very fast code.
FORTRAN 77 thus became the performance benchmark for later applications. How-
ever, despite this desirable high execution speed, FORTRAN 77 is not always easy
to program and maintain. It is difficult to modify existing code to reflect a change
in data structure. Such a change typically requires modifications at every level of
the code to insert extra parameters in function calls and ensure proper initialization,
assignment, and use. A change of norms could require finding and modifying every
call to the norm function, especially if the new norm involved parameters besides the
arrays of data, such as a scaling factor.

Some computer scientists argue for using LISP as a language for scientific comput-
ing [20]. LISP is functional, dynamically typed, allows recursion, performs automatic
garbage collection, has a symbol type, and is real-time composable to build new pro-
grams from old ones. Graham argues that all other languages have spent the last
forty years trying to catch up to what LISP got right in the first place. There may
be merit in his position, but several facts remain: One, LISP is usually interpreted
and thus usually slower than a compiled language, especially on large data sets (some
Scheme implementations are compiled). Two, LISP provides inefficient support for
array address calculations — typically requiring one function call per element access
— even in compiled code. Three, many consider LISP to be practically unreadable,
due to both the unusual operator ordering ((+A B) instead of A+ B) and the huge
number of parentheses. Finally, most programmers of scientific applications seem to

be uncomfortable with LISP, impeding its widespread acceptance.

10

2.2 Structured Data Types

In 1959, the Department of Defense sponsored meetings at the Pentagon to create a
programming language which resembled English and was easy to use (even at the cost
of speed) [42]. Out of these meetings came the Common Business Language (CBL),
which eventually evolved into COBOL 60. It was the first language to include a high—
level macro construct and long descriptive names. More importantly, it provided the
first implementation of hierarchical data structures. Although it is extremely easy to
read, it likely would not have survived without the DoD mandate for its use, as the
early compilers were extremely slow.

COBOL requires detailed description of every variable in a record. Programmers
may specify the number of decimal digits as well as the location of an implied decimal
point. This flexibility is great when dealing with files, as it bundles this information
with the variable, where it belongs, instead of using extra information in input and
output statements. If you decide to display more digits of accuracy, only one change
is required instead of finding and modifying every location where a particular variable
gets printed. This is arguably one of the earliest examples of proper data encapsula-
tion.

ALGOL went through several design iterations [4]. ALGOL 60 was critical, but
the version published in 1969 was the most influential on other languages. The aim of
its design was orthogonality — “a relatively small set of primitive constructs can be
combined in a relatively small number of ways to build the control and data structures
of a language” [42]. ALGOL 68 permits users to combine a few primitive data types
to define new data types. These types allow users to organize data abstractions to fit
particular problems. The language also permits heap—allocated arrays with variable
subscript bounds. ALGOL was a beautiful language, but could be extremely difficult
to program.

Most imperative languages since 1969 owe many design features to ALGOL 68.
Neither PASCAL nor C added new language features, but instead rearranged features

11

in forms suitable for different audiences. PASCAL was designed as a teaching lan-
guage, and is thus relatively safe to use. For systems programming, C was preceded
by CPL, BCPL, and B. However, B is an untyped language, so all data is simply
machine words. Kernighan and Ritchie borrowed from ALGOL 68 to design a new
version of B, adding many modern language features like user—defined data types
[29]. The creators say that C “features economy of expression, modern control flow
and data structures, and a rich set of operators”. The lack of type checking was both
a strength and a weakness. ANSI C (1999) has a more complete type system than the
original Kernighan and Ritchie version. This permits wide flexibility to programmers,
but can easily be misused to create obfuscated, unmaintainable code.

Structured data types permit the composition of primitive types into new types
more suitable for a particular application. In languages without fixed array bounds,
one of the most common structured data type is the pair of the array data with an
integer describing its length. Further variations include additional integers to describe
the starting index and the increment stride. When data is taken from a file, add to the
structure the source filename. The application may also need descriptive information
about where the data is from and when it was taken. The size and complexity of data
structures can grow rapidly. Further, each change in the data structure necessitates
changes throughout a program to properly initialize, access, and copy instances of

data.

2.3 Object—Orientation

Structures provide a way to associate related bits of data together into a single item.
However, programmers often end up writing methods specifically to manipulate a
particular structure. One of the most common is a method to copy data from one
instance of a structure to another. It seems reasonable to bundle the copy method

to the data structure, which prevents name conflicts. Each object has a method

12

named copy which implements the same semantic notion, but hides the syntactic
difference between copying objects of different types. This is similar to the operations
on intrinsic types, where a + b is implemented a different way depending on the type
of a and b, but is written the same for many different types.

Dahl and Nygaard were simulation programmers in the 1960’s who found existing
languages to be ill suited to their needs. In particular, they wanted subprograms
which could be restarted at the position where they previously stopped, known as
‘coroutines’. They first developed SIMULA I in 1964, but continued to work on it.
SIMULA 67 added, among other things, the class construct, which bundled data and
related routines [12] [37]. Multiple instances of a class are permitted with their own
local data, and a class may contain code to be run when an instance is created.

True object—oriented programming, which includes data abstraction, inheritance,
and dynamic type binding, was first seen in Smalltalk [19] [32]. The language provides
for the simulation of objects which use messages to communicate with each other.
Everything in the Smalltalk realm is an object, and each object has a collection of
methods available to other objects. Objects are instances of classes, and Smalltalk
provides for inheritance among classes. Smalltalk was never widely used, but was
very influential among the language design community.

In the mid 1970’s, the Department of Defense initiated another round of language
evaluation and design. COBOL had been successful, but was not suitable for the em-
bedded systems applications which compose the majority of DoD contracts. Further,
there were over 450 different languages in use for defense projects at the time. Out
of a long series of design meetings and evaluation phase came Ada. The resulting
language contains many interesting and useful features. Ada uses a package to en-
capsulate the specification for data types, data objects, and procedures, thus allowing
abstraction. The language permits generic program units, which C++ users would
call templates. Ada also has provisions for concurrent execution, intertask commu-

nication, and synchronization. An extension in 1995 added support for inheritance,

13

polymorphism, subprogram pointers, and shared data. However, the sheer breadth
of features makes the language unwieldy. Usable compilers took four years to build
after the initial language design, and still struggled to handle all of Ada’s features.
Many critics feel that Ada is too large and too complex, making it difficult to write
and debug programs [42].

In 1980, Bjarne Stroustrup began modifying the C programming language to
incorporate the object—oriented ideas from Smalltalk and SIMULA 67. Over the next
decade, the language grew, and by 1990, Release 3.0 of C++ included templates,
abstract classes, multiple inheritance, virtual functions, operator overloading, and
reference types [42]. However, C++ maintains the imperative nature it took from C.
The result is an extremely powerful language that lacks some of the safety provisions
that a modern type system would provide. C++ is almost backward compatible with
C, which aided in its acceptance. Further, the availability of good, free compliers helps
to promote its use. However, the language is very large and complex, and has been
criticized as “more of a collection of ideas thrown together than the result of an overall
language design plan” [42]. Despite criticisms, C++ has been widely accepted in the

scientific community for object—oriented programming due to its power and flexibilty.

Chapter 3

General Design Principles

I’ve identified good features of RVL and other projects that I could use to guide
further developments in the project. These principles are equally applicable to linear
algebra interfaces, abstract numerical algorithms, and linear algebra libraries. Many
are apt outside of the realm of scientific computing as well. As such, I’ve described
below these design strategies and principles in order to aggregate in one place these

generally applicable lessons.

3.1 Beneficial Design Strategies

Many simple principles can greatly improve the efficacy and usability of a design.
Some designers consider such issues from the perspective of the expected user, but fail
to spend as much consideration on the perspective of developers. Unfortunately, this
can make interfacing a package with others much more difficult, as the adapters must
implement one interface using another. Having open-source software is necessary
for adaptation, but if the internals of a package are poorly designed and poorly

documented, having the source is of little benefit.

14

15

3.1.1 Documentation and Naming

On any project with more than one developer, or any large project, it is crucial
to document all classes and functions when or before they are written, in order to
ensure that all users and developers have the same semantic notions. The program-
ming language provides tools for describing syntax, but design and documentation
are the only tools for describing semantics. The minimal requirements are short, de-
scriptive comments in code. Along with this, a consistent naming convention with
descriptive names is also a great benefit. Names should ideally be unique, memo-
rable, and give an idea of what a class or function does. However, long names quickly
become cumbersome. At one point, I considered naming a class TSFCoreNonlin-
NonlinearProblemUnconstrainedTakingRVLFunctional, which is an utterly ridicu-
lous thing to type more than once. In these situations, acronyms and abbreviations
are unavoidable. The longer name was replaced with NPFOUnconstrained for the par-
ent unconstrained problem in the TSFCore: :Nonlin package, and NPRVLFunctional.
You cannot build a constrained problem from a single functional, so this name is still
descriptive enough, and is much easier to manage.

One trick to finding good names is to avoid creativity entirely; Use the names
that already exist in the common language of mathematics. Mathematical names
have often been around for decades, and already survived the Darwinian trials of
peer review. Many authors have already taken this advice. However, this leads to a
myriad of classes named Vector, all of which are slightly different from the others.
Modern programming languages provide us with an excellent tool for dealing with
this problem — the namespace. A namespace groups together semantically related
identifiers, appending the (optional) namespace name to the identifier. Frequently all
class names in a package (say RVL) a put into one namespace (usually the package
name). When writing code inside the namespace, the namespace name is implicit and
may be omitted (so the Vector class may be called either Vector or RVL: :Vector.

Outside the namespace, all identifiers are only accessible by using the namespace

16

name and identifier together (RVL: :Vector) unless an explicit using declaration is
made:

using RVL::Space;

using TSFCore;

Here, the first line allows the programmer to omit the RVL:: when using the Space
class later in the program. The second line efficitively includes all identifiers in the
TSFCore namespace, allowing the programmer to omit any further use of TSFCore: :

Namespaces allow the use of common (for instance mathematical) names for differ-
ent types, in different places. The namespace name can be omitted in many situations,
but used to distinguish between objects with the same or similar names. Namespaces
become critical when working with multiple packages. They help users and developers
keep straight which package’s objects are being used at any given moment, and pre-
vent name conflicts. Namespaces are simply a standardized method provided by the
programming language which replaces the convention of attaching a package name
with an underscore, like Epetra Vector. Instead, the classes TSFCore: :Vector and
RVL: :Vector can be used in the same program without name conflicts.

Taking mathematical names has more benefits. For example, scientific program-
mers have somewhat standard ideas of what a vector is, what it should do, and with
which other objects it might interact. This serves as a guide to both developers and
users. If a developer is considering adding functionality to a Vector class which falls
outside a standard definition of a vector (the standards vary somewhat between dis-
ciplines), then they should require a much stronger justification than convenience for
this additional requirement /functionality.

Document Everything.

3.1.2 UML and Design Patterns

The Unified Modeling Language (UML) is described in Fowler [46] as “the (mainly

graphical) notation that methods use to express designs.” UML is a standard way

17

Vector
eval() 1
* inner()
/ zero() 1
linComb()
o o4
Space DataContainer
<<instantiate>>
<<create>> eval()
buildDataContainer() 1
operator==()
operator!=()
isCompatible() ¥
inner()
zero() |
linComb() LocalDataContainer
getSize()
getData()
eval()

Figure 3.1: The RVL Vector Structure

for diagramming interactions and relationships between objects, types, and packages.
UML assigns one meaning to each symbol, so that the same symbols have identical
meaning on all diagrams. In my experience, the use of UML as a design tool works
very well. Further, UML works best when used before coding a design. UML is part
of the design stage, not the documentation stage of a project, although the diagrams
are useful as part of documentation. Frequently, I found that a design written out
can sound good, but when diagrammed, be a horrible mess. Most of the figures in
this thesis use UML.

Figure 3.1, reproduced here from Chapter 4, uses UML to show the relationships
between four objects, one box per object. The top of the box contains the object

name while the bottom shows some of the object methods. Arrows with an open

18

head, such as the one from LocalDataContainer to DataContainer indicate inheri-
tance, in this case a ‘is a’ relationship. The arrows with solid diamonds at the base
indicate ownership, while the empty diamonds indicate a reference. Thus, Vector
owns a DataContainer and references a Space which it does not own. Numbers on
arrows show the number of objects participating in each relationship. Any number
of Vector objects can reference the same space, but each Vector owns exactly one
DataContainer, and each DataContainer can only belong to one Vector.

This modeling language is easily coupled with a standard set of designs. The book

Design Patterns [15] contains a set of patterns which, while not exhaustive, covers

the most commonly used patterns in many applications. This book, and others
like it, provides us with a new vocabulary for software design. Further, the names
selected for patterns are chosen to be descriptive. Thus, I can reasonably make
statements like “I used an adapter on the visitor in RVL, FunctionObject, to enable
it to act like the RTOp visitor in TSFCore,” and have an expectation that the reader

understands my meaning, whether they have read the Design Patterns book or not.

A wisitor is an object which visits other objects and does something to them during a
visit. An adapter serves to adapt one interface to meet the specifications of another
interface. The book further provides suggestions on which patterns should be used in
conjunction, when to choose a given pattern over another, and what language features
to use in implementing a pattern. To aid readers, I will emphasize design pattern

names when they are mentioned in this document.

3.1.3 Reuse

The recognition of recurring patterns which commonly arise in object—oriented pro-
gramming leads us to a final piece of general advice: whenever reasonable, use existing
ideas, designs, and code. When you create a new vocabulary, you risk alienating po-
tential users and losing your audience. Old code is not always better, but it has been

refined in a crucible of use and abuse, which helps to filter out the bugs and ineffi-

19

ciencies. Make new designs in the expectation that they could be used for many years
and many different projects. Avoid over—specializing, as it reduces the possibility of

reuse.

3.2 Object—Orientation is your friend

Object—orientation is critical in interfacing modern software libraries. Procedural
programms are easy to write and compile, but difficult to maintain, modify, or use
outside the original scope of the package. LAPACK and the BLAS are widely used
libraries for low—level linear algebra. Programmers supply arrays of contiguous data
which represent vectors and matrices and use these packages to perform linear algebra
operations on data very efficiently. The data must be in contiguous arrays on a
single processor in the order that the packages expect. Further, as it is written
in FORTRAN 77, only the built-in types are available, and separate but nearly
identical implementations must be kept for each data type (single, double, complex,
and complex double) or program transformation scripts used to change types. As
these libraries are the numerical kernel at the heart of many programs, it is critical
that they be extremely efficient. At this level, the different scalar types necessitate
different memory access patterns to achieve peak efficiency.

However, for high—level code, there are many details which can be glossed over,
as they do not affect the implementation so drastically. For example, an algorithm
for sorting lists of data can have the same implementation regardless of the data type
as long as an ordering method and copy method for the data type is provided. In
the case of optimization code, the code to implement Newton’s Method to find x
for which ¢(z) = 0 is the same regardless of the particular operator ¢. In fact, the
same code can also be used to find the local minimum of a functional if we treat the
gradient as an operator.

Object—orientation provides new tools which make reuse and modification much

20

simpler for high-level code. An abstract interface (say for the operator ¢) may have
numerous implementations, each suited to a different situation, but which share a
many common features speicified by the public interface (an operator can be evaluated
at a point and has a linear first derivative at that point). As a further benefit,
many object oriented languages provide mechanisms for inheritance, thus allowing
programmers to reuse code inherited from the parent and only modify small portions
in the child class.

Each abstract interface tends to have a tree of children which inherit from it.
For example, consider the TSFCore: :Vector interface. TSFCore is an abstract linear
algebra interface which is part of the Trilinos Solver Framework [10]. It uses names-
paces to distinguish its objects from similarly named objects in other packages (I
denote membership in a namespace with a double colon Namespace: :ObjectName).
TSFCore: :Vector defines the interface, and also supplies default implementation for
some member functions. The package then inherits from Vector some base classes,
such as SerialVectorBase which reimplement some member functions, but are still
abstract. Finally, the leaf classes like SerialVector fully implement any remaining
abstract functions, depending on the particulars of their storage and access schemes.
Any of these leaf classes can fill the role of a Vector in algorithmic code.

The use of abstract interfaces is an absolute necessity for utilizing many design
patterns in [15]. Both the RVL: :FunctionObject and the TSFCore: :RTOp make use
of the visitor pattern as a central part of their design. While the mechanics in each
situation differ slightly, the rough strategy is to specify a abstract interface for a
mathematical function of the form f : X — Y, where X and Y are vector spaces.
These objects then visit vectors (or collections of vectors) and perform the mapping.
A particular function is created by writing implementations for the abstract member
methods which were specified by the interface. One simple example from RVL is the
identity map called RVLCopy. The main method it implemented in the class is the

operator () method, which performs the visitation. Apart from some array bound

21

checking and such, the core of the method is

int n = x.getSize();
for (int i=0;i<n;i++) {

x.getData() [i]=y.getData() [i];

Many visitors are quite similar, and a programmer often only changes the one line
inside the for-loop to perform the correct mapping. TSFCore’s RTOp have more
methods to implement, in order to guarantee portability and parallel compatibility,
but their kernel of code looks remarkably similar. These similarities will allow an
intimate cooperation between the packages, which will be discussed in Chapter 6.

The whole point of object orientation is to improve the efficiency of programmers
without hurting the run—time efficiency of the code (see Stroustrup [43] section 24.2.4
for a good discussion of this). Given the cost of hardware compared to the total cost
of programmers, it is always cheaper to buy slightly more hardware than it is to hire
more staff. So even if object—orientation has slight run—time costs in virtual function
calls and such, it is still very beneficial. Properly designed classes can avoid much
of the unnecessary run—time overhead and take advantage of the modern compiler’s
ability to inline and optimize code.

Code cannot be easy to modify if it is difficult to understand what the original
code is doing. Documentation for methods should not only describe the details of
parameter lists and preconditions, but also what a method is doing. For the whole
abstract interface, documentation should describe the interface, what each member
method is for, and how this interface interacts with other interfaces. To aid future
users and developers, a designer should provide example implementations of abstract
interfaces and ensures that these examples aren’t just the trivial cases. A lack of
documentation and examples may confuse later implementers and may result in the

abandonment of an interface.

22

3.3 Encapsulation

When used properly, object—orientation promotes encapsulation, grouping of related
things and controlling access to them. Some of the earliest attempts at encapsula-
tion came from the language improvements which allowed independent compilation
of subprograms. A subprogram encapsulates a sequence of statements, allowing the
subprogram call to substitute for these statements elsewhere in code. Each subpro-
gram has a fixed interface (which controls access) composed of a list of parameters
and a return type. The subprogram has an expected behavior, and when it returns
control to the calling routine, the return values and parameters are supposed to be
left in a given state. Independent compilation allows subprograms to be compiled and
tested individually, more easily than trying to fix an entire program at once. Further,
it makes subprograms reusable, as several applications might call the same library
of subroutines. This library can be maintained in one location, instead of having to
remember all the locations to which a subroutine was copied and updating each one.

However, there are several severe drawbacks to the early procedural programming
approaches. Behavior is entirely semantic, leaving the caller dependent on documen-
tation and trust. One common, insidious error in such code is accidentally modifying
one of the inputs which was supposed to only be read. Such an error doesn’t throw
any warnings and frequently shows no evidence until much later in a program. Some-
times, the only indication of such an error is incorrect results at the end of a program.
A similar sort of error is accidental modification of a global value that is supposed to
be constant. Programmers often define PI = 3.1415926 at the top of a program, and
a later assignment due to a missing character, such as if(PI = x/4.0), can ruin
results.

Modern language features improve the behavior of subroutines and object methods
by providing the caller with slightly more control. Read—only inputs can be declared
locally constant, which makes modification much more difficult. Data encapsulation

limits access and improves upon passing around raw memory addresses. More impor-

23

tantly, abstract interfaces allow us to describe the public face of objects — both data
and methods. The interface does not determine how an implementation must do a
task, but only describes the tasks to be done. Properly used, encapsulation permits
independent fragments of code to be isolated and pieces which perform the same task

in different manners swapped without modification of unrelated parts of code.

3.4 Pitfalls in a Software Design

Much can be learned by examining a variety of software packages and discovering
which design features work well, and which can actually reduce the functionality. I
will take two perspectives in this discussion. The first is from considering the use and
development of a stand alone package. I will also discuss this issue as it relates to the
interoperability of packages, i. e. does a piece of software play well with others. The

later is addressed in Section 6.5.

3.4.1 Too much can be worse than too little

Packages have an inexorable tendency to grow over time. Thus, the only way to avoid
becoming the 800 pound gorilla is to start very small. If all of the “wouldn’t it be
neat” features are added in the beginning, they are impossible to remove later and
maintain backward compatibility. Further, such features often turn out to be less
useful than anticipated, or can be easily rolled into a more general feature later.
This lesson applies on many levels. On the interface level, it is crucial to limit the
number of member functions which are required in the top—level interface. Further,
if a member function is deemed to be necessary sometimes, consider if it is necessary
and sensible in all implementations of an interface. If it is not, I often find that a
hierarchical family of interfaces is more appropriate. The most basic interface at the
top of the tree contains only the bare necessities of functionality for such a semantic

object. The immediate children then have additional member functions, and often

24

implement some of the abstract functions in the parent using the additional knowledge
in the child.

One example of this is in the RVL: :DataContainer class. DataContainer is the
abstract interface, and has only the four evaluation functions, two write methods (for

error reporting and debugging mostly), and a virtual copy constructor called clone ().

class DataContainer {
public:
DataContainer() {}
DataContainer (const DataContainer & D) {}

virtual ~DataContainer() {}

virtual DataContainer * clone() = 0;

/** Evaluate a unary function object. */

virtual void eval(FunctionObject & f) = 0;

/** Evaluate a binary function object, with a second DataContainer
providing the other argument.*/
virtual void eval(FunctionObject & f,

DataContainer & x) = 0;

/** Evaluate a ternary function object, with a second and third
DataContainer providing the other arguments.*/
virtual void eval(FunctionObject & f,
DataContainer & x,

DataContainer & y) = 0;

/*¥* Evaluate a quaternary function object, with a second, third and

25

fourth DataContainer providing the other arguments.*/
virtual void eval(FunctionObject & f,
DataContainer & x,
DataContainer & y,

DataContainer & z) = 0;

/** report to exception */

virtual void write(RVLException & e) = 0;

/** report to ostream */
virtual ostream & write(ostream & str) = 0;

};

Some children of DataContainer are specializations, but still abstract. One such
is ProductDataContainer, which implements the write and evaluation methods,
but has abstract functions for accessing the subcomponents of the product struc-
ture. Thus, a ProductDataContainer is a DataContainer which has a collection of
DataContainer objects inside it. This is one example of the composite pattern in
[15].

Other methods might have been included in this interface. The DataContainer
interface could have owned getSize() and operator[](int i) member functions
instead of the specialized product class. Although the default implementation could
return 1 for the size and a reference to *this for the access function, this would
needlessly clutter the interface. Further, it would confuse naming issues elsewhere,
since some other subclasses like LocalDataContainer also have a getSize () method
with an entirely different semantic meaning. The current design forces a user to
explicitly state whether they are working with a ProductDataContainer before trying

to call getSize () and avoids confusion with other methods.

26

3.4.2 Code Obesity

It is easy to get carried away in the thrill of creating new classes and types. This
can rapidly lead to packages with hundreds of similar classes. More classes result in
increased complexity and increased confusion for users and developers. Further, it
makes documentation and maintenance much more difficult.

Part of the trouble can occur when a package experiences geometric growth from
adding new features. Instead of a single new object with the new feature, new versions
of an entire set of objects are added. With just a couple new features, this enormously
increases the number of objects. In this situation, it is important to consider two

things:

1. Are the new features truly necessary and are all the possible combinations

needed?
2. Can the features be implemented once and then reused as needed?

The wvisitor and strategy (a family of interchangeable algorithms) patterns can be a
big help in situations where the features are functionality. To limit differences in data
types and accessing, use of templates and Mizins (small interfaces for adding func-
tionality) can be handy. I've found templates especially useful to avoid maintaining
different copies of code for different scalar types. In HCL, the precursor to RVL,
there were two nearly—-identical copies of code, one for single precision and the other
for double precision, whereas RVL has only one templated interface which suffices for

any scalar type.

3.5 Summary of General Design Principles

These general principles should be taught to every beginning programmer. In an

effort to promote awareness, here’s the shortened form of this chapter:

27

Document all code, preferably before writing, and maintain documentation at

the same time as maintaining code.

Choose descriptive class names, preferably based on the names of familiar math-

ematical or problem specific objects.

Choose descriptive method names. Establish and follow a naming convention

(e. g. I name all copy method copy()).

Choose descriptive identifiers. Naming a gradient vector Trogdor is not de-

scriptive.

Use namespaces to encapsulate logically related classes and procedures. At the

very least, use the package name as a namespace around all code in the package.
Use a high-level language for high-level ideas.

Reuse numerical kernels (often written in FORTRAN) to leverage their effi-

ciency

Reuse the work of experts. They have spent time developing and testing good

code.

Learn the common nomenclature of software designers. UML and Design Pat-

terns are good tools for communication.

Diagraming a design before coding will often reveal flaws.

Use Object—orientation for high-level code.

Encapsulate independent fragments of code as objects, methods, or procedures.

Visitors permit users to add functionality without modifying data structures.

28

Templates are a double—edged sword. They can allow reuse, but can also spread
quickly throughout a package. Templated code cannot be compiled into an

archive. Use them carefully.
Compile-time checks are always better than run—time checks.

Some programmers strictly recommend a debugger for finding bugs. I prefer
using try/catch blocks to create a calling sequence whenever an exception is

thrown.

Declare variables, parameters, and return values constant whenever it makes
sense to do so (the item is semantically constant). The const declaration in

C++ prevents some accidents but cannot prevent intentional maliciousness.

Let the compiler optimize your code. It will almost certainly result in faster

code.

Never use global variables.

Chapter 4

RVL

In one form or another, the Rice Vector Library (RVL) has been an ongoing project at
Rice for the better part of a decade. The authors, originally William W. Symes and
Mark S. Gockenbach, were tired of reimplementing the same basic solution algorithms
for new data types and hacking apart old code to accommodate new data types. While
large sections of code could be cut and pasted together, it was always a struggle to
isolate the fragments which could be left intact from those that required careful
modification. Further, such software design practices led to multiple copies of very
similar code which had to be maintained independently.

The Hilbert Class Library was their first attempt at developing interfaces to layer
between data storage code and algorithmic code [17]. They saw that most of their
applications involved objects which could be viewed as living in a Hilbert space or
mapping between Hilbert spaces. They used the mathematical concepts that defined
a Hilbert space and the vectors in the space to guide the design of their interface.

The HCL project was somewhat successful, but, as frequently happens in software
design, the authors noticed some inherent shortcomings of the design. Rather than
try to make radical changes to overhaul the library, it seemed more beneficial to start
again using the lessons learned from the first attempt. The Rice Vector Library is

the successor to HCL. While it is not backward compatible with HCL, it draws many

29

30

features and ideas from its predecessor.

4.1 HCL

The Hilbert Class Library [17] is a collection of linear algebra interfaces originally
constructed to facilitate writing optimization code which was not tied to a particular
data structure. The interfaces describe objects for performing linear algebra in Hilbert
spaces. The final package became cumbersome as it strove to meet the needs of a
variety of applications and was eventually replaced with RVL (see Section 6.2.1.2).

The core classes in the library are HCL_VectorSpace, HCL _Vector, and
HCL_Functional. The vector space interface acts like a set as well as a factory. As a
factory, it can generate vectors in the set, but it can also test for membership and test
for equality with other vector spaces, which are not typical of factories. The mem-
bership and equality tests are mostly for error checking, but allow detection of some
errors before computation is attempted. The equality tests are implemented with
overloaded operators, allowing very natural looking tests such as if (U != V).
The HCL_VectorSpace provides major benefits as an abstract factory, allowing the
dynamic allocation of appropriate workspace inside algorithmic code without the al-
gorithmic coding needing a concrete type of vector.

The HCL_Vector is a very large abstract interface. In addition to the expected
linear combination and inner product methods, the vector class has a collection of over
fifty operations, from simple vector addition to many more complicated operations.
A method for accessing individual elements directly is provided, but its use is not
recommended due to possible inefficiencies. At the least, use of this direct access
would incur a virtual function call per element access. In the case of a out—of—core
vector, the method might have to retrieve each element from a file, which would be
extremely inefficient.

Due to the large number of virtual class methods, implementing a child of

31

HCL_Vector requires a lot of new code. Several examples of concrete vectors are
provided as part of the package, including the basic, in—core HCL_RnVector and an
out—of—core SGFVector. However, it is necessary to maintain both a single and double
precision version of all code, and a script is provided to facilitate this by essentially
performing a global search and replace on the scalar type (I later asked one author
why they didn’t use a user—defined scalar type which could be altered in a single
location, and it simply didn’t occur to them).

The mapping interfaces HCL_Functional, HCL_LinearOp, HCL BiLinearOp, and
HCL_Op use the vector and space interfaces to define domains and ranges and describe
inputs and outputs. These mappings provide access to first and second derivatives
where appropriate. All of these classes can also define an evaluation object, which
pairs a copy of the object with a target vector in the domain, acting a bit like a
memento of the object at a specific point. The evaluation then has an independent
life from the original mapping and permits efficient reuse of intermediate quantities
used in calculating the values and derivatives. Algorithms may also hold on to an
evaluation for later use to avoid recalculating values.

Several concrete composites and facades can be used to manipulate functionals
and operators. An example facade is the HCL_LeastSquaresFncl which calculates
||F'(u)|| from an operator F'(u), implementing one interface (functional) using one or
more other interfaces (here operator, vector, and space). The various linear combina-
tion aF'(u) + bG(u) classes for both operators and functionals are good examples of
composites, combining two objects F' and G to produce an object of the same type.
These are very useful tools, as the chain rule may be applied to calculate derivatives,
resulting in fully implemented, concrete composites. Composites are also used for
data structures, such as the HCL_GenericProductVector which implements a vector
in a product space and works for any product of existing spaces.

Algorithms implemented in HCL are also defined as objects. Abstract base classes

are given for linear solvers, line searches, and unconstrained minimization. Each

32

class has a Parameters () method for accessing and changing scalar parameters. The
solvers can Solve (), the line searches Search() and the minimizers Minimize (). The
concrete implementations of such algorithms demonstrate the capabilities of HCL for
implementing algorithms free of the details of data storage.

The authors of the HCL paper provide timing comparisons between their HCL
implementations and well-known FORTRAN implementations of Limited—Memory
BFGS and Implicitly Restarted Arnoldi algorithms. The results demonstrate that
there is very little overhead relative to the total runtime involved in the HCL im-
plementations, despite the virtual function calls. As the problem size increases, this
overhead is rapidly swamped by the work done inside the critical loops of the com-
putation.

HCL is object—oriented, but many improvements have been made since its incep-
tion, and it was easier to learn from HCL and start from scratch on a new project,
rather than trying to remain backward compatible. RVL resembles HCL in the se-
mantics of its objects, but owns a deeper hierarchy and has many improvements over

its predecessor.

4.2 RVL 1.0

The design principles discussed in Chapter 3 were applied by Symes, et. al. when
creating the Rice Vector Library (RVL) for calculus in Hilbert spaces [38]. It is a
hierarchical design in two directions, having three levels of data-storage objects and
their factories. Further, every interface is built with an abstract base class as the
parent and a tree of children. The leaves of this tree are the implemented children
or specializations of children. The composite pattern is often used to build product
structure into classes. Finally, recent changes have increased the use of mix-ins,
additional interfaces which are added through multiple inheritance. These serve to

simplify many of the hierarchies and clarify the roles of some classes.

33

4.2.1 Vectors and Spaces

The central concept in RVL is the pair of Space and Vector, as seen in Figure 4.1.
Space defines an interface for Hilbert spaces, containing methods for creation of
elements, membership tests, and the necessary linear algebra operations. Vector is
a concrete class which requires a Space to instantiate and then acts as a vector in
that space. The facade design pattern is an object which provides ”a unified interface
to a set of interfaces in a subsystem [15].” Vector is a facade, acting as a unified
interface between the Space and data storage. This maintains the link to the Space
and protects the user from dynamically allocated data. Data is accessed indirectly
through the Vector by using a wisitor, representing an operation to be performed,
called FunctionObject.

When constructed, Vector assumes ownership of a DataContainer (DC) created
by the Space. The DataContainer class is an abstract interface whose sole purpose
is to be visited by FunctionObject. The DataContainer works by owning a collec-
tion of LocalDataContainers, which are encapsulated contiguous arrays of scalars.
DataContainer passes each of its LocalDataContainers to the FunctionObject
in turn. The LocalDataContainer has getData() and getSize() methods which
FunctionObject uses to implement a its functionality. For example, the Lo inner

product on v and w contains the code

int n=v.getSize();

Scalar * pv = v.getData();

Scalar * pw = w.getData();

Scalar raw = 0.0;

for (int i=0;i<n;i++) {
raw += pv[i]*pw[i];

}

ip += scalexraw;

o]
Space

<<cCreate>>
buildDataContainer()
operator==()
operator!=()
isCompatible()
inner()
zero()
linComb()

Vector

eval()

* inner()
zero()
linComb()

<<instantiate>>

|
DataContainer

eval()

|
LocalDataContainer

getSize()
getData()
eval()

Figure 4.1: The RVL Vector Structure

34

35

SVLClient: | v:Vector | | d:SeismicDataContainer | | f:Randomize | | Idc:SeismicLDC
] T T T T
eval(f) -
» |
eval(f) -~
»
|?ch:get()
e ==
operator()(ldc)
e mm e e e e -
K mmm e - -
< _________ | | I
| |

Figure 4.2: Evaluating RVLRandomize on a Vector

Here, the [] operators are raw array accesses, and thus cheap. The scalar ip is a
data member of the function object which is saved for later access. Another example
of a visit can be seen in Figure 4.2, which shows the process to randomize a seismic
vector.

At first, these relationships can be confusing. All large numerical computa-
tions involve arrays of scalars at some level. These arrays are described by the
LocalDataContainer (LDC) interface. Each array has at least a pointer to the
start of the array and an integer number of elements. A specific LDC may have other
attributes as well. A FunctionObject (FO) performs computations by accessing the
elements of one or more LDCs. Specialized function objects may also access the extra
attributes of specialized LDCs. The DataContainer is a group of one or more LDCs.
which is visited by FOs. The FO is invoked in order on each member LDC of the
DC. The Vector owns exactly one DC and evaluates FOs on it.

The introduction of the Vector class as a concrete facade instead of an abstract
base class is one of the primary contributions of the RVL package. The package
completely avoids reference—counting pointers and all that baggage by hiding dynamic

allocation of data containers inside Vector and explicitly disabling the new operator

36

on Vector. It is still possible for a determined user to dynamically allocate a Vector
through subclassing, but the disabling is enough to encourage most algorithm writers

to focus on static allocation of workspace and states.

4.2.2 FunctionObject

The base FO class requires very little of its children. FOs must respond to queries
about their use of data — whether data is read from or written to. Each FO should
have a unique name, which helps to identify them when handling exceptions. The
class has two virtual write () methods for which default implementations are provided
but which may be overloaded by children. The methods describing whether data is
read or written are new additions to the class, justified in Section 4.3.1.

The abstract specializations of the base class add the important operator () meth-
ods which do the actual computational work in a FO. The Unary, Binary, Ternary,
and Quaternary versions each have an operator() method with the appropriate
number of parameters. While there is the occasional need for more parameters, I have
found it usually more convenient to build a UnaryFunctionObject which expects to
be called on a series of inputs. I considered crafting a function object which took an
arbitrary number of inputs (which I usually refer to as a NaryFunctionObject), but
I have not found sufficient need or justification to do so.

The operator () methods are the main computational methods. For example, the
binary function object has the interface which accepts two local data containers as

parameters:

void operator() (LocalDataContainer<Scalar> & x,

LocalDataContainer<Scalar> & y)

Most exisiting examples of FOs follow a pattern where the first parameter is the
result of the computation and all other parameters are inputs. However, as this

is not always the case, the bool readsData(int i) and bool writesData(int i)

37

methods return whether the i* parameter is read or written. Note that, following
C++ conventions, the first parameter is ¢ = 0. I strongly suggest examining the file
“functions.H” to see the implementations of several examples of common function
objects.

While there is nothing preventing a FO from having data members and additional
methods, the basic interface is meant for data operations between local data contain-
ers. However, frequently scientific computations involve operations which reduce one
or more data containers to a single piece of data or small data structure. Some of the
most basic examples of this are the norms and inner products typical of linear algebra
in Hilbert spaces. RVL provides a standard set of interfaces for reductions. Each has
a pure virtual method getResult() which returns the result of the reduction when
called. The implicit assumption is that the reduction type is something which can
be passed by value, small enough to be copied without significant overhead. The
assumption matches preconceptions of the result of a reduction and does not seem

overly restrictive.

4.2.3 Operator and Evaluations

In addition to the above mentioned interfaces, there are several higher—level interfaces
which use Space and Vector to describe common mappings. A LinearOperator
implements both the forward mapping between the domain and range and the adjoint
mapping. An Operator also has a domain and range, but in addition to the forward
mapping, implements the derivative and adjoint of the derivative. A Functional
is similar to an Operator, but its range is a scalar field and it can evaluate first
and second derivatives along with the forward mapping. These mapping classes are
usually implemented using FunctionObjects and serve to encapsulate a collection of
FOs and appropriate spaces together in a convenient bundle. While the base interfaces
are not explicitly facades, the implementations often are. Only a few methods need

to be implemented to create a new functional or operator. In both cases, there are

38

three apply methods, a clone method, a domain method, and two write methods.
The Operator additionally has a range method, which is omitted in the Functional
class since the range is assumed to be the scalar field.

One of the ideas which survives in some form from HCL is the use of evaluation
classes, which represent the jet of a mapping at a given point. However, the RVL
implementation improves their functionality. For Functional and Operator, the
evaluation is now a concrete class and does not have to be reimplemented for each new
operator. Instead, the evaluation maintains an independent copy of the mapping with
its own internal state along with a reference to the point at which it was evaluated.
In the case of Operator, the evaluation class provides access to a LinearQp which
represent the first derivative at the given point. For Functional, the gradient is a
vector, and an evaluation fx will write the value of the gradient into an input vector
dfdz when called fx.getGradient (dfdx). The functional evaluation will also allow
access to a linear operator which represents the Hessian at the given point. In both
cases, a concrete linear operator is implemented as a friend class to directly access
the functionality of the mapping. This provides an object which can be treated as a
regular linear operator, but which does not incur any additional storage costs apart

from a single reference.

4.2.4 Generic Programming in RVL

A major headache in HCL was maintaining both a single and double precision ver-
sions. It was extremely easy for the versions to diverge accidently, then difficult to
merge them later. Some authors avoid this problem entirely by only providing one
numerical precision [24]. However, this can drive off potential users, as one scalar
type is not sufficient for all applications. A crude, but frequently used, solution is the
declaration of a local scalar type. This typedef can be modified to alter the scalar
type for the entire package. However, this solution requires hacking the source files

for the library in order to change types and only permits a single type to be used in

39

a given application.

The C++ standard [43] provides a method for generic programming which it
calls templates. RVL latched on to this capability eagerly, primarily to avoid the
precision headache from HCL. All major interfaces were templated on the scalar
type. DataContainer and LocalDataContainer use the templated scalar for data
storage, Space and Vector use it also to describe the scalar field for linear com-
bination. The other classes in RVL are often forced into templates because they
interact with templated types. One other use of templates is to describe the return
value of reductions in the function object interfaces. Frequently, this return value
matched the scalar data type, and standardized versions like UnaryFunctionObject-
ScalarRedn<Scalar> were created to describe this common case.

The templated interfaces allow the reuse of the same high—level code on any scalar
type. Naturally, different scalar types may require different concrete implementations
of some function objects, which is easily accomplished using template specialization.
For example, in order to use the BLAS axpy procedure to implement linear com-
binations, four different speicializations of the linear combination ternary function
object are needed — one for each of single and double precision real and complex
data. Similar template specializations occur whenever procedural numerical kernels
are used to implement templated interfaces. However, templates help to isolate the
minor modifications (e. g. changing saxpy to daxpy) in the specializations and avoid

maintaining multiple nearly identical copies of code simply to handle different scalar

types.

4.3 Modifications to RVL

Since its inception, RVL has been undergoing changes and improvements. Most of
these changes are the result of observations while trying to use the package and

feedback from other developers [38]. The package described in Section 4.2 is a rough

40

snapshot of the initial ‘release’ of RVL. Below I will detail the modifications to RVL

which have occurred since then, along with the reasoning behind each change.

4.3.1 Improved Evaluation Behavior

The following discussion is equally applicable to the OperatorEvaluation class,
but for brevity I will discuss FunctionalEvaluation primarily. One additional
change occurred in just the functional evaluation class to make it behave more like
the operator evaluation class and help ensure accuracy of results. I modified the
FunctionalEvaluation::getGradient () method to now return a reference to a vec-
tor containing the gradient. This also allows us to avoid some unnecessary gradient
calculations, as the evaluation now owns the vector and only recomputes it when
needed. However, it is not a good idea to save a reference to the gradient, which may
also occur when passing a reference to the gradient as a parameter in a constructor,
because simply accessing the gradient vector does not ensure that it is updated cor-
rectly. The gradient is locked to prevent someone from accidently overwriting it with
incorrect values, but the locks cannot prevent users from reading outdated data.

As T and others began writing algorithms, it became apparent that evaluations
were useful in some algorithms, but clumsy in others. For iterative algorithms that
need to compare the current state and function values to that of a previous state, the

evaluations worked quite well:

FunctionalEvaluation<Scalar> * fx, * fxprev = NULL;
fx = new FunctionalEvaluation<Scalar>(f,x);
do {

if(fxprev) delete fxprev;

fxprev = fx;

// update x somehow

fx = new FunctionalEvaluation<Scalar>(f,x);

} while(some expression not satisfied)

41

Notice the call to create a new FunctionalEvaluation<Scalar> inside the loop.
This means, for each iteration, the algorithm frees some memory for a vector and a
functional and then allocates memory of exactly the same size. Although there is
always some cost of copying the Functional, it was designed to be lightweight until
one of the apply() methods is called. Further, creating an evaluation is going to
involve at least one assignment to the vector being evaluated, typically an update of
the sort z < = + adz. However, it is unecessary to delete and allocate a new vector
in the same space.

The evaluations work for iterative algorithms resembling the one above, but such
use requires dynamic memory management in algorithmic code and wastes time re—
allocating the same memory repeatedly. Instead of needing to throw evaluations away
and generate new ones for each new point, I could add some sort of update () method
which would overwrite the current point with new data and clone the functional.
This sounds good in principle as it eliminates the need for dynamically allocating
evaluations, but still performs a vector copy. Further, there isn’t an easy way to
allow read—only access to the current point x of an evaluation f(z). Since a Vector
owns a pointer to a data container, const only prevents modifying the value of the
pointer, not the values to which it points.

I settled on a better solution. It requires a little more care on the part of a pro-
grammer, but is more useful and more efficient. Instead of evaluations owning an
independent copy of a vector, they now own a reference to a particular vector. A
small amount of hidden mechanism had to be added to the Vector class to monitor
when its data has changed. The evaluation then notices when a vector has changed
since the last call to the functional. If there is a change, the functional is cloned, the
old copy discarded, and the evaluation begins afresh. This has the effect of making
an evaluation act as f(x), the value of the functional at a given variable x, instead of
f([1,2,3,4,5,...]) or whatever the value of the variable was at the time of instanti-

ation. The evaluation now acts to encapsulate the vector and functional and ensure

42

synchronization. This permits use of evaluations more like reference parameters. The
getPoint () method returns a reference to the vector and allows callers to modify
the values of this vector if they wish. This avoids the necessity of passing both vec-
tors and functionals to algorithms by instead passing an evaluation as a reference.
In algorithms like a line search, I give the line search an evaluation and expect that
when the search is done, the evaluation will contain the results of the line search. The
earlier design required me to pass vectors back and forth, and the calling algorithm
would almost always immediately reevaluate f(z), despite the fact that the search
must have already evaluated that point before terminating there. The new design
does not use any extra copies of vectors, saving both memory and flops.

As part of this change, I added two new methods to the base FunctionObject
class. Each FO knows whether it reads or writes any given LDC. I decided this
information should be available outside the FO. I added two methods

virtual bool readsData(int i) { return true; }

virtual bool writesData(int i) { return true; }

to the base class. By default, every FO claims to read and write every LDC. However,
concrete subclasses are strongly encouraged to override these methods with more

accurate information. This provides several benefits:
1. Cheap monitoring of vectors to avoid unnecessary updating of evaluations.
2. Avoidance of unnecessary reads and writes in out—of—core data structures.
3. Potentially reduce network traffic in some distributed applications.

The drawback to this approach is that a subclass can either make mistakes or lie

about its behavior, leading to data errors which are difficult to track down.

43

4.3.2 Adding const

In C++, an identifier can be labeled as const, short for ‘constant’, which indicates
that its value cannot be changed in the current scope. Variables, parameters, and
return values may all be labeled as constant to try to prevent accidental modification.
One of the major criticisms of the early version of RVL was the complete lack of the
use of const to ensure data safety at compile time. The original authors’ chose to omit
const due to the fact that const may be cast away at any time, and thus does little
to prevent maliciousness. Further, in any class with pointers as data members, the
language only specifies that the value of the pointer must remain unchanged. The
constant nature of the owner does not get passed on to data it owns dynamically.
Thus, a const Vector does not ensure that the low-level data will not get changed.
This makes it frequently easy to follow the letter of the law without any of the spirit
of it. It is possible to make a pointer or reference to a constant object, but such
an object could never be modified, which does not suffice for objects which must be
temporarily constant sometimes but non—constant at other times.

Further, when working with other packages (see Section 6.5 for a discussion of
the effects of const on adaptation), I noticed that const propagates very rapidly,
especially from a caller to a callee. Use in one place can force use in other places and
force changes in otherwise correct code. Class methods must also be made const,
which forces some data members to be made mutable to continue functioning cor-
rectly. This is especially true of boolean flags and the data structures for intermediate
computations, where memory allocation is often delayed until needed.

When used properly, const has some value. Some authors [43] [11] recommend
never using a non-constant reference parameter. Instead, they suggest always using
pointers for parameters whose values may change. Part of the argument is that doing
so differentiates the variables. It helps the compiler to catch some mistakes, since the
compiler will complain if it is given a non—pointer value where it expects a pointer.

However, pointers in general are subject to some difficulties. Procedures must always

44

check if pointer parameters are null before using them to avoid segmentation faults,
whereas reference parameters must be initialized by the caller before a call can be
made. Also, pointers encourage the use of dynamic memory, often where it isn’t
needed. Pointers have their uses, but should be restricted to situations where they
are needed, rather than as a crutch to avoid proper documentation and good software
design. It shouldn’t be necessary to ponder which parameters may get overwritten
and which may not. The design of the function interface should make such questions
abundantly clear. Parameters which are const won’t get overwritten. Further, we
try to always make the outputs clear. Usually, they are either the first parameter of
a method or the object who’s method is invoked. In RVL, the few exceptions to this
are not in the public interface.

Asserting that variables and immutable parameters are constant is useful. The
available methods on such objects must also be labeled const, which helps to dif-
ferentiate query methods from action methods. Spaces are nearly always constant,
since we naturally assume that a given space doesn’t change during the course of a
program. The methods of the space class are not meant to modify the space, but
mediate interactions between members of the space.

Dr. Symes and I made a concerted and careful effort to add const where appro-
priate in RVL. Although our design choices may differ from those of others, we feel

we have good reasons for these choices and have considered this issue well enough.

4.3.3 Removing unneeded templates

Generic programming can be a huge benefit to a software package, beyond the ob-
vious use to alter precision of computations. However, it also has some drawbacks.
New converts to generic programming often go overboard in templating classes. One
major drawback is that templated classes cannot be compiled until they are instan-
tiated. When instantiated, they are then compiled only for the particular value of

the template parameter. This means that templated classes cannot be put in library

45

archives. They must be included in header files, which leads to longer compilation
times.

The other drawback to templates is the complete lack of type information in them.
C-++ does not permit casting a type to a templated base type unless you know the
proper template parameter. For example, given a DataContainer pointer, we cannot
cast it to a LocalDataContainer unless we choose a scalar type. This is particularly
a problem when interfacing with other packages which use pointers, especially void
pointers (see Chapter 6 for discussion of adapting to some of these packages).

In RVL, there were several incidents of templates which had been added unnec-
essarily. The first was in the abstract DataContainer class. This class is a holder
for one or more local data containers and a target for visitation by function objects.
However, the abstract base class makes no mention of local data containers explicitly,
much less the scalar type of the data they contained. Further, DataContainer is vis-
ited by abstract function objects. It does not care whether they are unary, binary, or
otherwise. The abstract interface involves only DataContainer and FunctionObject.
The base FunctionObject interface also does not need a scalar type. It only has five
methods. Two of them take integer inputs and return booleans, one returns a string,
and the other two are write() methods.

Removing the Scalar template from DataContainer has some benefits. This
process made me realize that LocalDataContainer is a DataContainer, and arrange
the inheritance appropriately. Second, I saw that the scalar type in the local data
container and specific function objects is not the same as the scalar type in the
Vector and Space classes. A Vector Space is a set of elements along with a scalar
field and a linear combination operator. The scalar template parameter in Space
is the scalar field for linear combination. The set of elements is the collection of
all possible DataContainers a Space may produce, and does not depend upon the
template parameter of the space. Thus, a Space may generate data containers which

have local data containers with a different type than the one on which the space is

46

templated. If DataContainer were templated, I would be forced to choose between
adding a second template to the Space interface or requiring that the scalar field
and storage type of the data container be identical. Instead, the non-templated
DataContainer better reflects the nature of this class as an element of a set.
Another occurrence of incorrect templates was in the definition of the reduction
function objects. It always bothered me that none of the abstract reduction classes,
like UnaryFunctionObjectRedn, were related to each other except as function objects.
UnaryFunctionObjectRedn inherits from UnaryFunctionObject which inherits from
FunctionObject. The binary, ternary, and quaternary versions are the same way. All
of the reduction specializations add exactly the same methods. Since they are they
same methods, why are they declared four times instead of just once? In addition,
these interfaces template the type of the reduction value as well as the scalar data
type, so the class is a UnaryFunctionObjectRedn<Scalar, RetScalar>. When I was
adapting RVL to TSFCore and when Hala and I were trying to build a client-server

framework [13], we saw the true problem with these templates.

4.3.4 Abstract Return Type

The original designers assumed that reductions would return integers or scalars. This
meant the return values could be safely passed around by value at little cost. The
only interactions involving the return types were between algorithms, which knew
the type they expected to get back, and function objects, which knew the type they
were going to return. However, when I began dealing with abstract function ob-
jects, I saw that the templated return types could be trouble. It was impossible to
cast a FunctionObject to a UnaryFunctionObjectRedn<Scalar, RetType> without
knowing both the scalar type and return value type. There were times when I wanted
to get the result of a reduction but did not even know the number of parameters of
a particular function object. Of course, it is always possible to find out through trial

and error, but this wastes runtime with extra dynamic casts. C++ unfortunately

47

does not permit a switch on a type.

I did not want to revert to the TSFCore solution of using a void pointer for all re-
turn types. This is not type safe and feels too much like a hack. My goal all along has
been to take advantage of object orientation to improve the software design. The lan-
guage permits multiple inheritance, so I suggested using a base class Reduction which
manipulated an abstract base class RetType. A UnaryFunctionObjectReduction
would then be a child of both UnaryFunctionObject and Reduction.

The Reduction class is fully implemented and concrete, which places very little

burden on children. It has four methods.

setResult() Reset the result to the initial value.
setResult(RetType &) Set the result to the given value.
getResult() Returns the current value of the result.

createRetType() Returns a pointer to a dynamically allocated instance of the

RetType. The caller is responsible for deallocating this.

The Reduction maintains a reference to a RetType object, which it gets from its
constructor. Children are responsible for owning the result and passing the reference
to the result into the base class constructor.

An Accumulation is a commutative reduction. This mixin interface (a small
interface that can be appended to a class definition through multiple inheritance) can
be used to indicate that a Reduction is commutative. The interface only has one
pure virtual method, accumulateResult(RetType &) , which should accumulate
the input return value into an internal buffer. For example, the L' norm is an
accumulation, and results are accumulated by simple addition. Properly done, the
Accumulation interface provides an easy way to implement commutative reductions
without burdening the function object with worrying about how many local data
containers there are. It would also be a way to hide parallel reduction calls outside

of the main object code.

48

The RetType is also a very simple interface. Return types are expected to be able
to be assigned using an overloaded = operator. The type must be able to allocate
duplicates of itself through the clone() method. Finally, it is the responsibility
of the type to remember a default value and be able to reinitialize itself. This is
reasonable, as any class constructor has to initialize the data members to something,
and I simply encapsulate this code in a public method which can be called later.
These three methods are sufficient to fully implement the methods in the Reduction
class.

Most frequently, the return type is a simple scalar. 1 wrote the ScalarRetType
class to implement such scalar return types. The class is templated on the scalar, and
implements the RetType methods using a scalar data member. Access to the scalar
is through overloaded operators so that it may behave just like a regular scalar. An
implicit conversion to the scalar type is also provided. This return type is used to
implement scalar reductions which behave like the old templated reductions used
to. UnaryFunctionObjectScalarRedn owns a ScalarRetType and passes it to the
Reduction constructor. It provides convenience methods getValue() and setValue
which take and return scalars, so a user may ignore the return type class if they wish.
Similar implementations are available for binary, ternary, and quaternary function
objects. Primarily, I wanted to allow the use of the additional reduction and return
type functionality without adding more work and restrictions for the implementer of
function objects.

With the new interface, it is possible to write code which manipulates abstract
function objects. The return type may be accessed by casting a function object to
Reduction, without needing to know the scalar type or number of parameters of the
function object. Storage can be allocated for a result without knowing the exact
return type. Such modifications permit both better client—server code [13] and full

adaptation to TSFCore (see Section 6.2).

49

4.3.5 Generalized Function Objects

When trying to implement some functions, I noticed a severe limitation in the function
object interface. The interfaces insist that all local data containers involved be of the
same scalar type. For inner products and such, this is not a problem. However, there

are cases where multiple data types are necessary. Some examples:

e A binary function object which converts a data container of doubles to one of

floats.

e A ternary function object which applies a boolean mask to a local data container

and stores the new result in a third.

e A binary function object which computes) ", j; * z; where j is an array of

integers and x an array of doubles.

Type conversions often arise when dealing with other linear algebra libraries and old
FORTRAN libraries. Further, in order to handle large data sets, it may be necessary
to compute in a higher precision when dealing with a small fragment of the data at a
time, but then convert into a lower precision to save memory for the entire data set.

The fix for this is to insert an abstract class between the base FunctionObject
interface and the templated *naryFunctionObject interface. In the binary case, the

new GeneralizedBinaryFunctionObject is

template<class Scalar>
class GeneralizedBinaryFunctionObject: public FunctionObject {
public:
GeneralizedBinaryFunctionObject() {2}
GeneralizedBinaryFunctionObject(
const GeneralizedBinaryFunctionObject<Scalar> &) {}

virtual ~GeneralizedBinaryFunctionObject() {2}

20

/** Evaluation method - virtual */

virtual void operator()
(LocalDataContainer<Scalar> &,
DataContainer &) = 0;

+;

Notice that the second parameter is a DataContainer instead of a LocalData-
Container. The template parameter of the generalized interface only must match
the type of the LocalDataContainer parameter.

This addition requires a few modifications in existing RVL library code, but is
entirely backwards compatible with existing function objects and data containers.
The old *naryFunctionObject classes now inherit from the generalized interface,

and implement the inherited method by calling their own virtual method:

/** Evaluation method - inherited */
void operator()

(LocalDataContainer<Scalar> & x,

DataContainer & y) {

try {
LocalDataContainer<Scalar> & yt =

dynamic_cast<LocalDataContainer<Scalar> &>(y);

(*this) (x,yt);

} catch(bad_cast) {
RVLException e;
e << "Error in BinaryFunctionObject::operator () (LDC, DC) -";
e << " cannot cast the\n";
e << "DataContainer parameter to a LocalDataContainer<Scalar>.";

throw e;

o1

In the base LocalDataContainer class, small adjustments were needed in the
implementation of the eval() methods. They now try to cast to the least general

type first, and if that cast fails, then cast to the generalized interface instead.

try {
BinaryFunctionObject<Scalar> & bfo =
dynamic_cast<BinaryFunctionObject<Scalar> &>(f);
try {
LocalDataContainer<Scalar> & 1x =
dynamic_cast<LocalDataContainer<Scalar> &>(x);
bfo(*this,1x);
X

catch (bad_cast) {

}
catch (bad_cast) {
try {
GeneralizedBinaryFunctionObject<Scalar> & gbfo =
dynamic_cast<GeneralizedBinaryFunctionObject<Scalar> &>(f);
gbfo(xthis, x);
} catch(bad_cast) {

As we expect most function objects to follow the old, single-type interfaces, this is no
additional run—time cost for them, and only one extra cast for the new, mixed—type
interfaces. Further, the eval() methods are virtual and may be overridden by a

concrete LDC which wishes to invoke the generalized interface first.

92

4.3.6 Streamable

In any numerical software, it is important to be able to read data from somewhere
and output results. The RVL designers recognized the need for output in a package,
and implemented this through the write() methods found in most classes. These
methods either take a ostream and write to it, or attach their output onto the string
in a RVLException. Input is provided for data containers through function objects.
However, I recognized the need for being able to both output and input objects to
something other than the standard streams and exception. This need arises in parallel
and component applications, whenever we need to move objects from one machine to
another.

The standard library already has I/O streams and file streams, so why not use the
stream concept to implement this functionality? A RVLStream is expected to behave
like a standard I/O stream. Callers should be able to put in and take out stan-
dard types — integer, character, floating points types, and strings. Fundamentally,
every data structure in C++ is composed of these types. An object then becomes
Streamable if it knows how to pass its data into and retrieve its data from a stream.
We call these actions Marshall and UnMarshall. An object which is composed of
streamable objects implements these methods by marshalling its data members in
order and unmarshalling them in the same order. For each object, the implementer
must decide an ordering for data as well as which data are necessary. In some cases,
the entire state of an object need not be passed (which is partly why I don’t simply
hack together a brute—force memory copy).

Hala and I developed this idea for use in her thesis [13]. A RVLStream was im-
plemented using the socket communications library, and many function objects and

data containers were made streamable. Making something Streamable is easy
1. Inherit from the Streamable parent class

2. Implement Marshall to stream each of the data members.

93

3. Implement UnMarshall to grab each data member in the same order you

streamed them.

This has not been done for all possible classes, since it was not necessary at the time.
It is quick to add this functionality on—demand.

The base stream class has some methods beyond the basic inherent types. It can
input and output both a stl::vector and an array of basic types. Both methods are
templated and implemented in a simple manner, calling the input and output opera-
tions of the RVLStream for each bit of data. This is naturally not the most efficient
way, and children are expected to have their own implementations of these methods
to improve upon them. However, I followed our basic principle of implementing what-
ever possible in the base class and allowing children the choice to overwrite them or

not.

Chapter 5

Competitors

There are a wide variety of software packages relevant to the construction and solution
of a simulation—driven NLP. I classify these packages into the following taxonomy,

expanding on the classification system in [11]:

Linear Algebra Interface Abstract interfaces to linear algebra objects

(e. g. TSFCore)

Linear Algebra Library Fully implemented code for linear algebra

(e. g. LAPACK [1], TNT [39])

NLP interfaces Abstract descriptions of nonlinear problems

(e. g. TSFCore::Nonlin [8])
NLP implementations Implemented problems, often involving simulation code

Abstract Algorithm Interface Abstract definitions of algorithm objects and
classes of algorithms (e. g. ALG)

Abstract Numerical Algorithm Coordinate—free implementations of solution

methods (e. g. MOOCHO [9])

Calculus Interface Abstract interfaces for calculus objects (e. g. RVL, HCL)

o4

95

Calculus Library Fully implemented calculus objects (e. g. TSOpt [44],
RVLTools)

Some packages have parts which fall into multiple categories, often combining an
abstract interface and implementations into a single named package (e. g. Epetra [25],
NOX, and LOCA [31]). Each category fills a different role toward the solution of
simulation-driven NLPs. Omission of a category as part of the design of a total
solution misses opportunities for reuse. I posit that RVL fills a unique, necessary
position among its competitors as the sole implementation of a calculus interface,
possessing several unique features.

Further, as the RVL/ALG project has grown in an environment full of competitors,
the competition encouraged an exchange of design and implementation ideas between
the authors of each package, strengthening all of the packages in the process. I will
discuss briefly some examples of competing packages and attempt to highlight and
evaluate the design decisions in each. This will provide some insight into effective

and ineffective design choices and offer evidence of RVL’s uniqueness.

5.1 Template Numerical Toolkit

The Template Numerical Toolkit (TNT) is a National Institute of Standards and
Technology project implementing templates for arrays and matrices [39]. These ob-
jects are simple and easy to use — they resemble the Standard Template Library
classes with some additional linear algebra functionality. A number of overloaded op-
erator functions are provided as part of the package, allowing users to write C++ code
which greatly resembles MATLAB. The template parameter on the various classes
can be filled with any type which has overloaded operators so that it can perform all
the tasks of a float.

There are three different array types, Array1D, Array2D, and Array3D. The dis-

tinction in dimensionality allows multi-dimensional array indexing where appropri-

o6

ate. Otherwise, these classes are very similar, providing an assignment operator,
index operator, pointer access, and functions which return the dimensions. There
are also Fortran_Array#D classes, which use a FORTRAN style storage and access
scheme for interfacing with FORTRAN libraries.

TNT used to have a Matrix class, but it was deprecated in favor of the Array2D.
Similarly, the Vector class has been replaced by Array1D. There used to be an over-
loaded * operator between Matrix and Vector which performed a matrix—vector
multiply. However, this was lost when those classes were deprecated, and there are
no longer any interactions between ArrayiD and Array2D.

The operators provided can be useful. However, it has been shown that overloaded
operators compile into poor programs, due to the necessity of creating temporary
storage, and the sometimes vague rules for order of operations. For example, given
ArrayiD x,y,z, the result of x = x/y/z; is unclear.

The classes in this package provide some slight advantages over the standard
template library classes. However, they are not suited for high-level algorithm design,
and do not provide any sort of abstract interface. They are concrete classes suited

for writing MATLAB- and FORTRAN-like C++ code.

5.2 OOQP

OOQP is a package of quadratic program (QP) solvers in an object—oriented frame-
work [16]. Such a package naturally requires linear algebra objects for vectors and
matrices. It defines an abstract interface for these objects, and provides several im-
plementations which meet this interface.

00QPVector is the interface for vectors. An 00QPVector has methods for doing
linear combinations and dot product, but also has many methods tailored for solving
quadratic programs. It has methods to copy the vector to and from an array, which

allow a user to implement any operation on the copy then insert the result back into

o7

a vector. This is not efficient, but is functional.

The OOQP package has two interfaces for matrices. GenMatrix and SymMatrix
have element access methods for performing computations. These matrix classes are
used to construct problem definitions which are solved by the QP Solver. A Status
class watches the convergence of the solver and determines when to stop.

The linear algebra interfaces are well suited for solving QPs, but not for general
use. Thus, it seems best to adapt a general linear algebra interface to the OOQP
interfaces in order to use the QP solvers. Any use of the OOQP classes outside of the

package would incur unnecessary costs.

5.3 PETSc

The Portable, Extensible Toolkit for Scientific Computing (PETSc) [14] was devel-
oped at Argonne National Laboratory to supply the building blocks of parallel sci-
entific applications. Although it claims to be object oriented, it is a far cry from
being truly so. In this case, objects are structures which are passed as parameters in
function calls. Thus, there are no abstract interfaces for objects. A vector is created
by passing a pointer to a Vec structure into VecCreateSeq() or VecCreateMPI().
As PETSc is targeted for parallel applications, even the sequential functions require
a MPI communicator, PETSC_COMM_SELF. Creating a vector requires a series of calls
to allocate the storage, initialize the data, then distribute data as necessary.
Operations on vectors are performed either by a list of standard functions or
through the use of VecGetArray(Vec v, PetscScalar **xarray) and VecRestore-
Array(Vec v, PetscScalar **array). These functions expose the scalar data
pointers without invoking a copy, in order to avoid unnecessary overhead. The ex-
posed data is only the local data for each process. Thus, a user needs to be familiar
with MPI to implement any non-diagonal operations. Also, care must be taken in

selecting the provided functions to use, as some alternatives require less parallel com-

o8

munication than others.

Matrices, grids, and other objects behave in a similar manner to vector. They are
allocated by filling in a pointer using a function call, then initialized and finalized.
These objects are used in function calls to perform the calculations for an applica-
tion. There are many facilities targeted at finite element and gridded applications for
solving partial differential equations.

This package represents an older style of object—oriented programming. The inter-
face feels clumsy to a programmer used to classes and generic programming. However,
the efficiency of the applications was a foremost concern, and PETSc provides a large
suite of solvers and integrators which function in parallel. PETSc requires a inti-
mate knowledge of parallel scientific computing to be used properly, which makes it
poorly suited for general use. It may be suited for adaptation to a more user—friendly

interface in order to access the efficient parallel tools.

5.4 TSFCore

An example of a linear algebra interface (instead of a linear algebra library) is the
TSFCore [10] interface, which is a part of the Trilinos Solver Framework [23]. Ideas
have been exchanged between TSFCore and RVL many times, and it is interesting to
examine the remaining differences between these two interfaces. Recognizing that T'S-
FCore is still evolving, the following discussion is based around the version described
in [10], which T adapted to RVL in 2003.

TSFCore uses the concept of spaces as vector factories, but does not associate
an inner product or linear combination operation with each space, where RVL does.
Instead, TSFCore has implementations of an scalar product, linear combination, and
other normal operations provided in a library file of TSFCore (Note: Trilinos Release
4.0 adds a scalar product to the TSFCore space class, but still implements the linear

combination as a stand-alone procedure rather than a class method). TSFCore is

99

built around the RTOp package [11], which defines a SubVector class for contiguous
arrays of data and an RTOp interface for reduction and transformation operators on
subvectors. TSFCore provides an applyOp() method in its Vector interface, which
takes a RTOp and applies it to a sequence of SubVector objects built from pieces of
the vector. This action is similar to the application of a RVL: :FunctionObject to a
RVL: :DataContainer.

TSFCore has several higher-level interfaces for linear algebra objects. An OpBase
has a domain space, a range space, and a query method for whether the adjoint is
supported. LinearQOp is a specialization of Operator whose application is presumed
to be linear, which adds an apply method to the interface. TSFCore also contains
a MultiVector class, conceptually inherited from Epetra, which the designers say
is important for efficient implementation of many algorithms. A MultiVector is
essentially an array of Vectors of the same size. A MultiVector can be applied in
the same manner as a Linear0Op, or each column can be accessed as a Vector.

TSFCore does not include any true parallels to the Operator and Functional
classes in RVL. Instead, the TSFCore::Nonlin subpackage includes a nonlinear—

problem definition for encapsulating all problems of the form

c(y,u(l)) = 0
gL < g(y,u(l)) < gU
yL <y < yU
uL(l) < wu(l) < wU(), forl=1...Nu

which explicitly partitions the variables into state and controls. Both ¢ and g are
assumed to be vector—valued. The specialization NonlinearProblemFirstOrder adds
method for accessing first—derivatives of ¢ and g. While this form is general enough to
encompass all NLPs, the pieces of the problem are neither modular nor reusable. The
operators ¢ and ¢ are not independent objects. A newpoint boolean flag is used in
all computational methods to indicate whether the other parameters represent a new

y and u, in order to permit some reuse of intermediate data. Finally, it is necessary

60

to use null pointers to indicate the absence of ¢ or g for purely equality constrained
or purely inequality constrained problems.

TSFCore uses many modern language features of C++, such as namespaces and
templates. This avoids name conflicts and facilitates easy switching between scalar
types. There are a few anachronistic features, especially in RTOp, since the precursors
of TSFCore were written in C. However, Bartlett asserts that he is phasing out such
features and moving toward a fully C++ based interface. This will also allow the
replacement of void * pointers in some locations with abstract base classes, and
should result in a cleaner interface overall.

TSFCore makes strict use of const in both parameters, return values, and method
declarations. This provides some extra safety in method calls and prevents some
mistakes. However, it can result in a few difficulties when trying to adapt to a
TSFCore object from one which does not employ const. Luckily, I know a trick to
get around the restrictions imposed by const. If a class has a data member which
is a pointer, then as long as a method of the class does not change the value of the
pointer, the compiler does not complain about modifications and non—const method

calls on the object to which the pointer points. If ptr is a class data member, then

void foo() comnst {
*ptr = bar; // LEGAL
ptr = NULL; // ILLEGAL
}

Thus, a const method can call a non—constant method on an non—constant object to
which it owns a pointer. The pointer stays constant, even though the object pointed

to does not.

61

5.5 Epetra and Tpetra

Epetra [25] is a linear algebra library, primarily designed for parallel and sparse
computations. It is a foundation interface for many of the Trilinos [23] solvers and
AztecOO. Additionally, there are implementations of the interface which utilize BLAS
and LAPACK routines to perform serial computations.

Epetra provides a very complete list of coding guidelines for developers [24]. Al-
though a few of their recommendations are inconsistent with choices made in RVL, it’s
still a useful document. Thorough justifications are made for programming practices.

The base Epetra_Vector interface allows a vector to be constructed from a block
map. Alternately, a vector can be built from a serial array of doubles or taken from
a column of a multivector. Methods are provided for overwriting or accumulating
elements selected by an index array with data from an array of doubles. A copy of
the entire vector can be extracted, a view created, or individual elements accessed.
Non—-member functions are provided for computing dot—products, norms, linear com-
binations, and finding a minimum, maximum, or average. The Epetra MultiVector
behaves as one would expect, with similar functionality to a Epetra_Vector. Inter-
estingly, Epetra _Vector is a child of Epetra MultiVector, specializing a multivector
with only one column. Thus, their approach considers the multivector a more funda-
mental object, which is a common viewpoint in the linear solver community.

The basic matrix class is the Epetra RowMatrix, which represents a collection of
row vectors. This object can be multiplied by a multivector, sums of absolute values
of elements computed, scaled on the right or left by a vector, and the inverse applied
to a multivector. Many attributes can be examined, such as norms and number of
non-zeroes. Data can be extracted from a row or the diagonal. Implementations of
the interface are provided using the compressed row storage (CRS) and variable block
row (VBR) formats.

In many ways, the map classes serve as space classes do in other packages. Each

map has properties which define how vectors following the map are created and dis-

62

tributed. The only public method besides constructors and the destructor is an
assignment operator. Thus, a user can create maps and move them around, but not
access the internal data of a map in any manner. A map is needed when creating
vectors, multivectors, and other objects, which must be friends in order to use the
protected methods of the map. The base map is the Epetra Map which has children
Epetra_LocalMap and Epetra BlockMap. While this design serves to encapsulate the
map data, it seems strange. The friend classes aren’t allowed to modify the map data.
Why not allow public read—only access to the map data, and avoid the use of friend
entirely?

Epetra was designed from the beginning as a parallel library. Serial execution
is treated as a special case. Almost every class requires a communicator in its con-
structor. When run in serial, an Epetra SerialComm is provided as a placeholder.
Further, all data classes are loaded with parallel specific methods, such as methods
for handling both local and global indexing and a Fil1Complete method for optimiz-
ing and finalizing storage across processors. This is a sharp contrast to RVL, where
parallelism is completely hidden in the base interface.

Epetra is a low—level interface for storing and manipulating data directly. The data
storage classes have explicit sizes and access methods, as well as query methods about
the layout of data. Operators are between maps, not spaces. There is no interface for
functionals or user defined function objects. If a user needs a computational method
which is not provided, they can implement it using the overloaded operator[].

Epetra avoids many modern language features that have only recently seen sup-
port from compiler writers. Namespaces are replaced with the requirement that all
class names begin with Epetra_ . Templates are not used, and all computations are
performed in double precision arithmetic. The double declarations are hard coded,
and it would require a large effort (or tricky use of scripts) to switch to single precision
or complex numbers.

One very intelligent coding guideline is the avoidance of standard library include

63

declarations in header files. Instead, a single “Epetra_ConfigDefs.h” is included
when library files are needed. This makes the package more portable, as this is
then the only file that needs to be edited when going between a system which does

#include <iostream.h> instead of #include <iostream>.

5.5.1 Future upgrade to Tpetra

The Tpetra project is still in progress, but the goals are simple — extend the func-
tionality of Epetra for double precision real numbers to templated classes. This may
seem a simple task, but adding templates is not always easy, especially when dealing
with legacy code and parallelism. To my knowledge, the parallel libraries like MPI
are not templated. Since C++ doesn’t treat types as parameters, the libraries make
up their own enumerated values to signify each scalar type, and assign these values
descriptive names such as MPI Double. This forces a programmer to use template
specialization in order to deal with MPI.

Tpetra has three template parameters which it uses throughout the package:
PacketType Something which can be communicated between nodes.
OrdinalType Used for ordering. Often just integers.

ScalarType values in computations. Often Floating point or complex.

The basic classes in Tpetra are the same as those in Epetra. Most classes require
a Tpetra::Comm in their constructor. Tpetra: :Vector behaves generally the way it
did in Epetra. However, there are some new additions, such as the Tpetra: :Vector-
Space. This class is a factory for vectors, and it requires a Tpetra: :ElementSpace
or Tpetra: :BlockElementSpace in its constructor. The element spaces seem to be
replacements for the map classes of Epetra, containing methods which can be queried
for the various ordinals which describe an arrangement of scalars across processors.

The calculation methods for vectors are all built into the Tpetra: :Vector and con-

64

cretely implemented around a combination of the BLAS and reduction operations
built into the communicator. The Tpetra: :VectorSpace is also a concrete class.

The sparse matrix class Tpetra::CisMatrix nicely encapsulates two methods
of sparse matrix storage. It can either do compressed row storage or column stor-
age. Unlike Epetra, this matrix class does not inherit from a base operator, mul-
tivector, or matrix class. Its only parents are the general Tpetra::0Object and
Teuchos: :CompObject classes. Whether this is an intentional design decision or
simply an attempt to get a working matrix class without building all of the abstract
hierarchy first is unclear from the limited documentation. Apart from all the methods
for constructing the matrix and querying it about its properties, there are only three
computational methods. The CisMatrix can be applied to a Vector and store the
results in another Vector. It can also compute the global one-norm and infinity—
norm.

I have high hopes that this package will fill out to fully replace Epetra’s function-

ality for parallel linear algebra.

5.6 Multivector

Several of the packages I've described include a MultiVector object. This can be
viewed as an array of identical vectors. The authors of these packages often cite effi-
ciency reasons which make such an object necessary. I want to clarify their reasoning
and address the apparent lack of such an object in RVL.

Some algorithms need to perform the application of a linear operator to multiple
vectors B <— A * X as well as solving a linear system with multiple right—hand sides
X < A~!'x B. While this may resemble a matrix-multiplication, it is not always
appropriate to treat X and B as matrices. Instead, they are simply a collection of
vectors. In such situations, much speed can be gained by efficient use of caches and

eliminating multiple accesses to the same memory address. This is the reason that the

65

Level 3 BLAS can often achieve near peak efficiency [18]. In order to take advantage
of the Level 3 BLAS, the designers of Epetra include an explicit Multivector class.

In addition, the multivector methods may be reimplemented in children to gain
some added efficiency when performing a parallel reduction. The default implementa-
tion simply calls the Vector: :applyOp() method on each element of the multivector.
However, some children avoid performing multiple reductions on scalar return values
by treats an array of return values as a reduction type and perform one reduction on
the entire array. This greatly reduces the amount of communication in a program.
However, such efficiency is not in the abstract multivector interface, but rather a par-
ticular implementation of the multivector and reduction operations. Such efficiency
also requires a special version of the applyOp() method to be reimplemented for each
multivector type, which is additional work for the multivector author and not true
reuse.

RVL does not have an explicit multivector class. Such an object does not fit in
the vision of a RVL: :Vector. RVL also does not have a matrix class. The RVL linear
operator is applied to a single vector at a time. This would seem to preclude us from
gaining the efficiencies provided by a multivector.

However, such observations are made from a limited understanding of the pack-
age. RVL has no such inadequacies. At all levels of the data hierarchy, product
constructions are permitted. Product composites are available to construct objects
from components (e. g. ProductSpace is built from other Space objects). I added
Cartesian—power composites which simplified the construction of Cartesian powers
of objects. A Cartesian power of a vector type has exactly the abstract properties
of a multivector. Absolutely nothing prevents a savvy user from implementing lin-
ear operators which recognize such composites and take advantage of their structure
or intelligent parallel product data containers which recognize reductions and aggre-
gate parallel reductions to reduce communication. Close examination reveals that

the Epetra and TSFCore multivectors are intended to be in—core and contiguous,

66

which precisely describes the RVL: :ProductLocalDataContainer. There is nothing
preventing a FunctionObject from checking for product LDCs and altering behav-
ior to handle this special case or a ProductLocalDataContainer which checks for
reductions, so RVL has not lost any of the potential efficiency of a multivector.
Finally, the Vector class in RVL is a higher—level object than the vector classes
in other packages. The algorithms Vector was designed to address are abstract, and
low—level details are meant to be encapsulated inside other classes so that they may be
easily changed later. Building such detail into an algorithm ties the implementation to
a particular problem or machine and eliminates efficient reuse without modification.
The multivector is a low-level efficiency detail which should be kept as an option in

low—level code, not a high-level abstraction.

5.7 Is RVL Unique?

Following this critique and comparison of RVL to several other computational pack-
ages, it is natural to ask, “Is RVL a unique design which provides something not
available in the other packages?” The answer is an unequivocal, “Yes!”

RVL and TSFCore are the only packages known to me which encapsulate opera-
tions on data within a visitor pattern in order to make such operations reusable and
allow the implementation of new operations without altering the data interface. This
feature alone eliminates all the other competitors. RVL then has additional benefits

over TSFCore:

e Every TSFCore::Vector has a method returning an integer dimension. The
original designers of RVL have a very good argument against including an ex-
plicit dimension in [41]. Dimensionality is necessary in low—level data types as
a control on loops over data. However, high—level data types may not have an
explicit finite dimension, especially when we consider adaptive approximations

to infinite dimensional objects.

67

e TSFCore lacks an independent linear combination and scalar product attached
to the space, preventing TSFCore: :VectorSpace from fully expressing the vec-
tor space abstraction (although they have recently added a scalar product, linear
combination is still missing). When adapting an RVL: : Space to a TSFCore: :-
VectorSpace, the linear combination and scalar product methods of the RVL: : -
Space cannot be accessed and TSFCore automatically uses the default proce-
dures built in to the package, which are not appropriate for every space. For
example, consider the space of all polynomials over the interval [0,1]. There
is a well defined inner product (f,g) = fol f(z)g(x)dz. Any given polynomial
can be encoded by storing the coefficients in a LDC d so that f(z) = d[i|z".
However, the LDC must have a resize method so that storage can be expanded
as necessary when doing linear combinations. The sum of a degree n polynomial
and a degree m polynomial is a polynomial of degree max{m,n}. The linear
combination method for such a space must resize the target LDC before adding
coefficients. Two loops are necessary to perform the linear combination, as the

smaller LDC will run out of coefficients before the larger one.

e TSFCore is restricted to linear algebra objects (vectors and linear operators)
and does not provide the interfaces to functionals and operators which RVL
has. TSFCore::Nonlin jumps right past functionals and operators into nonlinear
problems built around the linear algebra interface. This restricts the reusability
of the problem code, as the constraint ¢(y,u) = 0 is not an individual object

but a collection of method calls inside the problem object.

e TSFCore permits Cartesian powers of vector in the multivector object, but does
not enable Cartesian products, where RVL has both. The TSFCoreExtended

package has since added arbitrary Cartesian products.

e TSFCore is built around the use of reference counting pointers, which while

not restrictive on computation, imposes additional effort on users to properly

68

initialize and dereference the pointers. However, reference counting pointers are

very conventional and widely accepted.

e In Chapter 6, I adapt RVL to TSFCore and vice—versa. With the addition
of the base RVL::Reduction class and abstract return type, no functional-
ity of TSFCore is lost in such an adapting TSFCore: :Vector to RVL::Data-
Container. However, I had to hobble the RVL: :Vector class in order to adapt
to TSFCore: :Vector (and similarly hobble the RVL spaces), losing access to
the linear combination, identity element, and scalar product which belong to
the RVL space. TSFCore imposes its own implementation of these methods

that may not be appropriate in some situations.

This means that anything which can be done in TSFCore can also be done in RVL,
but RVL has capabilities that TSFCore does not, namely dimensionless vectors and
spaces with a nonstandard linear combination operation. Further, as discussed in
Chapter 6, the TSFCore vector and space classes are semantically similar to the
RVL DataContainer layer, and the RVL Vector and Space are higher level ab-
stractions with no true parallel in TSFCore. Finally, TSFCore still takes a very
different tack than RVL on functionals and operators, wrapping both inside the
TSFCore: :Nonlin: :NonlinearProblem.

It is interesting to note that TSFCore has converged toward RVL with each
design iteration. In the beginning, it resembled HCL with the novel reduction—
transformation operators. It is now quite similar to RVL, and RVL to it, entirely
due to the ongoing exchange of ideas between the packages. Such an exchange is the

primary benefit of competition — making both packages stronger in the end.

Chapter 6

Adaptation

I stated earlier that I want to increase the use and reuse of existing code, instead
of rewriting new code for each new application. I want to be able to reuse code
from other packages as well my own. It is a waste of effort to reimplement existing
algorithms and data structures simply to make them fit a new interface. Instead, I
want to add small bits of code to make them fit the interface but still function, ideally
without modifying the original code. Such small added bits to modify an interface
follow the adapter pattern [15].

As scientists try to tackle more difficult computational tasks, the complexity of
the software increases greatly. Further, the applications often require knowledge from
a broader spectrum of disciplines. This can lead to difficulties for the small program-
ming groups typically encountered in Academia and Industry. While such groups
could attempt to write all the code from scratch, there is almost always insufficient
time to do so. Further, rewriting an existing code to use different data structures
is wasteful and likely to introduce errors. An algorithm frequently requires expert
knowledge to implement effectively, and without such an expert in a group, it is
necessary to consult an expert remotely. Such a remote expert will have their own
data—structures and interfaces, and it is difficult to compare the efficiency of different

packages in order to find the most suited. With limited resources, it becomes diffi-

69

70

cult to test code on a variety of different architectures, thus potentially limiting the
portability of code.

These difficulties leave us with tough choices. We could stop computing, and
emphasize analytical methods. If this is unacceptable, we can purchase sufficient
work hours by hiring additional staff and students. Lacking enough money for such an
enterprise, we could attempt to form a standards body for numerical data structures
and mandate their use to the scientific community. This is likely a Herculean task,
which leaves us with one option: If we use good software design that permits easy
adaptation between packages, and encourage others to do likewise, then everyone’s
code becomes more useful. If code is easily adaptable, then it is also easy to adapt
and compare similar packages from different sources in order to find the one that best
suits a need. This also permits easy testing of packages against a variety of problems
to ensure they are stable and produce valid results.

Once data structures grow more complex than simple arrays of contiguous data,
object—orientation helps us to avoid many pitfalls of functional code. Without ab-
stract interfaces, we must rewrite every algorithm to accommodate each change in
data structure. For n algorithms and m data structures, we get n*m pieces of code to
maintain and update. With one common interface to data structures, we instead have
n + m pieces of code, each one covering a specific need and which can be maintained
independently. Further, we can use inheritance to make incremental changes and
establish hierarchies. For example, in RVL, the RnArray is an implementation of the
LocalDataContainer (LDC) interface which represents a simple array of contiguous
data. There are children of RnArray which add extra data and functionality, like the
SeismicLDC which carries additional data about time, date, and location in which
the data was taken. Some algorithms need this additional data and can access it, but
we may still reuse any code that works with LocalDataContainer on a SeismicLDC.

Many packages have similar needs, but as each programmer has their own style

and conventions, we end up with a variety of different classes which implement the

71

Figure 6.1: 6-pack Grounded Adapter Plugs by Franzus

same idea, but in slightly different fashions. There is frequently semantic overlap
between classes in different packages, but there can be large syntactical differences.
For example, we often want to encapsulate an array of contiguous data with its size

and other relevant information to the application. Here are several implementations:
RVL calls such an object a LocalDataContainer

TSFCore uses RTOpPack, which calls them a SubVector

TNT has the Array1D

C++ STL has a vector class

OOQP has a 00QPVector which encompasses this concept and some additional func-

tionality.

Theoretically, each of these objects fulfills the same role in the package, and we should

72

RTOpUFO
. . = nv :integer
UnaryFunctionObject :] — — Jnt-integer O* O
: : 1 RTOpT
operator()() targ : ReductTarget p
RTOpUFO()
operator()()

Figure 6.2: An adapter from RTOpPack: :RTOp to RVL: :FunctionObject

be able to adapt the interfaces to one another so that a concrete implementation of
one could satisfy the interface of another.

The bits of code to adapt one software interface to another are like the extra plugs
international travelers need for electric appliances, as shown in Figure 6.1. Each elec-
trical system has its own hidden inner workings behind a standard interface. Plugs
manufactured for the United States won’t fit the interface for the European power
system. Even if the plug fit mechanically, the voltage supplied by each system is dif-
ferent, so appliances will not operate properly. However, the intent of both systems
is the same — to supply electrical power on demand. The job of the adapters is to
allow a mechanical linkage between different systems (syntax), as well as modifying
voltages to match expectations (semantics). Further, the adapters do not need in-
formation about how the power system supplies power (implementation) in order to

perform their function.

6.1 General Strategy

Since the fundamental ideas in each package are similar, it appears that I could
synchronize the interfaces and use the classes interchangeably. For a concrete ex-
ample, consider combining an RVL-based package with a TSFCore-based pack-
age. The Time-Stepping for Optimization (TSOpt) package, which is written using
RVL interfaces, automates time-stepping and derivative calculations for PDE sys-

tems using the adjoint state method. Thus, I can build an optimal control problem

73

J(u) = ||F(u) — yq4||* where F(u) is an operator which maps the control u to a value
of the state y. MOOCHO, an nonlinear optimization package, can solve optimization
problems which are defined with the TSFCore interface, but doesn’t have a time-
stepping tool like TSOpt. In order to combine these packages, I need to be able to
use a RVL: :0Operator to build a TSFCore: :Nonlin: :NonlinearProblemFirstOrder
and choose some vector class in which data will be stored. Thus, I need adapters
between the various vector interfaces.

An adapter owns the object which is adapts, and inherits from the interface it is
adapting to. An example of this can be seen in Figure 6.2. The adapter implements
method calls by forwarding them to the equivalent calls on its data member. When
building adapters between packages, it is necessary to start at the lowest level objects
and work upward. The high level adapters will use the low level adapters. Suppose
I want to adapt an object from package A to handle an interface in package B. For

each method call in interface B, I would
1. Wrap the inputs as A objects
2. Call the appropriate A method

3. Wrap the results from this call as B objects. As wrappers usually work by

reference, it is not necessary to unwrap inputs which were modified

In the case of RVL and TSFCore (with the subpackage RTOpPack), I first adapt
RTOpPack: :SubVector and RVL::LocalDataContainer. This is easily done (and
actually unnecessary in one direction due to the SubVector special constructor), and
I can then use these adapters to adapt RTOpPack: :RTOp and RVL: :FunctionObject.
These are objects that describe transformations and reductions between the array
classes, that is, mappings between vector spaces and from vector spaces onto a set.

The transformation adapters are somewhat more complicated due to philosoph-
ical differences, and can not function properly in all cases. RTOp only encompasses

diagonal operations, that is, ones on the i element of each array at the same time,

74

RVL RVL to TSFCore TSFCore to RVL TSFCore
LinearOp RVLLinearOpAdapter | TSFLinearOpAdapter | LinearOp
Vector VecTSFCoreVector

Space use StandardSpace

DataContainer not needed TSFCoreVectorDC Vector
FunctionObject FORTOp RTOpFO RTOp
LocalDataContainer | not needed LocalSubVector SubVector

Table 6.1: Adapters between RVL and TSFCore.

while RVL: :FunctionObject is allowed to be more general. RTOp treats the result of
a reduction as an independent object, and all RTOp objects return a result (which is a
null pointer in the case of transformations). FunctionObject is expected to store the
result internally, and return it later when asked. Thus, in RVL, Reduction is a mixin,
adding the additional interface for retrieving the result. Further, RTOp has built—in
functionality necessary for MPI-style parallelism, and it is difficult to implement such
functionality in an adapter given only the general RVL interface.

The next step up is to implement the adapters between TSFCore::Vector and
RVL::DataContainer as well as TSFCore: :VectorSpace and RVL: :DataContainer-
Factory. The first two are targets for visitation by RTOp and FunctionObject and
thus need to use the adapters of the visitors. The adapters for TSFCore: :Vector
and RVL: :DataContainer are easily done, as are the ones for their factories. Finally,
RVL has one higher level of objects (Vector and Space) , but I can build standard
versions of these from TSFCore objects using the adapters I've already created and a
few extra pieces. Note that it is often possible to demote a class, for example treat an
RVL::Vector as a RVL::DataContainer, and use the lower level adapters, and this
trick can be useful.

Both packages have an interface which implements the notion of a linear operator.

In both cases, the operator has an apply operation which maps a vector in the domain

75

to a vector in the range. The only difference is that all RVL: :LinearQOp objects are
expected to be able to apply the adjoint, whereas TSFCore: :LinearOp has a query
function opSupported() which will report whether a particular operator supports
forward or adjoint applications. Because they implement a well defined mathematical
notion, these interfaces are very similar, which makes them easy to adapt. In the end,
I get a hierarchy like that shown in Table 6.1. Any other classes in these packages
can be adapted in a similar manner.

I often refer to this project as ATN, which stands for “All Together Now!”. The
goal of the project was to demonstrate that these independently created tools could
all work together to solve a problem. By reusing the software in each package, I can
solve a problem by only creating small adapter classes instead of rewriting the large,

complex tools to fit a different interface.

6.2 TSFCore and RVL

One of the primary advantages of object—orientation is the increase in reusability of
code. Further, it helps to standardize the interface to data. Both TSFCore [10] and
RVL [38] utilize the idea of transformation operator objects to represent functions
and vector containers for storing data. Thus, any RTOpPack: :RTOpT [11] object can
be applied to any TSFCore: :Vector, and similarly any RVL: :FunctionObject can
be evaluated on any RVL: :Vector. This separates the functionality of the transfor-
mation from the implementation details of data storage, and lets us smoothly reuse
transformation operators on new types of vectors.

One potential drawback to an object—oriented approach is that programmers fre-
quently become married to a particular interface. Further, it is not immediately
obvious how I might be able to do things like apply an RTOp to a RVL: :Vector. For-
tunately, through the iterative process of designing the linear algebra interfaces and

the cooperation amongst designers, the core ideas in both packages are quite simi-

76

lar. This allowed me to create adapters which will let an RVL: :Vector function as
a TSFCore: :Vector and vice versa. Then everyone may program with the interface
they are most comfortable with, but still share code and ideas easily.

There are several immediate benefits to such a collaboration. The RVL project
has been working on designing out—of—core vectors for use with huge (e. g. Gigabytes
of data) vectors which will not fit in RAM. There are several parallel Linear Algebra
Packages (LAP) which have already been adapted to meet the TSFCore interface.
Both of these lack any similar counterpart on the other side, and it would save ev-
eryone time and frustration if they did not have to reimplement such ideas. Further,
there are several different Abstract Numerical Algorithms (ANA) written to use each
interface, and I would like these algorithms to be able to inter-operate. TSOpt,
which is written using the RVL interface, performs time integration of a system of
PDEs. It takes a collection of independent objects, such as steps, samplers, and a
description of the dynamics of the problem, and creates an operator which maps the
control vector to the solution of the state vector. Moocho is a package for optimizing
both constrained and unconstrained problem, and has already been interfaced with
TSFCore. Finally, FEM is a package for formulating PDE problems, and there are
already adapters which allow it to utilize TSFCore vectors and linear operators.

I would like to combine these three packages in order to solve time—dependent
optimal control problems with PDE constraints. These problem typically takes the
form

min, ¢y fly(u,t),u(t),t)
subject to c(y(u,t),u(t)) =0 Vt e [0,T]
low <u(t)y<up Vtel0,T]
where ¢ is a system of PDE’s and I call y € Y the state variables and u € U the
controls. The idea is to use Mathias Heinkenschloss’ FEM package to build the finite—
element model and formulate the PDE system, then couple that to Bill Symes’ TSOpt
package [44] to handle the time stepping and adjoint calculations. I can then formulate

the problem in a TSFCore::Nonlin interface and use Roscoe Bartlett’s MOOCHO [9]

7

package to solve the optimization problem.

The alternative would be to rewrite all three pieces using the opposite linear
algebra interface. This would result in two independent packages to maintain, and
massive duplication of effort. Further, since I envision many more abstract numerical
algorithms written using each LAP, T would like to be able to easily combine future
packages as well. Otherwise, each project ends up digging parallel tunnels through
the mountain of research, instead of starting at opposite sides and meeting in the

middle.

6.2.1 Original Behavior

I should first describe the current behaviors of the packages. This will make clearer
the similarities between them, and help the reader to understand the adaptations I
made when they are described in Section 6.2.2. RVL has already been discussed in
detail in Chapter 4, but I will reiterate a few points to make the comparison between

the two packages clear.

6.2.1.1 TSFCore and RTOpPack

First, I should explain about the relationship between TSFCore and RTOpPack.
RTOpPack is a smaller package that focuses on the definition of a Reduction/Trans-
formation Operator (RTOp) and its interaction with SubVector. A SubVector is a
view of a chunk of in—core data. This data need not be contiguous, but is required
to have a starting point, number of elements, and a fixed stride between elements.
This allows it to work on normal, FORTRAN style arrays as well as other views
such as picking out one column of a matrix stored in row—major order. The RTOp
knows how to take a collection of SubVector and MutableSubVector (which can be
written to as well as read from) and perform its operation on them. If the RTOp is
a reduction operation, it stores the result in a ReductTarget. The RTOp also can

reduce two ReductTarget objects into one. Figure 6.3 and Figure 6.4 demonstrate

‘ (ith) MPI Process % ‘ (jth) MPI Process %

78

1 ai2: reduct_obj :=
apply_reduction(
,,,,, reduct_obj)

| aj2: reduct_obj :=
apply_reduction(
,,,,, reduct_obj)

1 ai2.3: reduct_obj:=
MPI_Allreduce(
i_reduct_obj
,reduct_obj ,mpi_op)

1 aj2.3: reduct_obj:=

MPI_Allreduce(
i_reduct_obj
,reduct_obj,mpi_op)

1 ai2.1:i_reduct_obj :=
apply_op(...,local_sub_vec,...)

| ai2.2: mpi_op := get_reduct_op()

1 aj2.1:i_reduct_obj :=
apply_op(...,local_sub_vec,...)

1 aj2.2: mpi_op := get_reduct_op()

1 ail: «create»

I ajl: «create»

Figure 6.3: Sequence of calls to apply a RTOp to a TSFCore::Vector which uses MPI

to communicate between processes [11]

this procedure. These are reproduced (with permission) directly from [11].

TSFCore builds off of this functionality in RTOpPack. It defines TSFCore: :-
Vector as an object that knows how to apply an RTOp to itself. The Vector iterates
through each SubVector and applies the RTOp to each of them. It reduces intermedi-
ate ReductTarget objects into a global one using the RTOpT: :reduce_reduct_objs.
When the RTOp has been applied to all SubVectors, then the Vector returns the
ReductTarget to the caller.

This is a slight oversimplification. In the case of some vector types, apply_op

may require transmitting the RTOp to another process, on which the SubVector

Create and initialize the
transformation operator

Give the operator object to a
vector object to have the
operator applied

* Qut-of-core vector
implementation reads first
sub-vector from file

* Operator object called to
perform reduct/trans operation

back to file

* Transformed sub-vector written

from file, transformed, and
written back to file

Rest of the sub-vectors are readb

apply_op(...)
returns the reduction object (if
not null)

«create»
apply_op(op,...reduct_obj)
reduct_obj := apply_op(
...,targ_sub_vec,...
I:—L ,reduct_obj)
reduct_obj

| targ_sub_vec :=

read_sub_vec(0)

T

write_sub_vector(
targ_sub_vec)

79

Figure 6.4: Sequence of calls to apply a RTOp to a TSFCore::Vector which accesses

out—of—core data [11]

80

resides, and then doing a global reduction across all processes if necessary. RTOp’s
are designed to facilitate such migration between processes, and provide methods for

loading and extracting their state.

6.2.1.2 RVL

RVL takes a very similar approach. There are four different types of function ob-
jects, depending on the number of input vectors they expect: UnaryFunctionObject,
BinaryFunctionObject, TernaryFunctionObject, and QuaternaryFunctionObject.
For each there is an additional subtype for reduction operations, e. g. UnaryFunction-
ObjectReduction. However, the behaviors of each type are identical apart from the
number of inputs, so I will simply refer to a general FunctionObject here. RVL::-
Vector hides its data with an layer of indirection. Vector is an aggregation of a
DataContainer and a Space. The Space produces data containers and provides the
functionality which defines a mathematical Hilbert space. It has member functions
to compute a norm, inner product, and linear combinations. It can also generate the
zero vector (additive identity) in that space.

RVL: :DataContainer is a very similar object to a TSFCore: :Vector. The DC
is maintains a collection of one or more LocalDataContainer objects, which serve
a similar role to RTOpPack: : SubVector. However, LocalDataContainer has a fixed
stride of 1 between elements.

I now refer to Figure 6.5, which shows the evaluation of a function object SVL-
Randomize on a vector containing seismic data. The RVL::Vector interface has an
eval() method, which simply forwards the call to RVL: :DataContainer::eval().
The particular behavior then depends on the type of data container, but the following
description applies to most. The eval() method first casts the function object to
the correct type (Unary, Binary, Ternary, or Quaternary) depending on the number
of inputs. It then contains a loop over all LocalDataContainers. For each LDC, it

calls the operator () method of the function object on the LDC. The function object

81

SVLClient: I v:Vector I I d:SeismicDataContainer I I f:Randomize I Idc:SeismicLDC
I

L
Ll

I I
I I
ch#g et()
| |
| |
L I
|

eval(f) .

eval(f)

A 4

Figure 6.5: Evaluating a RVL::FunctionObject on a RVL::DataContainer

uses the getData() and getSize() methods of the LDC to perform whatever task
it does (in this case, storing a random number in each data element). The function
object returns control to the DC, which moves on to the next LDC it owns (if any).
Once through all LDCs, the method returns.

Generally, a reduction function object is expected to accumulate results internally.
When getResult is called, it then converts its internal data to the expected return
value. For example, when computing ||z||2, the function object accumulates res =
>~ z? and then does a return sqrt(res); when getResult() is called. However,
such behavior is insufficient when running in parallel and I have an independent

instance of the function object on each process.

6.2.1.3 TSOpt

TSOpt [44] is a time—stepping library which was designed for use in opimization with
constraints defined by a simulation. At the highest level, it takes a control vector and

returns the state vector which satisfies the constraints. To facilitate gradient—based

82

optimization, it can also provide derivatives and adjoint derivatives with respect to

the control parameters. The result is an operator
S:C—-D

where C' is the control space, and D is the state space. Objective functions like

J(c,d) = ||F(c) — d||* are formulated from this operator. The gradients of .J are

(Ved(c,d),dc) = g—g(c, d)z—i(c)éc.

TSOpt can compute g—‘j(c) as well as the adjoint of it.

TSOpt is built out of many small pieces, and these pieces are designed to be flexible
and reusable. For many problems, a user can simply select appropriate samplers,
model builders, and steps off-the—shelf from the available implementations in the

library. The Dynamics object, which describes the constraint equation

d
F(d—if,u, ¢, t) =0,

must be rewritten for each new problem.

TSOpt performs the time-integration by taking a sequence of time steps. It
uses a sampler to map the external representation of the control to the internal
representation of the control. It initializes the Clock, which keeps track of the current
time as well as the size of the next time step. Time steps are performed by a Step
object, which access the Model for data and gives this data to the Dynamics object
when evaluation of the state equations is needed. Derivatives are computed in a
similar manner, and adjoint computations utilize a backward stepper, which may
be a direct calculation when the equations are time-reversible. In most cases, the
Griewank checkpointing scheme [21] works efficiently for the backward stepper when
direct calculation is not feasible. This scheme allows users to select a point along
a tradeoff curve between memory requirements and computation, but the default

settings are well suited for most applications.

83

The Dynamics object also provides support for multistep methods and implicit
equations. There is an additional solver method for solving operators of the form

oF
u',u,t) + a%(u', u,t))x ="b

(5.
As I will discuss later in Section 6.2.4.1, the problem formulation in TSFCore::-
Nonlin::TransientNonlinearProblem is particularly well suited for use by a Dynam-

ics object, and provides all of the functionality needed.

6.2.1.4 Moocho

Moocho began life under the name rSQP++. However, since it has expanded to cover
algorithms apart from Reduced-Space Sequential Quadratic Programming, it needed

a new image. It is designed to solve problems of the form

min f(y,u)
subject to c(y,u) = 0
g < g(y,u) < gu
up, < u < Uy

using a Simultaneous Analysis and Design (SAND) approach. However, TSOpt
doesn’t distinguish between state and control variables and it only provides the com-
plete gradient of the operator c¢. The solution to this is to give Moocho problems
which appear to be unconstrained and use an implicit constraint f(u) = f(y(u),u)
where y(u) is the solution of ¢(y, u) = 0 for a given u.

Moocho is a very large package, but at the top level, the MoochoSolver takes a NLP
object which defines the problem to be solved. I will create the NLP using the class
NLPTSFCoreNP, which is an adapter for a TSFCore: :Nonlin: :NonlinearProblem.

See the example in Section 6.2.5.

84

6.2.1.5 FEM

Generally speaking, FEM takes care of all the details involved in setting up finite—
element problems, such as the intricate couting schemes for tracking elements, nodes,
and connectivity. A user supplies the problem definition, chooses a basis and a mesh,
and out pops the needed matrices and vectors. Of course, no package is quite that
simple, but using FEM is far superior to coding this stuff by hand, as it is incredibly

easy to make mistakes.

6.2.2 Evaluation on Opposites

Now, I will describe how to utilize a data type from one package on an operator of
the opposite package. The general methodology is to wrap the high—level object as
something the client recognizes, then inside create a new operator of the type that

the internal data object recognizes.

6.2.2.1 Using a FunctionObject on a TSFCore::Vector

All of the necessary objects to perform this task are shown in Figure 6.6. Before
describing the sequence of method calls, I should first introduce the new adapters.

There are three crucial adapters:

TSFCoreVectorDC This class is a RVL: :DataContainer. It keeps a pointer to a

TSFCore: :Vector. It can only be created using an existing TSFCore: :Vector.

FORTOp This class is a RTOpPack: :RTOpT. It is created to wrap a FunctionObject

and provide the apply_op interface xexpected of a RTOpT.

LocalSubVector This is a RVL: :LocalDataContainer which simply wraps a
RTOpPack: :SubVectorT and uses its methods to getSize() and getData()

from the SubVectorT.

85

wclii] I f:Randomize I I d:TSFCoreVectorDC I T SoriaNeomor
eval(f) o I
a I
new(f) fop:FORTOp |
I
apply_op(fop, dv,..) o

1 apply_op(sub,...)

new(sub
(sub) P{ IsviLocalSubVector

I

I

|

| | P Tslib:=getSubvector()
| |

I

I

I

]

g operator()(Isv)

Figure 6.6: Sequence of calls to evaluate a RVL::FunctionObject on a TSFCore::-

Vector

It may seem odd to use so many adapters, but it is necessary for getting past the
various interfaces.

When the TSFCoreVectorDC is given a FunctionObject f to evaluate, it first
builds a new FORTOp op out of f. It then calls the TSFCore: :applyOp() function
on its TSFCore: :Vector v and op. This results in a call to v.apply_op(). Things
proceed as normal, with v calling op.apply_op() on each of its SubVectors.

When op.apply_op() is called on a SubVector sub, it wraps it as a LocalSub-
Vector [dc. This is then passed to £(1dc) for the evaluation. [dc passes on the

Scalar * from sub so that f can work directly with a contiguous array of data.

6.2.2.2 Using a RTOp on a RVL::DataContainer

Now suppose I have a TSFCore client, for example MOOCHO, which owns a collection
of RTOps which I would like to use. However, I want to use a RVL: :DataContainer

to handle data storage. How might I accomplish this? In this case, I will need only

86

two new adapters.

DCTSFCoreVector A child of TSFCore: :Vector equipped to take an RVL: :Data-
Container as input. It will alternatively accept a RVL: : Space or a RVL: :Data-

ContainerFactory, since both can create the necessary DataContainer.

RTOpUFO This is a RVL: :FunctionObject that wraps a RTOp. Note that I must
have four of these, one for each number of inputs. In particular, RTOpUFQ is
for an operation with only one input. Further, when creating this object, I
must also pass in the number of mutable and immutable inputs, as well as the
ReductTarget. This extra information is important so that I can correctly call

the RTOp: :apply_op function later.

Luckily, I do not need to implement a new child of SubVectorT, since the interface
permits construction of a SubVectorT from raw data, and I can easily get the raw
data from a LocalDataContainer. Note that this only involves copying pointers and
a couple of integers, so this is not an expensive operation. In fact, all of my adapters
never copy data if it can be avoided.

Suppose the TSFCore client owns a RTOp op and a DCTSFCoreVector v. It calls
TSFCore: :applyOp(op, v, ...);, which immediately calls v.apply_op(op, ...);.
Then v counts the number of input vectors, chooses the appropriate type of RTOpFQ.
Suppose for now that v is the only vector in this operation. Then it will create
a RTOpUFO fop(op, num_vecs, num_targ vecs, reduct_obj); Once it has fop, it
calls dc.eval(fop);, where dc is the internal DataContainer. This causes dc to
loop through its LocalDataContainer members, and on each one, it calls fop(1dc) ;.
Finally, fop will simply call getData() and getSize() on the ldc and use this infor-

mation to build a SubVectorT sv. The original op is applied to sv as normal.

87

TSFCoreClient:] I v.DCTSFCoreVector] I dc:SeismicDataContainer] I icLDC] I ign_scalar]
I

new (op, nv, nvl) -
fo:RTOpUFO

I

I

I

] eval(fo ' | |
FF: I

I

c := get() |
] d:=getData() '

I
|
aPP‘)LOP(nrl,sv,nvt,svt)

——————— F=-----=-t--------X
|
|
|

apply_op(opy...) o
Ll

operator()(idc) o
>

new (d)

Figure 6.7: Sequence of calls to apply a RTOp to a RVL::DataContainer

6.2.2.3 Difficulties

The type conversions were not necessarily easy. While SubVector and LocalData-
Container are almost the same concept, some of the other types don’t line up as
well. A TSFCore: :Vector can be a DataContainer, but without some additions, the
opposite is not true. This is because a DataContainer has no knowledge of spaces or
where it comes from. Similarly, a TSFCore: :Vector is not a RVL: :Vector without
the addition of the standard functions required by a Hilbert space — namely inner
product, linear combination, and a zero element. For simplicity, I attach versions of
these functions which are most common in my applications, but this is an assumption
and may cause trouble in some cases. Luckily, I mostly do the wrapping in situations
where only the RVL: :Vector: :eval function will be called.

Further, the concepts of spaces are slightly different. The RVL: :Space class has
these extra functions I just mentioned. TSFCore::VectorSpace more closely aligns
with RVL: :DataContainerFactory. In fact, it is easy to make a VectorSpace into a

DataContainerFactory. This is done in the adapter class ATN: : TSFCoreVectorDCF.

88

However, it is somewhat more difficult to make a RVL: :Space into a TSFCore::-
VectorSpace. This trouble hinges around the dimensionality of the space. In RVL, a
deliberate decision was made to avoid explicit dimensionality at the Space level. See
the paper [41] for more discussion on this. However, a TSFCore: :VectorSpace has
an public member function dim(). They use this to test for uninitialized spaces (dim
== () as well as to determine compatibility of spaces. If two spaces have the same
dimension and utilize the same scalars, then TSFCore says they compatible. RVL
takes a tighter notion of compatibility that it closer to the mathematical definition,
and leaves the implementation of the compatibility test to each space.

In any case, there is no easy way to determine the size of a RVL space. In order
to fully implement the adapter, I had to create a RVL UnaryFunctionObjectRedn
whose job was to fill in this missing information. Luckily, I can do so without actually
touching every element of a vector. I simply need to sum up the size of each Local-
DataContainer, which has a getSize () function that makes this information easily
available. So, to compute the dimension of a space, I create an element in that space
and then sum up the sizes of each of its LocalDataContainers. This unfortunately
requires allocating a new vector in space, which makes it an operation best avoided

unless necessary.

6.2.3 Higher Level Interoperability

I need to interact with higher level objects in both packages. For example, I might
want to apply aRVL: :Linear0Op to a TSFCore: :Vector. In my large example scenario,
MOOCHO asks for a derivative operator from the nonlinear problem definition. This
operator is actually built by an RVL package, in this case TSOpt. I can’t make TSOpt
produce a TSFCore::LinearOp without overhauling it, but I can give MOOCHO

something that looks like a TSFCore: :Linear0Qp.

89

6.2.3.1 Applying a RVL::LinearOp to TSFCore::Vectors

The RVL linear operator interface only works with RVL: :Vector. Further, I would
like to wrap a RVL: :LinearOp as a TSFCore: :LinearQOp so that I can encapsulate the
apply () code as well as be able to pass the linear operator through other TSFCore

interfaces (e. g. NonlinearProblem). To complete this task, I need three things

LinearOpAdapter is a TSFCore: :LinearOp. It contains a reference to a RVL::-
Linear0Op and forwards calls to apply () after converting TSFCore: :Vectors to

RVL: :Vectors.

TSFtoRVLVectorBuilder Uses TSFCoreVectorDC, mentioned in Section 6.2.2, as
well as TSFCoreVectorDCF and StandardSpace which allow us to convert a

TSFCore: :VectorSpace to a RVL: :Space.

TSFtoRVLVectorAdapter provides access to the protected RVL: :Vector construc-
tor so that TSFtoRVLVectorBuilder can create a RVL::Vector out of the

TSFCoreVectorDC and StandardSpace.

Figure 6.8 shows the sequence for applying a linear operator in this case. I have
a TSFCore client which owns at least two TSFCore: :Vector objects and a linear
operator. The operator is actually an RVL object, but is wrapped to mesh with
the TSFCore interface. This wrapping is done by LinearOpAdapter. When the
LinearOpAdapter: :apply method is called, it takes each TSFCore: :Vector and cre-
ates a TSFtoRVLVectorBuilder out of it. The builder creates appropriate Data-
Container, DataContainerFactory (not shown) and Space objects for the given
vector, then dynamically allocates a TSFtoRVLVectorAdapter vec from these. It can
then return a reference to vec as needed, but deallocates vec when destroyed. This
means that vec is not a permanent adapter and is only meant for temporary use. In
this case, I can now pass it through the RVL: :LinearQOp: :apply interface. From here

on the sequence proceeds as for a normal RVL: :LinearQp.

90

[TSFCoreClient] [dv:SerialVector] [dsop:DiagScaleOp]

new(dsop)

lopa:SVLLinearOpAdapter

»
Ll

Figure 6.8: Sequence of calls to apply a RVL::LinearOp to a TSFCore::Vector

Note that most linear operators in RVL utilize the eval () capabilities of RVL: : -
Vector, so it is quite likely that a sequence similar to that in Figure 6.6 will occur
inside. Once this has finished, each method returns and adapters are discarded. This
will not deallocate the original vector, since the adapter specifically instructs the
RVL: :Vector that it does not own this data. Since this breaks the normal RVL
conventions, this behavior is only accessible through a protected constructor, thus

the need for TSFtoRVLVectorAdapter, a child of RVL: :Vector.

6.2.3.2 Applying a TSFCore::LinearOp to RVL::Vectors

Now, I wish to demonstrate the ability to apply a TSFCore: :LinearOp to RVL::-
Vector. In fact, this test will prove more than this, as I can use TSFCore::-
MultiVector as a linear operator. Thus, I will show that I can in fact interop-
erate with vectors allocated in different manners. This works because the default
MultiVector implementation performs a matrix—vector multiply as a series of dot—

products. I had to create several new adapters in order to accomplish this task:

TSFLinearOpAdapter This takes a TSFCore: :LinearOp and wraps it as an RVL: : -
LinearOp. It also uses the TSFCoreVectorDCF and StandardSpace combination

mentioned earlier to handle the type conversion for the domain and range into

91

RVL: :Space.

VecTSFCoreVector This is almost identical to the DCTSFCoreVector discussed in
Section 6.2.2.2. Since I cannot get direct access to the DataContainer of a

RVL: :Vector, I must instead wrap that vector and utilize its eval () methods.

DCTSFCoreVectorSpace This was mentioned earlier. I've modified it to func-
tion given a RVL: :Vector instead of an RVL: : Space, since the vector allows us

indirect access to the space’s methods.

Figure 6.9 diagrams the sequence of call to apply the linear operator. A RVL client
is given a RVL: :Vector vec (actually needs a pair of vectors, but I've omitted one for
the sake of simplicity) and a TSFCore: :LinearOp op (in my test, a MultiVector). It
first wraps op with a TSFLinearOpAdapter and then calls the apply method of the
adapter on vec. The adapter wraps vec with a VecTSFCoreVector then calls the apply
method of the original op. From here, the normal behavior of a TSFCore: :LinearQOp
occurs.

A RVL::LinearOp can do both the forward operation and its adjoint. This is
not the case with TSFCore: :LinearOp. Thus, I have built in checks in the TSF-
LinearOpAdapter which use the TSFCore: :LinearQOp: :opSupported() method. If
an operation is not supported, and exception is thrown. This matches the expected

behavior of a RVL: :LinearQOp.

6.2.3.3 Optimizing an RVL::Functional

I would like to define a TSFCore: :NonlinearProblem using RVL. The Functional
class is the natural choice to use, as it provides all of the features needed by Nonlinear-
Problem and NonlinearProblemFirstOrder. A RVL::Functional implements the

mathematical idea of a functional, namely a map

XY

92

I SVLClient: I I mvlop:MultiVector I I vec:Vector I

new(mvlop)

;{ lopb:TSFLinearOpAdapter I

1
| w" vectsf:VecTSFCoreVector

i
: ! R L
LE __________ o > l

|
T |

Figure 6.9: Sequence of calls to apply a TSFCore::LinearOp to a RVL::Vector

from the domain X to the range Y. Further, it gives access to the first—derivative of
the functional %.

The class NPRVLFunctional is derived from NPFOUnconstrained, which is a spe-
cialization of NonlinearProblemFirstOrder. The NPRVLFunctional constructor
takes the functional and optional bound constraints on the domain. All member
functions of the adapter are either forwarded to the functional following adaptation
to a RVL::Vector (see Section 6.2.3.1) or given obvious implementations. For example,
space_g() simply returns a TSFCore: :VectorSpace of dimension one.

I gain some efficiency through the use of the RVL: :FunctionalEvaluation class.
When I am asked to calculate quantities at a new point, I create a new evaluation
and get the value I need from it. On the other hand, when newpoint == false, 1
can simply consult the previous evaluation without going to the expense of building
a new evaluation.

Two adapters are required in order to use Moocho to optimize an RVL: : Functional.
I first build a NPRVLFunctional out of the Functional, and then build a NLPTSFCoreNP
out of the NPRVLFunctional. This is the nonlinear problem in a form that Moocho
recognizes. | can then give the problem to a MoochoSolver for minimization.

I have two examples of NPRVLFunctional in operation. The first example uses

93

a functional TOMS566, which is simply a adapter around the FORTRAN code pro-
vided in [34]. This lets me try Moocho on the suite of problems Moré, Garbow, and
Hillstrom suggest. Moocho performs as expected, converging to the published mini-
mums in most cases. The few that do not converge are admittedly tricky problems
tailored to have extremely poor scaling. The second example solves a least—squares
problem using TSOpt [44] to define a ODE constraint of the form ¢(y,u) = 0 and

then minimizing ||y(u) — y9||. I will discuss TSOpt more in the following sections.

6.2.4 Putting a TransientNonlinearProblem under TSOpt

Now that I have some interoperability of linear operators and can build a TSFCore: : -
NonlinearProblem out of a RVL: :Functional, I can focus on using TSFCore to sup-
ply the problem definition to TSOpt. This first requires the creation of a TSFCore: : -

Nonlin object which knows about time, and supplies the necessary interface.

6.2.4.1 TransientNonlinearProblem

The new TransientNonlinearProblem class is not a child of any current TSFCore
class. However, its design is meant to strongly mirror that of NonlinearProblem.
In fact, these two classes could be siblings if a need was demonstrated, since they
have many identical member functions. Both provide access to bounds and spaces
for the state variable y and control variable u. They further specify the range of the
constraint function ¢, and methods for setting and retrieving storage for the value of

c. In addition to the basic services, TransientNonlinearProblem also supplies
yO0 initial state as a function of the given control.

dyO initial perturbation of the state as a function of the given control and control

perturbation.

duF final perturbation of the control as a function of the final state and state per-

turbation, as is needed for the adjoint state method.

94

calc_c(yp,y,u,t,dt) evaluate the implicit function ¢(yp, y, u, t, dt) and store the value

n c.

There is a natural specialization of TransientNonlinearProblem which adds an
interface for first—order information, TransientNonlinearProblemFirstOrder. This
again mimics the NonlinearProblemFirstOrder in design. It provides linear opera-
tor factories for the derivatives as well as methods for setting and retrieving storage
of these derivatives. In this case, there are three derivatives which might be of inter-
est 3—;, aa—y‘;, and %. There are calculation methods for each which have an identical
parameter list to the calc_c() method.

It is important to notice that all the calculation methods utilize an optional param-
eter newpoint. When newpoint == false, I assume that the other input parameters
are identical to those in the previous call to a calculation function, and thus evaluating
at the same point. This frequently permits increased efficiencies, and it is important
to use this parameter wisely both in creating a TransientNonlinearProblem and in

dc

calling the calculation methods. In one case, I needed to calculate c, 50 and %, and

therefore used the following sequence of calls
prob.calc_c(yp, y, u,t,dt);
prob.calc_DcDy(yp, y, u,t,dt, false);

prob.calc_DcDu(yp, y, u,t,dt, false);

6.2.4.2 TransientNPDynamics

The TSOpt::Dynamics class is responsible for computing evaluations of a system
of partial differential equations. Its function calls require a specific form of calcu-
lation, but I can utilize TransientNonlinearProblemFirstOrder and TSFCore: :-
SerialVector to perform the necessary work. I chose to use SerialVector since
the Dynamics interface deals with RVL: :LocalDataContainers but the Transient-
NonlinearProblem interface only accepts TSFCore: :Vectors. I can easily re—wrap

a LDC u by doing

95

TSFCore: :\-SerialVector<Scalar> usv(u.getData(), 1, u.getSize());

This results in usv accessing the same array of data as u.

The design document for TSOpt [44] includes a thorough description of what the
Dynamics methods are supposed to calculate. What follows is simply intended to
describe what I did in this subclass, and I advise programmers to consult the TSOpt
document for further details.

Given an equation of the form Z—‘t’ = H(y,u,t), the rhse() function is supposed

to compute

Yp = boyo + by + aH (y,u,t)

However, due to the nature of the TransientNonlinearProblem class, I have equa-

tions of the form F'(y,,y,u,t,dt) = 0. This necessitates computing

yp = by + aF(bpr/a’07 Y, u, t? a)

The derivative and adjoint computations follow in a similar manner. I always evaluate
F' the same way, and omit the addition of the initial terms.

I use the TSFCore functions assign(), Vt_S() and Vp_StV() to carry out the
necessary scaling and linear combination of vectors. To ensure accuracy, I am forced
to utilize one temporary vector in order to avoid accidently overwriting important
data, which can occur when several of the input LDCs point to the same address in

memory.

6.2.5 Example Logistics Problem

To prove total interoperability of all the packages, I use a TSFCore::Nonlin::-
TransientNonlinearProblem to define TSOpt: :Dynamics. I then build a TSOpt: :-
TSOp and use it to define a LLS functional. Finally, I use Moocho to optimize this
functional, as described in Section 6.2.3.3. Figure 6.10 shows the relationships be-

tween the objects in this example.

96

The logistics problem searches for the initial condition y(0) = ug which gives a

desired final result y(7") = y? for some specified 7', when y obeys

dy 2
27— (1=
7 (1-9°)

data ip the least-squares sense.

The objective is to find y(7') as close as possible to y

The diagram shows how I build up this application. Given a TransientNonlinear-
Problem, in this case LogProbTNLP, I build a TransientNPDynamics from it. I then
follow the standard procedures for TSOpt, building a Stencil from the Dynamics
object and a TSOp from the Stencil. That takes care of the TSOpt portion of the
example. I next create a Functional, in this case the LeastSquaresFcnlGN. The
functional is put into a NPRVLFunctional, which is a type of TSFCore: :Nonlinear-
Problem. Finally, I build a NLPInterfacePack: :NLP, and give it to the MoochoSolver
for optimization. The behavior of the MoochoSolver is controlled by the input file
“Moocho.opt”.

I am struck by the sense that this construction is like a set of nested Russian
dolls. T was concerned that there may be much wasted effort involved in such an
application. In fact, this is not the case. There are only 3 adapter classes here, and
since I have three disjoint packages (RVL, TSFCore, and Moocho), three adapters

are the minimum necessary.

Transient NPDynamics Adapts TSFCore: :Nonlin: :TransientNonlinearProblem
to TSOpt : :Dynamics. There is value added here, since I must perform some cal-
culations inside TransientNPDynamics in order to produce the correct results.

TNLP only gives us F', whereas I need u, = b*u + byug + aF'.

NPRVLFunctional Adapts a RVL: :Functional to a TSFCore: :Nonlin: :NPFQUn-

constrained. This is a pure adapter.

NLPTSFCoreNP This lets Moocho optimize any TSFCore problem. This class
existed before the ATN project began, and since TSFCore is intended as the

standard interface, will be necessary in many projects.

J

Stencil

1

Model @
Dynamics

TSOp ——

O

Operator

N

Vector

LeastS

quaresFnclGN

TransientNPDyanmics

*

N

O

<<description>>
The relationships
involved in the
Logistics Problem
example

g FunctionalEvaluation %

Functional
1 c(u)

1

NPSVLFunctional

TransientNonlinearProblemFirstOrder

LogProbTNLP

|
O

NPFOUnconstrained

Y.

NonlinearProblemFirstOrder

1

MoochoClient

*

MoochoSolver

I
v
O

LP

2

NLPTSFCoreNP

Figure 6.10: Class interaction diagram for the Logistics Problem

97

All the other classes are abstract interfaces, compositions, or other patterns. Beyond

the linear algebra interoperability, the work involved for this logistics example was

simply two adapters, both of which should be entirely reuseable due to the use of ab-

stract interfaces on both sides of the adapter. Each adapter implements one interface

by calling methods on a second interface, and never deals with concrete types.

Two adapters are all that is needed to connect a time—dependent TSFCore problem

into TSOpt into a unconstrained TSFCore problem. This is very little code to gain

a huge amount of functionality!

98

6.3 Epetra and RVL

Epetra was developed by Mike Heroux as a parallel linear algebra library [25]. Al-
though it has been adapted to TSFCore so that it can be incorporated in the Trilinos
Solver Framework, I wanted to adapt to it directly instead of going through the
TSFCore interface. This would greatly simplify usage by reducing the number of
dynamic casts needed to interface with Epetra code as well as demonstrating the
flexibility of RVL to handle a library which was designed specifically for parallelism.
Also, as Epetra seems to be a simpler interface than TSFCore, a direct adaptation
was straightforward.

One limiting factor when dealing with Epetra is the lack of templates. All data in
Epetra is double precision data. This means that all the adapters must be concrete
classes instead of templates. A templated version named Tpetra is in the works,
and modifying the adapters to use Tpetra classes instead should be a relatively easy
project later.

A note for readers: the Epetra package uses an underscore naming convention
instead of namespaces. Any class names you see with underscores in them are Epetra
objects. Any without underscores are either RVL objects or adapters from Epetra
objects to RVL objects. The adapters are named using a combination of the Epetra

and RVL names.

6.3.1 Adapting Epetra_Vector and Epetra_MultiVector

The basic data storage class in Epetra is the Epetra_Vector. On a particular process,
each object appears to contain an array of contiguous data. The Epetra Vector has
access methods which will expose the data pointer as well as the length of the array.
This makes it very easy to treat an Epetra_Vector as a RVL: :LocalDataContainer,
since such behavior is all that is required of a LDC.

An EpetraVectorLDC can be built from a Epetra BlockMap which describes the

99

allocation of elements on each processor. I also provided a constructor which takes
an existing Epetra Vector and makes a copy or view of it. The Epetra interface
provides this copy/view functionality. The adapter owns an actual Epetra_Vector
and the Epetra object can either allocate its own data storage space or reference the
space belonging to another object.

The Epetra MultiVector is an array of identical Epetra Vector objects. In RVL
terms, this makes it a ProductDataContainer because I may treat each element of
the array as a LDC. The EpetraMultiVectorDC implements the product structure by
allocating EpetraVectorLDCs as necessary with views of the vectors components of
the multivector. The adapter owns a Epetra MultiVector and an array of pointers
to EpetraVectorLDC. This array of pointers is initialized to null upon construction
and filled in as the components are accessed. The adapter’s constructor takes a map
and an integer size for the array of vectors. Both the map and size are passed directly
to the Epetra MultiVector constructor.

As part of some applications involving these adapters, I found that I would like to
make a LDC out of a fragment of an Epetra Vector. This was easily accomplished
with a slight modifications to the adapters. I affix two additional integer data mem-
bers offset and trunc to the adapter class. The offset is simply added to the
data pointer when the pointer is requested, effectively ignoring the first offset data
values. The offset and trunc are both subtracted from the length, causing the LDC
to only access elements of fset,of fset +1,...,length — trunc — of fset instead of
elements 1,2, ..., length. Both offset and trunc may be set in any of the construc-
tors, but both have default values of 0. When set in a EpetraMultiVectorDC, these

values are automatically passed on to the owned EpetraVectorLDC members.

6.3.1.1 Accessing the Functionality of the Epetra_Vector

Thus far, I've described taking a parallel vector and chopping it into local arrays

which I may treat as local data containers. However, at this stage, such classes are

100

no more useful than the basic RVL: :RnArray. The adaptation is hamstrung unless I
can take advantage of the parallel functionality of Epetra.

The Epetra_Vector has many computation functions which calculate in parallel
the common operations seen in algorithms. Some of these are elements-wise oper-
ations like the linear combination Update () method. Such operations are trivial to
parallelize as long as all participants use the same element map. However, the reduc-
tions, like norms and inner products, involve some parallel communication. I can use
these methods by writing function objects. Each function object tries to cast its in-
puts to EpetraVectorLDCs, then call the correct Epetra Vector method on the data
members of the LDCs. The LDC adapter has a getVec () method to allow access to
the Epetra _Vector it owns as well as having individual methods like inner () which
call the appropriate Epetra methods. For example, the EpetraVecInnerProduct is

a binary function object implemented thus:

/** Evaluation method */
virtual void operator()
(Local\-Data\-Container<double> & x,
Local\-Data\-Container<double> & y) {

try {

EpetraVectorLDC & a = dynamic_cast<EpetraVectorLDC &>(x);

EpetraVectorLDC & b = dynamic_cast<EpetraVectorLDC &>(y);
setValue(a.inner(b));
} catch (bad_cast) {
RVLException e;
e << "Error in EpetraVecInnerProduct::operator()."
e << " Cannot cast input to EpetraVectorLDC\n";

throw e;

}

101

It is important to note that the Epetra methods do not take into account the offset
and trunc values. If an application needs to use nonzero values of these, it will
be necessary to write new reductions in the cases where extra zeroes would modify

results.

6.3.1.2 Making a Space

Once I have a DataContainer, inner product, zero, and linear combination methods,
these are easily combined into a RVL: : Space. The function objects are packaged into a
RVL::LinearAlgebraPackage and a EpetraMultiVectorDCFactory is built to create
data containers. The factory takes the same constructor inputs as the multivector
adapter.

The space is built using the facade RVL: :StdSpace. It has a linear algebra pack-
age and a data container factory which it references through two protected access
methods. The base StdSpace class implements all the necessary functionality of a

space by calling these methods and using the two objects.

6.3.2 Adapting Linear Operators

Given a Space that hides Epetra_Vectors at the bottom, I need to be able to perform
all of the major linear algebra operations in parallel. I've already described the basic
transformations and reduction. What’s left is the application of a linear operator.

Some packages choose to treat multivectors as linear operators. However, this
is not always efficient for parallel computation. Epetra uses a separate class, the
Epetra RowMatrix, for its linear operators. The main method of this class is the
Multiply method which takes an input vector, an output vector, and a boolean flag
to indicate whether to transpose.

Since the RVL: :LinearOperator class interfaces with RVL: :Vector, I must write
a function object which can visit the adapted local data containers and perform the

call to Multiply. The EpetraMatVec is a BinaryFunctionObject which takes the

102

Epetra RowMatrix and transpose flag in its constructor. This allows me to reuse the
same function object to implement both apply() and applyAdj() methods in the

linear operator. The function object’s computation method is very simple:

virtual void operator() (Local\-Data\-Container<double> & y,
Local\-Data\-Container<double> & x) {
try {

EpetraVectorLDC & x1

dynamic_cast<EpetraVectorLDC &>(x);

EpetraVectorLDC & yl1 = dynamic_cast<EpetraVectorLDC &>(y);
int errcode;
if(errcode = mat.Multiply(trans, xl.getVec(), yl.getVec())) {
RVLException e;
e << "Error in EpetraMatVec::operator() - ";
e << "Epetra_RowMatrix::Multiply returned with error code";
e << errcode;
throw e;
}
} catch (bad_cast) {
RVLException e;
e << "Error in EpetraVecLinComb::operator(). ";
e << "Cannot cast input to EpetraVectorLDC\n";

throw e;

Most of that code is exception handling. The actual work occurs in two dynamic
casts and a call to Multiply ().
The linear operator stores a reference to the Epetra_RowMatrix. Besides being

applied, the operator must provide access to domain and range spaces. These spaces

103

Process 0 Processi
1 2 3 4 n n+1 n+2

locmap remmap
1 2 3 4 n n+l n+2

remmaj locmap

Figure 6.11: Epetra maps used in the data transfer methodology. Filled boxes indicate

data on process 0.

are built from the domain and range maps obtained from the row matrix, using the

EpetraMultiVectorSpace described earlier.

6.3.3 Data transfer using Epetra

Although Epetra was designed for tightly coupled SIMD parallelism, I have found
other uses for it. Through clever use of maps and the import/export functions, I
can use Epetra to transfer data between MPI processes. This is necessary for one
implementation of the Master/Slave paradigm in Chapter 8.

MPI allows users to create communicators from subgroups of a given communica-
tor. After fetching the group for MPI_COMM_WORLD, I build a subgroup from process 0
and process 7, then build a comm for the new group. This new MPI communicator is
used to build an Epetra_MpiComm, which can be used to build maps between the two

processes.

MPI_Group group_world;
MPI_Comm_group (MPI_COMM_WORLD, &group_world);

int procranks[2];

procranks [0] 0;

procranks[1] i;

104

MPI_Group_incl(group_world, 2, procranks, &(subgroup));
MPI_Comm_create (MPI_COMM_WORLD, subgroup, &(subcomm));
if(rank == 0 || rank == i)

ecomms = new Epetra_MpiComm(subcomm) ;

After running this code, I have an Epetra communicator between just two processes.
This comm is used to build a special pair of maps, as shown in Figure 6.11. Suppose

I want to move n doubles from process 0 to process 7. Process 0 creates two maps:

locmap = new Epetra_Map(n+2, n+l, 0, *(ecomms));

remmap = new Epetra_Map(n+2, 1, 0, *(ecomms));

Both maps contain a total of n + 2 elements, because Epetra seems to require that
each process involved in a map own at least one element for this trick to work. The
locmap on process 0 has n + 1 elements locally, which implies 1 element on process
1. The remmap on process 0 is the opposite, with only 1 element locally. On process
1, I create the same two maps, but I must reverse the order of creation. The map
constructor involves global communication across a communicator, so the order is
crucial.

The data transfer occurs when I remap data from one map to the other. To move
data from process 0, I create a source vector from using the first map — locmap on
process 0 and remmap on process ¢ — and a destination vector to using the second
map — remmap on process 0 and locmap on process ¢ Such vectors must be created on
both processes. Process 0 fills the data into the from vector and then both processes

call the second vector’s Import () method. On either process, this looks like

Epetra_Import mover(to.Map(), from.Map());

to.Import(from, mover, Insert);

As long as to and from are named correctly, this command is the same, so I en-

capsulated this code in a function object named EpetraDataTransfer. This binary

105

function object casts its parameters to EpetraVectorLDC and uses the getVec()
method to grab the Epetra_Vector inside each parameter.
Data transfer proceeds identically when returning data to process 0 except that

the maps are switched .

6.3.4 Combination Data Containers

One of the main ideas in RVL was to permit bundling of object meta—data along
with array data in such a way that it can be used when needed but is invisible
otherwise. Function objects which only touch array data may simply use the base
LocalDataContainer interface. More specialized function objects, like one that per-
forms interpolation of gridded data, should cast LDCs into a specialized type which
has the right meta—data.

If I want to use Epetra to perform data transfer for general data containers, I
need a way to handle the extra meta—data. The simplest solution was to pack all
the meta-data into an extra Epetra_Vector and use the very same data transfer
functionality. An application developer simply needs to pack their data into an array
of doubles and unpack it on the other side.

I created a general interface for data containers which owned an extra local data
container for auxiliary data. The base AuxComboLDC owns a reference to a local data
container of auxiliary data. This data is often shared between the local pieces of
a data container, so I did not want to insist on each LDC owning a copy. The
StdAuxComboLDC fully implements the functionality of the abstract interface by taking
two LDCs in the constructor and treating one as data and the other as auxiliary data.
The concrete class can either reference both externally or assume ownership of the
actual data when given a pointer instead of a reference.

I wrote two utility function objects to aid interactions with the auxiliary data
container. The AuxRedirectorUF0 redirects the action of a unary function object

onto the auxiliary data container instead of the actual data. CopyToAuxData is a

106

binary function object which copies the contents of the second parameter onto the
auxiliary data of the first. In most cases, more specialized function objects will be
needed to serialize the various data members of a local data container. For regularly
gridded data, this requires copying a few integers and doubles. For seismic data, it is
a more daunting task to serialize all the various data which describes a shot, including

time—stamps, location data, and many other bits of information.

6.3.5 Example applications

I wrote several examples which use the Epetra-to-RVL adapters. The Master/Slave
task level parallelism is described in Chapter 8. It uses the data transfer methods
discussed in Section 6.3.3 to move task data and results between the master and
slaves. The parallel finite-element project in Chapter 9 began with code written
by Denis Ridzal to assemble the matrices for a finite-element discretization of the
advection—diffusion problem. Using the adapters, I built a RVL: :Functional which
computes a quadratic objective function subject to an implicit linear constraint. I've

optimized this functional using the LBFGS algorithm described in Section 7.6.5.

6.4 Other Adaptations

The adaptations between RVL, Epetra, and TSFCore were completely successful. In
addition to these, I considered adaptation involving HCL and OOQP.

1. HCL is already being used in by the research community. One of the biggest
questions asked to the developers of RVL is “I already have all this code written
using HCL. Will I be able to continue using it if I switch to RVL, or do I have
to redo all the hard work I’ve put into it so far?” Similar questions arise in any

context where a group switches to a seemingly incompatible new interface.

2. As part of solving optimization problems, quadratic programs (QPs) frequently

107

arise as subproblems inside a solution algorithm. I would like a fast and flexible
QP solver which I could take off the shelf and use, without needing to build my
own. This has prompted me to consider using OOQP and interfacing with its

linear algebra classes

These adaptations were less successful, usually due to limitations in the non—RVL
interface. I will detail the problems encountered below. In both cases, a partial
adaptation could have been made, but would not have been particularly useful or

efficient, so I never actually implemented any adapters.

6.4.1 HCL and RVL

How might I adapt the RVL: :LocalDataContainer to a HCL Vector_d, the HCL [17]
double precision vector class? 1 first encounter the problem that I may only rea-
sonably adapt RVL: :LocalDataContainer<double> rather than the templated base
type. This is a recurring problem when trying to hook templated packages to non—
templated packages. I could make an LDC into a HCL_Vector_d by implementing a
RVL: :FunctionObject for every one of the more than 50 methods in HCL_Vector_d
and then using the correct one when a method is called. However, the reverse could
be difficult. Because HCL is written in C++ without using many modern features
such as namespaces and templates, it greatly impairs interaction with a package
which does. Luckily, the HCL authors were careful to choose unique names with the
HCL_ObjectName convention as a substitute for namespaces. Further, HCL Vector_d
has Data() and Dim() methods I can use. Thus, it actually exposes a data pointer in
addition to the list of standard methods, which allows me to sidestep any problems.

Why wouldn’t T match HCL_Vector_d with RVL: : Vector instead of RVL: :Local-
DataContainer, seeing as HCL_Vector_d claims to be a vector in Hilbert space and is
generated by HCL_VectorSpace_d? The answer is that they are in fact incompatible.
RVL: :Vector is fully encapsulated, so an adapter from RVL to HCL could imple-
ment the HCL_Vector_d methods like Add() and Max(), but could never implement

108

Data()! However, there is a HCL_Vector_d::Space() method and RVL: :Vector is
the only class in the RVL hierarchy that knows where it came from. So I could never
take just a RVL: :DataContainer or a RVL: :LocalDataContainer and make it into a
HCL Vector_d, without having a RVL: : Space along with the DC or LDC. I am forced

to wave the white flag.

e an adapter from RVL::Vector to HCL_Vector_d cannot implement a Data()

method.

e an adapter from RVL::DataContainer to HCL_Vector_d cannot implement a

Data() method or a Space() method.

e an adapter from RVL::LocalDataContainer to HCL_Vector_d cannot imple-
ment a Space() method, and although I could use LocalDataContainer: :-
clone() to fake the factory behavior of a space, there is no way to fake the

necessary comparison tests.

Therefore, I could adapt a HCL_Vector_d to whatever level of data storage in RVL
I wanted, but it is impossible to completely adapt an RVL object to HCL. This is
entirely due to the mixing of methods and jobs in HCL’s vector class.

As a final note, after digging deeply into the HCL documentation, I found that
it is perfectly acceptable for the Data() function to simply returning an error code.
Having methods which might work some of the time is a poor design practice. In this
case, it makes it possible to adapt RVL: :Vector to HCL_Vector_d by implementing
the other methods and making calls to Data() return an error and sacrificing some

functionality.

6.4.2 OOQP and RVL or TSFCore

The Object Oriented Software for Quadratic Programming (OOQP) package has

vectors which are fully encapsulated. The 00QPVector interface has more than 35

109

pure virtual methods. First, note that OOQP only uses double types, so I hit the
same template problem I did with HCL. As a result of the strict encapsulation, there
is only one apparent way to implement an adapter which makes an RVL: :Vector or
TSFCore: :Vector into an 00QPVector. In the case of RVL, I would need to implement
roughly 15 new function objects which would do the various method calls (some of
the 35 already exist). The work to adapt TSFCore would be similar, writing new

RTOps. However, there are three methods in 00QPVector which are troublesome:
e void copyIntoArray(double v[]) const;
e void copyFromArray(double v[]);
e void copyFromArray(char v[]);

These methods require that I be able to serialize any OOQPVector. There are several
cases of existing vectors for which this would fail, for example the out—of-core vector
in RVL and the parallel vectors in TSFCore. I could probably write visitors which
would accumulate data into such arrays, but they are unlikely to function properly
in some cases.

In the other direction, I can see only one way in which I might adapt 00QPVector
into a RVL or TSFCore interface. If I utilize the aforementioned copy to/from array
functions, I could take a given 00QPVector and when needed copy the data out,
transform the data, and copy back to the 00QPVector. This would discard most of
the functionality given by OOQP, and replace it with an extremely inefficient copying
mechanism. I therefore add two extra copy operations per element and lose any
benefit of complex data structures in the 00QPVector. This demotes an 00QPVector
to a RVL: :LocalDataContainer or a RTOp: :SubVector. Since fully functional LDC
and SubVector classes exist which provide identical functionality to such an adapted

00QPVector, there is no benefit to adaptation here.

110

6.4.3 OOQP and HCL

Since I've thus far focused on adapting things to RVL and TSFCore, which both
utilize exposed data pointers at the base, let’s briefly consider adapting two packages
which utilize encapsulated arrays as the base type. Could I adapt 00QPVector and
HCL Vector_d? The design of OOQP was strongly influenced by HCL and they share
many common features.

The packages have different lists of ‘standard’ methods for vectors, which means
I can’t simply forward all calls. However, most of the functionality is similar, and
could be easily implemented using an occasional temporary vector and two or three
method calls. In fact, 00QPVector has only three methods without such obvious
implementations : gondzioProjection(), divideSome(), and findBlocking(). In
the other direction, HCL_Vector_d has a few difficult methods as well : Sqrt (), Exp(),
Log(), Power (), and Greater (). In both cases, the more complex functions could be
implemented using the copy methods on 00QPVector or the HCL Vector_d: :Data().
Unfortunately, such an implementation would not work efficiently in all cases, and
may not be guaranteed to work at all.

This appears to be a fundamental problem with all such designs. Each author
has their own list of “absolutely necessary” functions, and not all such functions can
be replaced by a sequence of calls to other functions. For example, as long as a
design includes a scalar multiply and add, I could compose all different styles of axpy
operations. From a component-wise multiply and an invert, I can build a component—
wise divide. But, there isn’t an easy way to build a component—wise exponentiation.
This forces me to resort to the kludges provided for data access, which are frequently

inefficient and not always guaranteed to work.

111

6.5 What was Learned

In order to assist future designs, I consider which features of the various interfaces
make adaptation easy and which cause difficulties. I don’t find insurmountable ob-
stacles, but there are a few nasty speed bumps.

The first major aid I shall call a common cultural background. Because mathe-
matics is an old discipline, there are many well established and useful concepts for
us to build on. These provide a language for communication as well as influencing

designs to have similar features. Consider the definition of a Vector Space:
e A set of vectors,

e an associative and commutative vector addition operator,

an additive identity,

A scalar field,
e an associative and distributive scalar multiplication operator,
e for a Hilbert space, also need an inner product.

Since the C++ language doesn’t have a clear notion of sets, I interpret the idea of
a set as being able to produce an element of the set and determine whether a given
object is a member of the set. Thus, in many packages, a space is a factory for vectors
along with membership tests and some basic operations. This then implies certain
behaviors on a vector — it stores data, can be operated on, and knows where it came
from. The mathematical definitions provide guidelines for behavior.

The second lesson is critical to all programming — keeping designs simple and
organizing classes into atomic pieces, then building structures out of these pieces,
produces a flexible design with much reusable code, which is also easier to adapt to

other packages. A class with a ton of functionality may be useful to the design at the

112

moment, but such a class is hard to modify and difficult to adapt to other packages
with different ideas.
Consider the three common approaches to accessing the data in the contiguous

arrays:
A. exposed data pointers, as in Scalar * LocalDataContainer::getData()
B. C-style [1 or FORTRAN-style () indexing
C. complete encapsulation, but list of ’standard’ methods

Method A is flexible, extensible, and easy to adapt to all other methods, but it breaks
the encapsulation and lacks support for ideas like sparsity. Method B is also flexible
and extensible, and it is only slightly more difficult to adapt. It still somewhat breaks
the encapsulation by providing direct access to data and, when coded poorly, can be
extremely inefficient, requiring a virtual function call per element access. Method
C provides a well encapsulated data structure and can offer very efficient methods.
However, it is very hard to adapt such interfaces, even to other packages using Method
C. It is difficult to extend a Method C interface without breaking existing code.
Implementing a concrete classes which satisfy this interface can require much work,
since it is often necessary to implement every ‘standard’ method. Algorithms are
restricted to using the ‘standard’ methods, and it is impossible to provide a short list
of methods which will cover most algorithms, as the designers of HCL found to their
dismay. Frequently, method C classes provide a function for copying into/out-of the
container. Such copying allows extensions on the standard methods, but at a cost of
increased inefficiency.

When adapting packages which use different access methods, I can always adapt
down the list (e. g. from Method A to Method B). It is impossible to adapt up the
list efficiently and sometimes completely impossible to do.

Part of the reason it was easy to adapt RVL: :LocalDataContainer and RTOp: :-

SubVector was that both using Method A of exposing data pointers. Thus, it was

113

easy to implement the LocalDataContainer: :getData() method by simply return-
ing the pointer from SubVector: :values(). The other main method is LocalData-

Container: :getSize (), which is mapped to the SubVector::subDim() method.

6.5.1 Roadblocks to Adaptation

A number of design practices and languages features can present roadblocks when
trying to adapt packages. Thus far, they can be worked around, but they do present
complications. The following is not offered as a critique of these design choices, but

as a description of their effect on the adaptability of a package.

6.5.1.1 Const

The C++ language allows programmers to use a const declaration in a number
of ways. A variable can be declared const, meaning its value is set on initial-
ization and can’t be changed later. This was initially used to declared things like
const float pi = 3.141592; but can be used on class objects as well. Further,
data members of a class may be declared const, and they are not allowed to be mod-
ified in any method of the class. Next, a parameter of a function call may be declared
const, which means that the function must treat this parameter as a constant. This
is primarily used to perform a pass—by—reference for efficiency which does not allow
changes to the referenced variable. Finally, a method of a class can be made const,
which guarantees that the method does not change the internal state of the class.
When one package utilizes const and another does not, problems arise in adap-
tation. It is relatively simple to wrap an object with const in an interface lacking
const declarations, as I may always ignore the guarantees and can cast-away const
when necessary. However, problems arise when I try to use an data member without
constant methods inside a constant method or as a constant parameter. Luckily, due
to the way C++ treats pointers, I can frequently work around these difficulties. If

a class owns a pointer to an object, as long as the pointer’s value does not change,

114

anything can be done to the object which it point to. Thus, adapters inherit off one

interface and own a pointer to another.

6.5.1.2 Handling Reductions

A reduction is a mapping f : X — Z from a vector space X to an arbitrary return
type Z. The lack of restrictions on the type of Z can be causes some difficulties in
designing such a mapping in a programming language. There are several solutions to
describing a return type. I could use a void * pointer, which can point to anything,
and assume that the concrete functions and callers know the proper type of the object.
I could template the reduction type in the interface. Finally, I could create an abstract
base class for the return type and then inherit from it to implement concrete types.

Each of these choices has some drawbacks. Using void * pointers is inherently
not type safe. A templated interface in fact creates a set of interfaces indexed by
the template parameter, and unless I know the parameter a priori, I can’t create
a pointer to the base class. This can make some applications difficult, as I could
often fully implement an algorithm by calling the virtual methods in the base in-
terface, but such an algorithm would have to become templated as well to be use-
ful. As a concrete example, RTOpPack uses void * and RVL used to have tem-
plated return types. This made implementation of the RVL::FunctionObject to
RTOpPack: :RTOp adapter nearly impossible, since I could not cast a UnaryFunction-
Object to a UnaryFunctionObjectRedn<RetType> without knowing the RetType,
and there was no way to access such information. This difficulty in addition to sim-
ilar problems elsewhere lead us to create an abstract base class RetType and a base

Reduction interface with a method
RetType & getResult()

Further, I can put some useful methods in the base RetType, including an assign-

ment operator, clone method, and a reinitialize method. I may then provide useful

115

default implementations of the methods in the Reduction interface using the RetType
methods.

I must consider some drawbacks to the use of an abstract interface as the return
type. I can no longer put a call to the getResult () method of a reduction f inside

an expression. I must instead do
ScalarRetType<double> x = f.getResult();

where ScalarRetType is the implementation of the RetType interface for a single
scalar. I can then use x just like a normal scalar.

If I change the templated interface of RVL to one based on this abstract base
class, it becomes possible to fully implement adapters to and from RTOp. It further
simplifies other pieces of code, as I can always declare a RetType *, allocate a new
object of the appropriate RetType child from the reduction, and store a result into it.

There is one more difference in the reduction handling of RVL and RTOpPack.
In RVL, a Reduction is also a FunctionObject, and thus when the Function-
Object::eval() method is called, the object is expected to buffer the results in-
ternally. The FO may choose to not form the final result, and instead store an
intermediate value. Then, when Reduction::getResult() is called, the FO must
calculate the final result and return it. In an RTOp, every object is treated as a re-
duction by default with the result as a parameter on the call to RTOp: :apply_op().
The RTOp has a separate method for taking two results and combining them into one
in the proper manner. For example, with the usual dot—product, this method simply
adds the intermediate results together and returns the sum. The RVL project has
since adopted this idea of an accumulate function, as such a function proves useful
in many contexts. However, in RVL, not every Reduction is an Accumulation, nor

is every FunctionObject a Reduction.

116

6.5.1.3 Pervasiveness of Parallelism

Packages frequently make different choices about how to support parallelism and other
advanced architectures. These choices can impact the ease with which a package can
be adapted. RTOp was designed with MPI-style parallelism in mind. Thus, the base
interface offers methods specifically for converting internal state into a format which
MPI desires, as well as taking advantage of the efficient reduction capability in MPI.
RVL chose to accommodate parallelism through subclassing. This makes it fairly
easy to adapt RTOp into a FunctionObject as I may simply ignore all the extra
functionality. On the other hand, it is impossible to fully implement an RTOp given
just a base FunctionObject interface. I must instead try to dynamically cast the
FunctionObject to a subclass which provides needed functionality, and play some
tricks to massage that functionality into what I now require.

The RVL group had already worked out a methodology for transmitting objects
through a socket using a combination of a Socket class and a mixin Streamable. A
Streamable object can read/write its internal state to/from the Socket. By creating
an implementation of Socket called StateExtractor that, instead of sending data
across a network, simply buffers the data internally, I can then implement the methods
required by RTOp. In each case, I create a StateExtractor, cast the FunctionObject

to Streamable, and use the StateExtractor to do what is needed.

6.5.1.4 Different Calling Conventions

When designing a general interface for mappings in vector spaces, I immediately
encounter a difficulty — how do you make an interface for an arbitrary number of
vectors? I can write methods that take up to n parameters for any fixed n, but I
don’t want to have to pass around n — 1 null pointers in the case of a simple unary
operation. I could instead write methods which take an array of vector pointers
as input, but this forces us to build these arrays every time I wish to call such a

function, and of course I also need to pass in the size of the array. RVL takes the

117

former approach, with n = 4, and has unary, binary, ternary, and quaternary function
objects. RTOpPack takes the later approach, and further partitions the inputs into
mutable and immutable vectors. This difference makes for some mildly ugly adapter
code, simply for translating two arrays of pointers into the appropriate number of
RVL: :Vectors and vice—versa. Further, out of efficiency considerations, RVL has
added query functions which will report whether a function object intends to read

from or write to the i input.

Chapter 7

A Recursive Framework for

Flexible Algorithm Design

Notice that most optimization problems can be formulated as minimizing a function
f over a subset S of a space X. Further, S is often defined as the intersection of a list
of equations, where each equation can be written as ¢;(x) = 0 or g;(x) > 0. Often,
assumptions are made on the nature of the functions f and g;, but these assumptions
are made for the sake of the algorithm and are not part of the problem definition.
Thus, all that is truly required to define an optimization problem is a method for
evaluating functions and a test for membership in a set.

Similarly, optimization algorithms have common structures. The algorithm is
given an ordered list of parameters and inputs. An iteration consists of deciding
whether the algorithm is finished, and if not update some or all of the state variables.
These updates are often the solution of a smaller or simpler problem, or several
such problems. Each subproblem exhibits this same recursive structure, until the
subproblem becomes small enough to be solved directly, which in most cases means
a linear system. This also suggest that while some algorithms are coordinate—free,
meaning they look identical on a large class of topological spaces, there eventually

must be some algorithms that deal with inputs on an intimate level. A simple example

118

119

of such a low-level algorithm is the calculation of the inner product. This is often
calculated in a loop over the elements of a vector, and thus the algorithm needs to
know how to access elements and how many elements there are. Therefore, it is
impossible to entirely divorce algorithms and implementation, but it is possible to
hide implementation in easily reusable operations.

This leads us to consider whether already existing packages have already accom-
plished these goals. While each of the previous works contained some good ideas,
most packages were written from a pragmatic approach, and fell short. I will examine
these projects and learn from the benefits and drawbacks of each. One crucial prob-
lem in many of these prior works is the pervasiveness of implementation details in
the interface. Ideally, a clean interface should be implementation independent. This
allows alteration of the underlying implementation cleanly without having to alter all
of the code which uses a package. However, the simple fact that many authors have
tried to construct an object oriented system for scientific computing suggests that it
is a worthwhile pursuit. It also cautions that it is easy to lose sight of the large goals
and allow implementation details to creep in. Finally, I would like to reuse existing
code as much as possible, so that I avoid duplicating work, and the prior projects
provide a wealth of source material.

A design philosophy must exist before building class objects. I need to identify
the desired behaviors of the objects in our package. I need to understand the re-
lationships between the sets of objects, and should solidify these relationships into
the class hierarchy. Inheritance provides an vehicle for describing such hierarchies.
However, our previous experience with inheritance has shown that it is somewhat
limited and is easy to abuse. It is usual to think of a C++ class as a set of related
objects, and inheritance from a class describes a subset of the parent set. This is
not precisely true. C+-+ inheritance says that the child class has all the public and
protected data members of the parent, as well as all public and protected member

functions. The scoping rules allow a child class to reimplement functions and replace

120

data members, meaning that while the child and parent are related, it is not strictly
a “subset of” sort of relationship. However, although inheritance can enforce consis-
tent interfaces (syntax), behavior must be enforced by fiat. An abstract base class
should have no data members and no function implementations, and therefore there
is nothing a child can overwrite. The language does not aid in enforcing consistent
behavior (semantics) in children Thus, the abstract base class must document what
each method in the interface is supposed to do, but leave the details of how to a

particular implementation.

7.1 Definition and description

Ideally, classes should provide an image of the mathematical world. This would allow
easy translation from mathematics into working code. There are several difficulties
that need to be worked around. The mathematical world can deal with infinite sums,
infinite precision arithmetic, and infinite sets. The computational world is finite,
so it at some level requires consideration of stopping criterion and arithmetic error.
Computers cannot manipulate entire sets at once, instead dealing with members of
sets.

There are several levels of abstraction to consider among algorithms. Some algo-
rithms are coordinate—free, meaning they can be described entirely with high-level
operations on vector spaces. This still requires implementation of these operations
on a lower level, but these implementations can often be reused. It is impossible to
entirely eliminate the details, but if I can isolate them on one level, it should improve
my ability to implement and modify algorithms. As an example, consider the Con-
jugate Gradient method for iteratively solving a symmetric positive definite linear
system Az = b (psuedocode for this algorithm is in Section 7.5). This algorithm em-
ploys inner—products, matrix/vector multiplication, and simple vector algebra. Thus,

an implementation of this algorithm is independent of the particular Hilbert space

121

which defines the domain. By swapping definitions of vectors and their algebra, the
same implementation of the Conjugate Gradient Method can be reused to solve linear
problems on any Hilbert space.

The Rice Vector Library (RVL)[41] is written in C++ and has very nice inter-
faces and implementations of objects including Space, Vector,LinearOperator, and
FunctionObject. These suffice for encapsulating data and handling most basic oper-
ations on data, as well as defining maps between vector spaces. However, this leaves
us writing more sophisticated algorithms in the traditional manner, i. e. as a function
call with some input parameters and some output parameters. This puts the pro-
grammer in a strange, middle ground where the data and many mappings are objects,
but the solution algorithms are functions.

If an algorithm is an object as well, then it can:

e have persistent state to store intermediate results and avoid unnecessary com-

putation
e be created, destroyed, and manipulated at runtime.

e exist in multiple copies of the same type of algorithm with separate states, which

is not possible with static variables in functions.
e have well defined interfaces, easing reuse and modification.
e take advantage of inheritance.

e be passed as a parameter to other objects. For example, passing in the appro-

priate linear solver for a given linear operator in order to define an inverse.

e provide easy specification of default settings through the use of default argu-

ments.

These are significant benefits over procedural programming.

122

7.1.1 What is an Algorithm

Before I can begin to design an Algorithm object, I need to define what an algorithm

is and what it can do. Here are several definitions of an algorithm:
CS: A Turing machine that stops

Merriam—-Webster: A procedure for solving a mathematical problem in a finite num-

ber of steps that frequently involves repetition of an operation.
Our Suggestion: An object which can be run to perform a task and must stop.
This suggests the following abstract interface:

class Algorithm {

public:
Algorithm() {}
“Algorithm() {3}

/**% The return value indicates the success
of the algorithm.
TRUE: algorithm was run successfully
FALSE: something went wrong */
virtual bool run() = 0;

};

An important feature of Algorithm is that a run might be unsuccessful. While
an exception could be thrown for every failure, it would be better to be able to
gracefully handle some algorithmic exit conditions and input failures. For example,
being given a Vector x not in the domain of a linear operator A makes it impossible
to calculate A % x. This would cause an exception to be thrown. However, if a
Conjugate Gradient algorithm finds a direction of negative curvature (an = for which

2T Az < 0), this is a failure of the inputs (as A is not positive definite) that cannot

123

be detected by compatibility tests in the constructor. Failures like this should be
treated as a suggestion to try a more general algorithm, or adjust the parameters
of an algorithm. In the example given, the calling algorithm would invoke another
iterative solver which can handle indefinite linear operators. This is often how robust
optimization algorithms should be built — first try a fast method that only works
under some strict assumptions, then if that fails, gradually relax the assumptions
until a successful method is found. Another place where this strategy might be useful
is with a method which solves to a variable degree of accuracy. If the answer found is
unacceptable, fail and try again with a lower tolerance for error. One variant on this
is a gridded search. At some point, an algorithm will find the local grid minimum,
which means that all neighbors on the grid have higher function values. Thus, the
algorithm would fail to find a better solution when next called. This failure is an
indication that the grid must be refined if further improvement is desired.

Given the abstract algorithm interface, I can compose new algorithms by piecing

together other algorithms:

Algorithm — ListAlg|LoopAlg
ListAlg — AlgorithmAlgorithm

LoopAlg — WHILE '"Terminator DO Algorithm

ListAlg is an algorithm which contains two algorithms (which might be further lists)
and when run executes the algorithms in the list in order. LoopAlg repeatedly runs
the inner algorithm until the termination criteria is satisfied. As long as the inner
algorithm stops and the terminator will eventually be satisfied, LoopAlg meets the
definition of an Algorithm.

When dealing with iterative numerical algorithms, there is an additional compo-
nent to consider. Numerical algorithms modify some explicit state. For example,
many update xpi 1 = xx + adxg. The calling algorithm needs to be able to access

the current state x outside of a subalgorithm. The caller might also want to set the

124

internal state to a new value to take advantage of information outside of the algorithm
(such as another search providing a better result). The subclass StateAlg meets this

need:

template<class T>
class StateAlg: public Algorithm {
public:
virtual void setState(T & x) = 0;
virtual T & getState() = 0;
I

A StateAlg is simply an algorithm with the addition of access functions to a state,
whose type is given by the template parameter 7. Notice that StateAlg does not
necessarily own a copy of the state as a data member. This is done so that an
algorithm may build the state on demand. In many cases, it is cheaper to keep
intermediate pieces and only assemble them into an external solution when needed.
A simple example of this often occurs in solving a linear system. For efficiency reasons,
we may solve a permutation of the system, finding y such that QAPy = (b instead
of finding = such that Az = b. In this case, we store the current guess for y internally,

and construct x = Py on demand.

7.1.2 Loop Control

The Merriam—Webster definition of an algorithm mentions that they frequently in-
volve repetition of an operation. When an operation is repeated, there must be some
criteria that tells the repetition when to stop, in order to maintain qualification as

an algorithm. For example, the following is not an algorithm:

while(true) {

//do something

125

In fact, the items in many textbooks that claim to be algorithms are in fact not
algorithms since they start with for i = 1, 2, ... as their loop header, thus failing
to stop. A Terminator is an object that can be queried for a boolean response. For
our purposes, we take true = stop and false = continue. This is so we can build
new Terminators using Boolean Algebra.

The abstract interface for Terminator is quite simple:

class Terminator {
public:
Terminator() {}

virtual “Terminator() {}

virtual bool query() = 0;
I

Skeptical users might say, “Your Terminator interface is practically identical to
the Algorithm Interface”. This is so. In fact, the crucial difference between what we
usually think of as algorithms, and what we think of a stopping criteria is that we
expect Terminators not to have a publicly accessible state that gets modified when
the run method is called. We might make query() a const method, but this seems
too restrictive. The internal state of a Terminator is usually private and inaccessible,
so it is unnecessary to make assurances as to whether it might be modified.

Similar to Algorithms, we can build new terminators by combining terminators.

There are several Terminators which implement the standard logical operations:
AndTerminator Returns stop only if both terminators return stop
OrTerminator Returns stop when either terminator returns stop
NotTerminator Reverses output of terminator

XorTerminator Returns stop when exactly one terminator returns stop

126

Further, we have implemented a long list of Terminators that might be useful in

numerical codes. A few highlights:
CountTerminator Acts like a counter in a for loop. Stop when count > maxcount.
MinTerminator Useful for watching for a Scalar to fall below a specified tolerance.

IPThresholdTerminator Stop when the inner product of two vectors falls below a

tolerance.
NormGradientTerminator Stop when ||V f(z)]|| falls below a tolerance.

IterationTableTerminator Combines the function of a CountTerminator with a
NormGradientTerminator and adds the functionality of printing a table with

the iteration number and current values of f(x) and ||V f(z)]]

IOTerminator Prints a message and reads a single character from input. Returns
stop if input character is ‘y’ or “Y’. Useful for implementing the “eyeball norm”

together with an IterationTableTerminator.

Terminators usually take reference data in a constructor, and perform const op-
erations on data members to make decisions. Some have side effects, such as incre-
menting a counter or printing to an output stream. While there are no syntactical
restrictions on the behavior of a terminator, we strongly suggest that allowing a ter-
minator to modify external data is a bad idea, as the short—circuit evaluation built
in to the boolean operations makes execution of a given terminator unpredictable.
As a general guideline, Algorithms should modify their publicly—accessible state and
external data when run, but Terminators should only modify inaccessible internal

state and communicate strictly through the return value of query().

127

7.2 Abstract Algorithm Design

An abstract algorithm interface is a Strategy [15]. It is meant to tie together many
related classes which behave different but fulfill the same role. When designing al-
gorithm objects, it is important to approach them differently than functions. While
the algorithm still consists of the same basic pieces — a set of inputs and outputs
and a piece of code which operates on them — the object nature of algorithms must
be considered. Inputs are often taken in the constructor of the algorithm and stored
by reference. Outputs can be handled either through reference parameters in the
constructor or access methods to internal variables. The StateAlg in the previous
section is one form of the later approach.

The primary difference when working with algorithm objects is that programmers
write steps, not entire loops. The constructor for an algorithmic step often contains
some initialization code. Typically, this code fills in the intermediate data structures
and private data of the algorithm. In the conjugate gradient example discussed earlier,
the constructor calls the restart() method to initialize w = A*xx, r =b—w, p=r,
and compute the norm of r. If there is any post-processing which follows the main
loop in an algorithm, it either goes into the destructor or into an access method which
converts internal representations of the current state into external representations.

Sometimes, we intend to reuse an algorithm repeatedly on different inputs. In this
case, providing inputs through the constructor is not always ideal. This is especially
true if we intend to pass a specific implementation of an abstract base class to fulfill a
role in another algorithm. Consider line searches as an example. The basic interface
of a line search is fairly consistent: Given a functional f(z) and a search direction dz,
find a step length « so that the trial point z + adz has a lower function value than the
initial point z, thus f(z + adz) < f(z). There are many different implementations
of line searches, including Backtracking [36], Dennis and Schnabel [27], and Moré
and Thuente [35], and we would like to be able to use them interchangeably. This

motivates me to make an abstract base LineSearchAlg which could be used by other

128

algorithms (like a Truncated Newton’s Method), allowing the reuse and comparison of
the different implementations of line searches without changing the calling algorithm.

The LineSearchAlg inherits from Algorithm but leaves the run() method virtual.
It only requires a Space in the constructor, as it seems reasonable to limit an instance
of a line search to a particular space. There is also an optional minsteptol which
default to the smallest possible scalar. This tolerance is used as a lower bound on
step lengths. The LineSearchAlg uses the space to initialize a vector for the starting
point z(and the starting gradient go. It also has two private references to the current
dx and functional evaluation f(z), which are initialized to nothing, using the DynRef
class which behaves like a cross between a reference and a pointer. The base class

then has a set() method to move the line search to a new starting position:

/** Set up line search problem */
void set(Vector<Scalar> & dx,
FunctionalEvaluation<Scalar> & fx,
Scalar step0 = 1.0) {
try {
x0.copy(fx.getPoint());
g0.copy (fx.getGradient()) ;
dxref.set(dx) ;
fxref.set (fx);
step = stepO;
} catch (RVLException & e) {
e<<"\ncalled from LineSearchAlg::set\n";

throw e;

}

It copies the starting point and starting gradient, saves references to dz and f(z),

and resets the step length.

129

When run, a line search is expected to modify fxref.get () .getPoint (), which
may only be accessed by calling the base class method getTrialPoint () or indirectly
through getFunctionalEvaluation(). Children are limited in their access in order
to prevent them from modifying the DynRef objects. A line search is supposed to
repeatedly update the trial point until whatever stopping criteria it is using is satisfied.
When it stops running, callers may access the results using the same access methods
that the child used.

This setup allows us to avoid the need for a factory for line searches. Instead, we
pass a single instance of a line search in the proper space to a class which needs one.
An example of such is shown in the Limited-Memory BFGS algorithm described in
Section 7.6.5.

7.3 Benefits

It requires more up—front effort to use the abstract classes properly than to write
monolithic functions which implement the same algorithm. However, taking the ini-

tially easy route is shortsighted, as the abstractions provide many benefits.

e Algorithm objects may have persistent state. This makes implementing a single
step a more reasonable choice, since the intermediate computations frequently

involved in a single step may be saved without passing them as parameters.

e It is easy to build composite algorithms using the ListAlg, without modifying
the component classes. For an example, see the Generalized Pattern Search
(GPS) method in subsection 7.6.4 or the extension to the Master—Slave Algo-

rithm in subsection 8.7.1.

e Steps are more re-usable than whole algorithms. Steps can be combined into a

composite algorithm or attached to different termination criteria.

130

e We may use abstraction to define relationships between algorithms and algo-
rithm interfaces. Thus, we could define a general iterative linear solver interface
and define a concrete class for the inverse of a linear operator as the pair of a

linear operator and a linear solver.

e Inheritance allows reuse of large portions of code. For example, see the Mas-
ter/Slave code in Chapter 8. The main run() methods are implemented exactly

once, and children need only fill in the smaller data transfer methods.

e Abstraction lets us write several implementations which solve the same subprob-
lem in different manners, but through the same general interface. Frequently, we
can write algorithms which decompose a given problem into subproblems, and
use only a general subproblem solver interface. Thus, we can swap subproblem

solvers rapidly without modifying the calling algorithm.

7.4 TI’ll take the high road, and you take the low
road

While I've focused on implementing algorithm objects using the RVL classes, the
base algorithm interface is not dependent on RVL. The algorithm classes can be used
to implement both high and low level algorithms with or without RVL. The original
intent was to provide a formal framework for encapsulating the abstract numerical
code written at the highest level in RVL using vectors, functionals, and operators.
However, I found the basic concepts to be very general. The definition of an algorithm
has nothing which restricts it to optimization or linear algebra.

It is entirely feasible to write low-level, array manipulation code in an algorithm
object. Doing so could still gain benefits from a consistency of interface and possible
reuse through inheritance. For example, it might be useful to write generic server

code which would receive packets of information, strip off the first integer, and use

131

it to execute a task from a given list. Both the communications methods and task
execution methods can be virtual and implemented in many different fashions. The
generic task loop of a server is the same. Such a server might then be subclassed to
redirect all tasks to an available machine out of a pool of possible machines, much
like the master in a Master/Slave paradigm. The server-side code is isolated from
the master—side code, and could use completely different types of communication
protocols. A smarter version of the master would queue up requests from the server—
side and issue tasks as the slaves requested them. While such a server—master code

has not been written, it is entirely possible within the Algorithm framework.

7.5 The Conjugate Gradient Method

Consider the well-known Conjugate Gradient method (CG). It is an iterative proce-
dure for approximating the solution of a positive definite linear system Ax = b, where
positive definite means that 27 Az > 0 for all z . Here’s a pseudocode description of

the method from Trefethen & Bau’s Numerical Linear Algebra, pg 294

290=0, 79 =0b, po =19

formn = 1,2,3

Qn = (Tz—lrn—l)/(p;}r—v‘lpn—l)
Tp = Tp—1+ QpPn—1

Tn = Tno1— QpApn 1

Bo = (rara)/(ra1mn-1)

bn = rn+ﬁnpnfl

Notice that the code only involves linear combination, inner products, and the appli-
cation of linear operators. This means that the same abstract Algorithm will function
on any given Space.

We will follow our own recommendation to create a class which implements a

132

single step of CG. First, consider the inputs to CG. It takes a linear operator A and
a vector in the range of A for the right hand side b. We allow the user to specify an
initial guess, as well as a storage location for the norm of the residual, but can default
xg = 0. Further, CG is clearly a StateAlg with x as the state. So, its constructors

are:

CGStep(LinearOp<Scalar> & inA, Vector<Scalar> & rhs);

CGStep(Vector<Scalar> & x0, LinearOp<Scalar> & inA,
Vector<Scalar> & rhs);

CGStep(Vector<Scalar> & x0, LinearOp<Scalar> & inA,

Vector<Scalar> & rhs, Scalar & rnorm2);
Then, the two access functions required for a StateAlg:

virtual void setState(Vector<Scalar> & x_);

virtual Vector<Scalar> & getState();
Finally, CG can be run()
bool run();

The CG algorithm has several intermediate values which might be useful outside of
the algorithm, and provides access functions for these. The residual is b — Ax and
the access method returns a reference to the norm of the residual. The curvature is

p! Ap, which is positive when A is positive definite.

/*x get a reference to the norm of the residual */

const Scalar & getResidNorm2() { return rhor; }

/*x get a reference to the curvature */

const Scalar & getCurvature() { return curv; }

/** get a reference to the tolerance used on the curvature */

const Scalar & getCurvatureTol() { return rtol; }

133

These are primarily useful in Terminators built later.

To avoid unnecessary computation, the class has several internal data members

for storing values between runs of the CGStep. Here are all the data members:

Vector<Scalar> xdata;
Vector<Scalar> & x;
LinearOp<Scalar> & A;
Vector<Scalar> & b;
Vector<Scalar> r;
Vector<Scalar> p;
Vector<Scalar> w;
Scalar curv;

Scalar rho;

Scalar & rhor;

bool first;

Scalar tol;

Scalar rtol;

//
//
//
//
//
//
//
//
//
//
//
//
//

the state if not provide in the constructor
reference the current iterate

the linear op we want to invert

the right hand side

r=>b-A=x%x

the orthogonal part of the residual
A xp

p’ * A *xp

r.norm2 ()

a reference to rho

true in constructor, false after run
a tolerance for detecting close to 0O

tolerance on curv, to prevent overflow.

In each constructor, these values are appropriately initialized for the given xy. Since

we also need to re-initialize these values when setState() is called, we put the initial-

ization code in a protected function restart() and call it in both the constructors and

setState

virtual void restart()

{
A.apply(x, w);

r.1linComb(1.0, b, -1.0, w);

rhor = r.norm2();
p.copy(r);

first = true;

3

134

To finish the implementation, we need to code a single step of CG in the run() method.

virtual bool run() {

Scalar alpha, beta;

A.apply(p,w);

curv = p.inner(w);

if (curv > rtol) {

alpha = rhor/curv;

x.1linComb(1.0, x, alpha, p);

r.linComb(1.0, r, -alpha, w);

beta = rhor;
rhor = r.norm2();
rtol = tol*rhor;

if(beta !'= 0)

beta = rhor/beta;

p.linComb(1.0, r, beta, p);

} else {
if (first)
x.copy(p) ;
return false;
}

first = false;

135

return true;

This closely resembles the pseudocode version of the algorithm. The only major
differences are to handle possible floating point problems (e. g. avoiding overflow
when dividing by a very small number) and to fail gracefully if a direction of negative
curvature is detected when A is not positive definite.

Use of this CGStep class is demonstrated in an implementation of a Truncated
Newton method. To find a search direction p, TruncatedNewtonStep uses CGStep
to solve the Newton system VZf(z)p = —V f(x). Here is the code from the run()

method of TruncatedNewtonStep

bool run() {
Scalar rho, tol, step = 1.0, one = 1.0;
p—.zero();

FunctionalEvaluation<Scalar> fe(f_, x_);

Vector<Scalar> g(f_.getDomain());
fe.getGradient (g) ;

g.negate();

CGStep<Scalar> cgs(p_, fe.getHessian(), g, rho);

/* We want tol = min(0.5, sqrt(g.norm())) * g.norm() */
tol = g.norm();
if(tol < 0.25) {
tol = sqrt(tol)*tol;
} else {

tol = 0.5 x tol;

136

tol = tol *tol; // We will compare r.norm2() to tol"2

MinTerminator<Scalar> t1(rho, tol);
MinTerminator<Scalar> t2(cgs.getCurvature(),
cgs.getCurvatureTol()) ;

OrTerminator t(t1,t2);

LoopAlg la(cgs, t);

la.run();

/* POSTCONDITION: p_ now contains a descent direction */

BacktrackingStep<Scalar> bs(step, .5);

SufficientDecrease<Scalar> sdt(x_, f_, p_, step);

LoopAlg 1s(bs, sdt); /* This will do a backtracking line search */

1s.run();

/* POSTCONDITION: step is a valid step length
(satisfies sufficient decrease)
*/

x_.linComb(one, x_, step, p_);

return true;

Notice how we

137

1. Create a CGStep.

2. Build two terminators.

3. Combine them with an OrTerminator.

4. Build a LoopAlg from the step and the combined terminators.
5. Run the LoopAly.

This sequence of actions is a typical use of a step. A similar sequence of actions

performs backtracking along the search direction.

7.6 Other Example Algorithms

Implementation of a variety of optimization algorithms helps to test the Algorithm
design. In each case, we needed to choose the inputs for the algorithm, the division of

the method into smaller algorithms, and the data structures needed in the algorithm.

7.6.1 CGNE

Given a nonsingular matrix A € ™" and a vector b € R™, we often want to find
r € R" which minimizes ||Az — b||?. The solution to the linear least—squares problem
is also a solution to ATAx = ATh. We can use the Conjugate Gradient Normal
Equation Error method (CGNE) to iteratively solve this second formulation.

Our implementation follows our usual design. A CGNEStep class is a StateAlg
with a Vector state. Each run() of this step executes one iteration of CGNE. The
constructor for CGNEStep takes a LinearOp A, and two Vector inputs xy and b, where
xg is an initial guess for x. We suggest using £y = 0 when a better guess is unavailable.
The constructor initializes the work vectors and several scalars. Each iteration of the
algorithm requires two linear operator applications, three linear combinations, and

three inner product calculations.

138

Since the algorithm usually stops when the norm of the residual b — Az falls
below a tolerance, we provide access to a reference of the current norm of the residual.
This scalar is needed inside the algorithm, but we can save work by not requiring a
terminator to recalculate it. Thus, we recommend using a MinTerminator on the
norm of the residual, and some sort of counter with a maximum number of iterations

set.

7.6.2 ConOptStep

Many of the example algorithms I wrote were continuous optimization algorithms.
Once I recognized I was copying much of the code from one to another, it became
apparent that a common parent was needed. The ConOptStep is a base class for
all continuous optimization steps. It has a number of private data members which

children may access through methods like getTrialPoint ()

x0 A copy of the initial starting point for the optimization. Accessed through

getBasePoint ().

x A copy of the trial point, which is updated as the optimization proceeds. Accessed

through getTrialPoint ().

fx The functional evaluation at the trial point. Accessed through getFunctional-

Evaluation().

scale A scaling factor for the functional. Defaults to the initial functional value.

Accessed through getScale().

gradscale A scaling factor for the gradient of the functional. Defaults to the initial

norm of the gradient. Accessed through getGradScale().

The class has a set () method which takes a vector and a functional evaluation. When

this method is used, it switches to referencing these external data values instead of

139

the default internal values. This is done intentionally to allow for coupling between
algorithms. We often want to use the same functional evaluation in several places to
avoid costly recalculations of a functional value. However, we do not want to force
such coupling, as it puts additional burdens on the calling object as well as preventing
sometimes useful independence.

The ConOptStep is a StateAlg<Vector<Scalar> >. It uses the trial point z as
its state. When asked for the current state, a constant reference to z is returned.
However, due to the internal workings of this class, when a state is set, we copy the
input into both z and z0 and redirect the references to the internal copy of fx. This
essentially resets the algorithm, moving the trial point and base point to the same

location.

7.6.3 Line Search

The abstract line search algorithm was already discussed as an example in Section 7.2.
The abstract interface is fairly simple, containing the minimum necessities to define
a problem — minimize ¢(a) = f(zr + adz). The implementations are significantly
more complex, even the straightforward backtracking approach. These line searches
get used frequently in other algorithms, such as the Quasi-Newton method in Sec-
tion 7.6.5, to control the step size once a search direction has been chosen.

There are almost always parameters in such numerical algorithms, and while we
often have an idea of good default settings, a good design should allow users these
parameters without hacking the source code. There are several ways to do this. One of
the simplest is to include all the parameters in the constructor, and use the capability
of C++ to define default values for each. However, the parameter list can quickly
grow massive and in order to modify a single value at the end of the list, a user must
provide values for each parameter before it. The language only allows default values
at the end of a parameter list. Another option is to default all values, but provide

access methods to set and retrieve them. While effective, this can force a user into

140

making a long sequence of method call to set the parameters, and these settings are
not easily saved or copied.

We have found a better solution through the use of a parameter file with key and
value pairs. The existing RVL: :Table will read such pairs from a file or write them to
a file. We can subclass the table to implement default values for specific keys. If the
table finds a particular key in the file, it uses that value. Otherwise, it will choose the
default. For unconstrained minimization, we chose to implement a single UMinTable
which would hopefully encompass all the parameters typically encountered in this
type of optimization. The line search subclasses each take a Space and a UMinTable,
along with an optional ostream for output. The space is passed to the base line
search class, and the table is queried for pertinent parameter values.

I will not go into the full detail of the line search algorithms. Duplicating the code
here would not be helpful, as it is full of sanity checks and output code. After some
consideration, we decided not to break these algorithms into steps and terminators.
The steps themselves were often trivial, and when not trivial, were too tightly coupled
with values used in the terminator. The behavioral changes to functional evaluations
(see Section 4.3.1) would have helped to avoid some inefficiencies, but there still seems
to be a point at which further code encapsulation is more of a hindrance than a help.

One interesting note — although I do not have the timings to evidence these
assertions, we found that in most cases, the more complex line searches, like the
Dennis and Schnabel variant [27], did not provide the performance gains we expected.
One of the goals in building an abstract base class for line searches was to allow easy
swapping of different searches to both compare performance and find the best for a
given application. We found it interesting that the backtracking algorithm performed
as well or better than the more complex algorithms. We conjecture that part of this
behavior can be attributed to it defaulting to a step length of o = 1.0 for its initial
guess. While a full step is not always sufficient to satisfy the stopping criteria, it

often is, meaning that the backtracking algorithm does very little work much of the

141

time.

7.6.4 Generalized Pattern Search

The Generalized Pattern Search (GPS) method is a derivative—free search which uses
a grid to guarantee convergence [28] [2]. It permits users to perform any search first,
and if that search fails to find simple improvement over the incumbent point, then
performs a local search in a pattern. The directions in the pattern must form a
positive spanning set of the search space in order for the method to converge to a
local optimum.

This algorithm suggests a design of abstract interfaces. Each step in the method
is a LocalSearch. A LocalSearch has an step size, which can be set or retrieved.
LocalSearch is also a child of StateAlg, and the natural choice of state for a
derivative free algorithm is an ordered pair of a vector in the search space r and
the value of the functional being searched f(z). We call such an ordered pair an
OptPoint. This allows us to easily compare two OptPoint objects without keeping
a FunctionalEvaluation around or recalculating the function value multiple times.
An OptPoint is essentially a structure with a constructor and an assignment operator
for convenience.

A specialization of LocalSearch is a LocalPoll. The LocalPoll has a pair of
pure-virtual methods — int getNumSearchDir() which returns the size of the poll
set, and Vector<Scalar> & getSearchDir(int i) which returns an element of the
poll set. It then implements the run() method by looping through the poll set until

it either finds a better point, or exhausts the poll set.

while(!success & (i < n)) {
y.1linComb(1.0, best.x, Delta, getSearchDir(i));
FunctionalEvaluation<Scalar> feval(f,y);
fy = feval.getValue();
if(fy < best.fx) {

142

success = true;
best.x.copy(y);
best.fx = fy;

i++;

A concrete child of LocalPoll implements the two pure-virtual methods int get-
NumSearchDir() and Vector<Scalar> & getSearchDir(int i). For example, the
CompassSearch class takes the search space S as input and has the set of poll direc-
tions Ve;, —e; € S, the coordinate directions of the space. Note that such a search
is only sensible on spaces with a fixed, finite dimension. Other searches and more
complicated spaces might require an update to be performed on the poll between
iterations. In particular, the GPS methods for searching in a constrained set would
require that the poll directions change when near a boundary.

A GPSStep is then a composite object consisting of a LocalSearch for the search
step and a LocalPoll for the poll step. It implements the required LocalSearch
methods by calling the methods of its children. The run() method does

bool run() {
searchstep.setState(xbest) ;
if(searchstep.run()) { // if search succeeds
xbest = searchstep.getState(); // update best
return true;
} else { // else poll
pollstep.setState(xbest); // set polling location
if(pollstep.run()) { // if poll succeeds
xbest = pollstep.getState(); // update best
return true;

} else

143

return false; // if poll fails, return false

}

This is much like a CondListAlg, except that it sets the state of each member before
running the algorithm.

A GPSAlg is built from a Functional, LocalSearch, LocalPoll, and an initial
guess for the OptPoint. It builds a GPSStep from the search and poll, and terminators
from the functional, state, and step size. When the run() method is invoked, it
checks the terminators then runs the GPSStep. If the GPSStep: :run() returns false,
the step size parameter A is reduced. Then the terminators are checked again as the
loop repeats. The algorithm stops when the MinTerminator detects that the step
size has fallen below a specified threshold. Note that the initial step size, termination
threshold, and fraction by which the step size is reduced are all optional parameters
to the GPSAlg constructor.

There could be several obvious variations on these classes. The first is a slightly
smarter GPSAlg which is allowed to increase the step size following successful searches.
This has been found in practice to provide faster convergence when the starting lo-
cation is far from the optimum, and in no way violates the convergence guarantees
of the algorithm. Another is the aforementioned variation for linearly constrained
optimization. Given a set of linear constraints, the search set needs to include di-
rections tangent to any active constraints (here active means constraints which could
be crossed in one step). Also, Audet and Dennis have a new Mesh Adaptive Direct
Search method which behaves similar to the GPS method we have implemented, but
can handle general constrained optimization problems [3]. Finally, we could replace
GPSAlg with a multi-start method which owned a number of GPSStep objects started
at different locations in the search space. This improves the chances of finding the

global optimum, and can be easily parallelized since each search is independent.

144

7.6.5 Quasi—-Newton Limited—Memory BFGS

GPS only uses function values, but is known to often require a large number of
iterations to converge to a minimum. More information about the shape of the
objective function should lead to faster convergence. The Quasi-Newton Limited—
Memory BFGS algorithm is a method for unconstrained minimization which uses
both function values and gradient information [33]. The Hessian is approximated by a
linear operator which is updated at each iteration. This method is useful in situations
where the Hessian is either unavailable or expensive to compute at each iteration. The
limited—memory version uses less storage than the full BFGS approximation to the
Hessian, but with a potential sacrifice in speed of convergence. In practice, it performs
well on large problems (i.e. a large number of variables) and can give satisfactory
results at a fraction of the storage cost of a full BEFGS approximation. This algorithm
is often used as a first attempt at optimizing a new unconstrained problem.

The implementation of the LBFGS operator is copied from an earlier version
written for RVL. I use the operator as part of a StateAlg child which implements
the minimization step. The LBFGSStep has a single vector as its state, representing
the current location in the search space. Each iteration applies the LBFGSOp, which
approximates the inverse Hessian, to the negative gradient. This produces a descent
direction d = H * —V f(z). We then conduct a line search in this direction from z to
find a step. Given a line search ls, LBFGSOp H, and a functional evaluation fz, the
pseudocode for the LBFGSStep is:

H.apply(fx.getGradient (), dir)
dir.negate()

ls.set(dir, fx)

1s.run()
H.update(1ls.getBasePoint () ,fx.getPoint(),

1s.getBaseGradient (), fx.getGradient())

145

This step combined with an appropriate Terminator in a LoopAlg to produce a
minimization algorithm.

The LBFGSStep will function correctly with many different line searches. The class
takes a LineSearchAlg in its constructor, and uses the set() method to reposition
the line search for a new x and search direction. The line search actually takes care
of the update for z as part of the search, which avoids both an extra update of x and
a recalculation of the functional value at the new x.

LBFGSStep uses an optional parameter file to specify the numerous input parame-
ters. A sensible default value for each parameter is hard coded into the initialization
function, so user may set only the parameters for which they desire to use non—default
values. This functionality is copied from the earlier implementation of this algorithm,
and serves to avoid the need for long lists of inputs to the constructor or numerous
class methods for setting parameters. This also allows us to easily modify settings

without recompiling the source code.

7.6.6 Sequential Quadratic Programming

The Sequential Quadratic Programming (SQP) algorithm illustrates the idea of con-
structing a solution from a series of subproblems. It also helps to show that the
Algorithm interface is not restricted to use in solving unconstrained optimization
problems.

Consider the problem

min f(z)
subject to ¢(z) =0
zeX
f: X—oR
c: X =Y

where X and Y are Hilbert spaces. This describes a large class of constrained op-

timization problems. We restrict our attention to equality constrained problems, as

146

the methods for solving them are better understood. Many of the methods for han-
dling inequalities reduce to solving a sequence of equality constrained problems. Of
course, this reveals one common structure already — we can often solve problems by
instead solving a series of subproblems. It is commonly said that the only problem
a computer can solve is the linear system Az = b. One level up from this, Newton’s
method solves a series of linear systems to find local minima of non-linear functions.
Then, using Newton’s method repeatedly can find the approximate solution of a PDE.
These sorts of nestings are very common in mathematical optimization.

In particular, this nesting is very explicit in Sequential Quadratic Programming
methods (SQP). We solve the nonlinear, equality—constrained optimization problem
by solving a series of quadratic programming (QP) problems. The SQP method can

be outlined as follows:

Given o, f(20), c(z0), Vf(20), Ve(xo), Hy & V*f(20), k=0

While the termination criteria is not satisfied
calculate a step direction dx; by solving a QP
calculate a step length a4 by solving a subproblem
update xp1 = T + axdxy
evaluate the functions and gradients at the new x4
calculate Hyq
k—k+1.

end while

There is a huge amount of flexibility in how we accomplish many of these steps. This
results in a high—level algorithm that is easy to describe in very general terms. It
also forces us to ensure that there is enough flexibility in our design. For example,
we do not want the interface to be too specific in how the step direction and length
are calculated. A bad design would insist on the form of a QP to be solved, while a

good design just requires a subalgorithm which produces a step.

147

Finally, I have ulterior motives in the choice of SQP as a test-algorithm. The
local optimization community has many optimization problems where the constraint
c(xz) = 0 is actually a system of partial differential equations. SQP methods may be
well suited to solving these problems, and by implementing such methods through my
design, I can both test our design and hopefully solve the PDE constrained problems

at once.

7.7 Lingering Issues

I’ve presented a design for an abstract algorithm interface, and several useful concrete
children of Algorithm. I require stopping criteria for controlling iterative algorithms,
and meet this need with the Terminator interface along with concrete children for
making composite terminators. Finally, as a proof of concept, I describe in detail an
implementation of the Conjugate Gradient algorithm for solving linear systems along
with the outlines of several implemented optimization algorithms.

There linger some questions about how to use algorithms, especially in the con-
text of optimization, where we often solve a given problem by building a series of

subproblems and solving them. A few questions to consider in the future:

1. Who builds the subproblem — the algorithm that needs the subproblem to be

solved or the solver?
2. Do algorithms solve problems, or do problems use algorithms to ‘get solved’?

3. How do we describe problems, especially in the context of constrained non—linear

programming?

4. How do we make algorithms smart enough to choose the right subproblem

solver? For example, choosing the right linear solver for a given linear system.

5. Is there a graceful way to maintain the flexibility of templates when we end up

interfacing old FORTRAN code so frequently?

148

6. What general principles should we follow in designing algorithm interfaces for
solving a particular class of problems and when implementing particular real-

izations of these interfaces?

Chapter 8

Master—Slave Parallel Algorithms

Thus far, I’ve only used the Algorithm framework to implement optimization algo-
rithms. However, the design is quite general and meant to encompass all types of
algorithms. Now, I want to illustrate an example which is not connected to optimiza-
tion. It uses object—orientation to implement the run() method of several algorithms
around virtual methods which must be filled in by concrete children. This exam-
ple also illustrates one method for incorporating parallelism into RVL. A completely
different method for parallelism will be discussed in Chapter 9.

The Master—Slave approach is a way to parallelize and load balance a large set of
independent tasks. The slave processes are given a task by the master, execute the
task, then return the results. The Master continues to issue tasks until the supply
of tasks is depleted. While this approach is not well suited to all applications, where
appropriate it can provide a significant reduction in run-time when compared to a
serial implementation of the same application, at the cost of more hardware. This
approach works best when the number of tasks is large compared to the number of
available slaves and each task involves a large amount of computational work for a
small amount of task data.

I will present the basic idea behind this approach, followed by the details of my

implementation using the RVL and RVLAlg interfaces. I will demonstrate its effec-

149

150

tiveness with an example application and provide instructions for implementing new

master—slave applications.

8.1 Basic Idea

Numerical computations are traditionally parallelized at a low level. Each processor
is given a portion of the data for each vector and matrix. The basic linear algebra
operations are then parallelized, adding global communication where necessary to
exchange information and perform reductions. Frequently, a parallel numerical library
is used by algorithm writers to avoid coding parallel operations themselves. This
way, many of the headaches of writing parallel code are only suffered once, by an
experienced parallel programmer, and algorithm writers can trust that when they do
a matrix multiplication all the underlying communication is handled invisibly. There
are many examples of parallel numerical libraries, including Epetra [25] and Petsc [14].
These libraries are usually designed to run in a Single-Instruction-Multiple-Data
(SIMD) environment.

There are some numerical applications which don’t need the tight data coupling
provided by such libraries. In these applications, a problem can be subdivided into
independent tasks or chunks of data. These tasks can be run in any order, and when
completed, a solution to the problem can be synthesized from the results. A simple
example of such an application is a brute—force optimization of a functional on a grid
G. If the grid has dimensions di,ds, ..., d,, then there are N = []*_, d; different
points z; on the grid. Each functional evaluation F(z;) is an independent task. A

serial implementation would run a loop

for j=1:n
if(F(x_{j}) < best)
best = F(x_{j});
bestx = x_{j}

151

end

end

However, since each evaluation is independent, the problem can be solved more quickly
by partitioning the grid into pieces G, and letting a different processor work on each
piece. A simple reduction to compare the best solutions on each partition finishes the
algorithm.

Such a parallelization works well as long as each partition is the same size, and
each processor works at the same rate, and each evaluation F(z) requires the same
time. Otherwise, some processors sit idle while waiting for their counterparts to
catch up. A simple modification to the procedure ensures that all processors are kept
busy as long as work remains to be done. Instead of partitioning the work before
starting, all processors pull tasks from the same queue. When one task is finished,
the processor retrieves a new one from the queue and continues working. When the
queue is empty, all processors do any necessary work to compare results, then stop.
This model is known as the queue of tasks model. A slight variation on this model
is the Master/Slave model, where one process acts as the master, assigning tasks to
processors and gathering the results. While the queue of tasks model is well suited to
a shared memory environment with a small number of processors, the Master/Slave
model is more appropriate in a distributed memory environment, where it is extremely
difficult to implement a shared task queue.

Here are the pseudocode algorithms for the Master and Slaves:

Master while(slaves still working)
get message from a slave
if(slave needs new task)
if (queue is not empty)
remove task from queue
send task to slave

else

152

tell slave to quit
end
else if(slave has results to send)
get results from slave
postprocess results
end

end

Slave request new task from master
while(tasks available)
get task
compute task
contact master about results
send results
request new task

end

The Master is responsible for issuing new tasks and gathering and postprocessing
results. Slaves repeatedly request new tasks, process the tasks, and transmit results

to the Master.

8.2 Abstraction using RVL and RVLAIg

It is possible to divide these algorithms into several smaller steps. The master needs

to be able to
1. communicate with the slaves
2. get new tasks

3. detect when there are no more tasks

153

4. send a task to a slave

5. get results from a slave

6. do something with the results
The slave must know how to

1. communicate with the master

2. receive a new task

3. send results to the master

I can use the infrastructure provided by RVL [41] to standardize the data structures
and interfaces. I assume that all tasks involve the application of the same Operator.
This assumption implies that each task is a Vector in the domain of the operator,
and each result is a Vector in the range. The data transfer functions are defined
as pure virtual methods in the abstract base classes, which take a Vector reference
parameter as input. On the master side, the input also specifies which slave data is

being transfered to or from:

template<class Scalar>
class DataMaster: public RVLAlg::Algorithm {
protected:
/** Transmit data to the slave numbered slavenum */
virtual void sendData(Vector<Scalar> & data, int slavenum) = 0;
/** Receive result from the slave numbered slavenum */
virtual void receiveResult(Vector<Scalar> & result,
int slavenum) = O;
/** Fetch more data from the datasource.
Returns false when unable to fetch data.

true when data fetched successfully. */

154

virtual bool loadData(Vector<Scalar> & data) = O;
/** Store result to the datasink. =*/

virtual void storeResult(Vector<Scalar> & result) = 0;
};

template<class Scalar>
class OpSlave: public RVLAlg::Algorithm {
protected:
Operator<Scalar> & Op;
Vector<Scalar> input;
OperatorEvaluation<Scalar> opeval;
/* Get data from the master */
virtual void fetchData(Vector<Scalar> & input) = 0;
/* Send results to the master */

virtual void sendResults(const Vector<Scalar> & output) = 0;

};

Notice that the master’s 1loadData() method returns a boolean value which indicates

whether there was data left.

8.3 Isolation of the Communication Layer

These methods allow master and slave to transfer data to each other and give the
master a source for data and a sink for results. I still need some way to send small
messages between them. Taking a cue from America Online, we define an abstract
Messenger class which provides this functionality. The master and slave are given a

messenger in their constructors and store a reference to it. To make the messenger

155

reusable in other applications, it is templated on a message type. For this application,

I've defined

enum MSMessages { NewTask, ResultReady, SlaveError, SendingTask,
TransmitResults, OutOfTasks, MakeYourMaps,

ErrorInTransmission };

which includes all the messages the master and slave need to send. The messenger is

then a templated abstract base class

template<class MsgType>
class Messenger {
public:

Messenger() {}

“Messenger () {}

/** Send a message to a specific destination.
Return an integer errorcode. */

virtual int sendMsg(const MsgType & msg, int Destination) = 0;

/** Receive a message from a specific source.
Return an integer errorcode. */

virtual int recvMsg(MsgType & msg, int Source) = 0;

/** Receive a message from anyone. Return the rank of the sender.
If negative, return value reflects an errorcode. x/

virtual int recvMsg(MsgType & msg) = O;

/** Return my process rank (or some other unique identifier)

i.e. the number others would use to send messages to me. */

156

virtual int getRank() = 0;
};

Sending messages must be directed to a particular destination. Receiving can be
general or targeted to a particular sender. The process rank is standardized here, as
the ranks are needed to identify destinations. Rank is admittedly an MPI biased word
choice, but any unique identification number would suffice. One implementation of

this messenger uses MPI and the MPI_Send and MPI_Recv functions.

8.4 A Variation

While I generally prefer to compose algorithms using the high-level abstract objects
in RVL, there are times when the high—level classes can be overkill. The slave algo-
rithm only uses some of the capabilities of the given Operator, namely the forward
apply method and the domain and range. In cases where the operation to be per-
formed by the slave does not require Space information, a simplified slave with lesser
requirements would suffice. This simplified slave provides the flexibility to use the
slaves to perform a low-level task without trying to promote the data and the task
to an artificially high level of abstraction. It is quite possible that the data defining
a task does not lie in a Hilbert Space and has no reasonable implementation of a
norm or inner product. While we could pretend that the data was in Hilbert Space
and simply avoid using the unimplemented or incorrect methods, this is a bad design
practice. Instead, it is better to implement a new slave algorithm which handles these

types of data.

template<class Scalar>
class UFO0Slave: public RVLAlg::Algorithm {
protected:

UnaryFunctionObject<Scalar> UFO;

DataContainer<Scalar> * input;

157

Messenger<MSMessages> & m;

int verbosity;

UF0Slave();

virtual void fetchData(DataContainer<Scalar> & input) = 0;

virtual void sendResults(DataContainer<Scalar> & output) = 0;

public:

UFO0Slave (UnaryFunctionObject<Scalar> & _UFO,
DataContainerFactory<Scalar> & dcf,
Messenger<MSMessages> & _m,
int verb = 0)

:UFO0(_UF0), input(dcf.build()),
m(_m), verbosity(verb)

{}

};

The UF0Slave takes a UnaryFunctionObject, a DataContainerFactory, and a
Messenger. It instantiates a DataContainer using the factory, fetches data from
the master into the DC, then applies the UFO to the DC. The UFO is expected to
overwrite the input data with output data and the results are transmitted to the
master. As the DataContainer can be quite complex, this procedure is sufficient for
all cases, although it may require some ingenuity in attaching auxiliary data to the
data container. However, it does save us from writing operators with useless adjoint

and derivative methods, which was irksome. If it became necessary, it would be

158

an extremely minor modification to create a slave for binary, ternary, or quaternary
function objects. However, for these cases, it would have to be standardized which
parameter is input and which is output, which reduces the generality of the algorithm.
Although the RVL designers often write function objects with the output first and
assume all other parameters are input, this is a purely local convention. Recognition
of this fact led to the addition of the readsData() and writesData() methods in a
function object, and use of these methods would allow some logic to be added to a

slave with multiple data containers.

for(int i = 0; i < numParams; i++)
if (FO.readsData(i))
fetchData(d[i]);
d[0].eval(F0, d[1], ...);
for(int i = 0; i < numParams; i++)
if (FO.writesData(i))

sendResults(d[i]);

This requires that the function object is truthful about which data containers are
read and written, but lacking a messy const scheme, is as much of a guarantee as [
may get.

The OpSlave and UFOSlave give application implementors a choice of whether to
invoke task-level parallelism at a high level (operator) or a low level (function object).
This broadens the usefulness of the algorithms and reinforces the beauty of the design
of the DataMaster algorithm. The same master algorithm can satisfy different slaves,
because the master’s job is simply to issue tasks and store results. Further, there
is nothing preventing the same master and slave algorithms from being run in a
shared-memory environment. Data transfer becomes a matter of passing pointers
and messaging could be as simple as flipping integers in an pair of arrays, resembling
a postal system — Put the message in one array, and flip a flag in the other array to

indicate a new message.

159

8.5 Epetra Implementation

A fully implemented master needs a data source and sink and a pair of methods
for sending and receiving data from slaves. The data source and sink are methods
which take a vector of data as a parameter. The source fills the vector with data,
and the sink often writes the results out to a file. In some applications, there is pre—
and post—processing of the data, and it occurs in these methods. Typically, these
methods are implemented using a UnaryFunctionObject.

The methods for sending and receiving data are mirrored on the slave, and are
the only virtual methods in the slave class. The implementation of these depends on
the type of data being transmitted and the method of transmission. If the data is
Streamable, the socket code in the Remote package [13] would suffice. Applications
on parallel clusters of machines could use MPI directly to transfer data. I chose to use
MPI indirectly by adapting the Epetra [24] library to RVL, then using the methods of
the Epetra MultiVector to transfer data. This adaptation, discussed in Section 6.3,

has several benefits:

e Prove the adaptability between RVL and a parallel library, Epetra;

Avoid rewriting calls to nonblocking MPI functions;

Gain the parallel linear algebra resources in Epetra;

Prove that we could use a parallel library designed for Single-Instruction—
Multiple-Data (SIMD) use in a Multiple-Instruction-Multiple-Data (MIMD)

environment;

Access the parallel solvers which use Epetra, such as AztecOO [26].
Some drawbacks to this approach became apparent while writing the application:

e Epetra is strictly double-precision, and the templated Tpetra library is still

under construction.

160

e Global parallel communication occurs when building an Epetra_BlockMap This

means such map construction must be carefully synchronized between processes.

e The map classes use a 0 length as a special flag. This unfortunately eliminates
the case where we actually want a map with n elements on one processor and

0 elements on another. Tricks are needed to work around this.

The second drawback requires some care to avoid causing lockups. Notice that the
spaces in the slave are defined by the Operator. Since the maps are an integral part
of the space, the map creation will necessarily precede construction of the slave class,
so we cannot hide map construction code in the slave. Map construction may be
performed in the master constructor and this is a sensible place for it, as the master
requires a set of maps for each slave. An EpetraSlaveMapCase class was written to
help standardize map creation on the slave. This class was written in conjunction with
the constructor for the EpetraDataMaster so that maps are created synchronously.
Thus, the main program for a Master/Slave application using the Epetra classes looks

like

Build the Comms between the master and each slave.
if(rank == 0) {// I’m the master
Build source and sink UFOs
Build the StdEpetraDataMaster from the UFOs
master.run() ;
} else { // I'm a slave
Build an EpetraSlaveMapCase
Build an operator using the mapcase.getLocalSpace()
Build the EpetraOpSlave from the op and data from the mapcase

slave.run();

These Epetra Master and Slave classes are reusable on a variety of operators and

161

data sources. It is not crucial that the operator use Epetra, as it is straightforward
to wrap an existing operator with a new one which can adapt between the Epetra
data types and whatever data type the operator requires.

In situations where using Epetra is impossible or undesirable, I've also imple-
mented a basic, MPI-based version of the Master and Slave algorithms. This involved
a pair of data transfer functions objects MPIDataSend and MPIDataRecv. Both are
unary function objects which are used by both the Master and Slave. A bit of tem-
plate trickery allows me to have a single, templated implementation of both FOs
which call a templated function findMPIDatatype<Scalar>(). Such a design is far
superior to using template specialization on the FOs, as all translation behavior is
isolated in the one templated function which can be reused in many MPI applica-
tions. At the moment, the FOs both use blocking MPI calls and can only handle the
built—in datatypes (int, float, ect...).

Regardless of the particular operator, data transfer functions, and data source and
sink, the abstract algorithmic code in the Master and Slave is completely reusable.
This code only depends on the abstract RVL interfaces and the abstract Messenger

interface.

8.6 Example Applications

Some applications are particularly well suited to a Master/Slave framework. These
typically have a large number of independent tasks with each task running a varia-
tion of the input data. Often, each task takes a large number of cycles and might
be difficult to parallelize. Further, the tasks might vary in the number of cycles each
requires, which would make a static load balance difficult to compute. The Mas-
ter/Slave framework is automatically load balanced, with each node sitting idle for
no longer than the single longest task — which is a worst case when all nodes finish

at once with only one task remaining in the queue. There is no communication be-

162

tween slaves, which implies no need for barriers or other attempts at global parallel
synchronization.

The main difficulty in an application lies in deciding what data is necessary to
define a task, and packing this data into a Vector. Often, we need to attach a
piece of auxiliary data to the Vector and ensure it gets transfered along with the
vector. Examples of auxiliary data are grid specifications, time information, source
information, or instructions on the desired output. To aid in the attachment and
movement of auxiliary data, the AuxComboLDC and AuxComboDC were created in the
RVLTools package. Epetra implementations two interfaces are available as part of
epetraATN.

The TSOpt package [44] performs the time-stepping operations needed to solve
a time dependent system of PDEs. In the end, a TSOp operator is created which
uses samplers to map from the external domain and range to internal storage. I take
advantage of the samplers to connect the adapted Epetra data classes to other local
storage classes, which allows reuse of serial TSOpt code in a Master/Slave environ-
ment just by modifying the samplers and the Model slightly. Each task then consists
of varying the input to the TSOp and recording the resulting output.

A slightly more complicated example uses the seismic simulation code in the fd
package. Here each task is defined by a parameter file. The tasks require roughly
an hour apiece on a workstation. The master runs through a list of parameter files
as the data source, while each slave reads a parameter file and runs the simulation

specified.

8.7 How to implement a Master—Slave Algorithm

There are only a few tasks which need to be done in order to create a new Master/Slave

application.

1. Build a UnaryFunctionObjectScalarRedn<Scalar,bool> for the data source.

163

The operator () method of this class must pack either a LDC or an AuxCombo-
LDC with all of the data to be transmitted to the slave. This function should

set the return value to false when there is no more data to be sent.

2. Build a UnaryFunctionObject<Scalar> for the data sink. This function will
be given results returned by the slaves. What is done with these results depends
on the application. Note that due to the nature of the algorithm, results will
not necessarily be received in the order the problems were issued. Thus, it
may be beneficial to tag each input and output so that they may be correctly

interpreted.

3. Build either a UnaryFunctionObject or an Operator which will be run on the
slaves. These will be given data in the exact format which it left the data source
UFO. In the case of the UnaryFunctionObject, output gets packed back into
the same buffer, which gets shipped back to the master. In the case of the
Operator, output goes into a different vector, which is shipped back to the

master.

4. Select an existing data transfer method, or write a new one tailored to the

application.

8.7.1 Building a Master—Slave configuration into an event

loop

There are times when the task-level parallelism suitable for a Master—Slave algorithm
arises as a subproblem of a larger application. In this case, the DataMaster may be
run several times with a different set of tasks each time. However, the OpSlave will
stop running when it is told there are no more tasks left in the queue. At first,
it was tempting to hack the master to not send out the “No More Tasks” message

until the Master is destroyed. However, the master would then need to keep track

164

of whether or not each slave has finished the current task in order to stop a run().
This approach is unnecessarily complicated. Instead, I should take advantage of the
Algorithm abstraction and use the DataMaster and OpSlave as parts of an outer
algorithm.

I put the OpSlave inside a LoopAlg so that it may run more than once. Each
run of the OpSlave will continue until a set of tasks is finished. I then need a
Terminator to control the outer loop and stop computation eventually. I reuse the
capabilities of the Messenger to control the terminator. The terminator stops when
it receives a “stop” message, and continues to loop for any other message. I call this
a ListeningTerminator since it simply listens until it gets a message and then acts
on that message. It is crucial that the ListeningTerminator use a blocking receive
call when it tries to get a message. Otherwise, the slave might begin requesting tasks
when the master isn’t running.

On the master side, I use a ListAlg to combine the DataMaster with a Broadcast-
Alg algorithm to send the appropriate message to the terminator on the slave side.
The BroadcastAlg has a very simple behavior. Every time it is run, it transmits a
“wake up” message. When it is destroyed, the algorithm destructor transmits the
“stop” message. Thus, death of the master causes the slaves to stop running.

The combination of the ListAlg with a BroadcastAlg and a DataMaster sets up
the event loop on the master side, and the LoopAlg with a ListeningTerminator
and an OpSlave causes the slaves to wait around until woken, then service a set of

tasks and go back to sleep.

Chapter 9

Parallel Functional with Implicit
FE Constraint

Truly coordinate—free algorithmic code should function correctly in either serial or
parallel, and should not require any modification. This is possible only because the
ANA does not refer explicitly to the details of memory layout or computational im-
plementation. The abstract calculus interfaces provide a layer of indirection between
the ANA and the implemented parallel linear algebra libraries.

As proof that the RVL/ALG design produces reusable ANAs, I took a Quasi—
Newton algorithm with a LBFGS approximation to the Hessian (the ANA) and ap-
plied it to a functional which implements an implicitly constrained advection—diffusion
optimal control problem in parallel (the NLP). Prior to this, the ANA had only been
used on serial functionals, but it solves the parallel NLP without any modification to
the algorithmic code.

Further, I avoid redoing much of the intricate work of writing parallel linear algebra
structures by borrowing from other authors and adapting their interfaces to match
RVL in order to reuse their implementations. Epetra [25] is a functioning, stable
implementation of parallel linear algebra written by professionals who have spent

years working on it. It seems only sensible to use such a code rather than try to

165

166

replicate its facilities from scratch. Further, Epetra has been used by a community
of developers already and there are many tools available which utilize its interfaces,
like the AztecOO [26] package of parallel linear solvers and preconditioners, which I
use to solve the implicit linear constraint.

I will first describe the physics of the advection—diffusion problem and how the
continuous constrained problem is discretized and modified into a unconstrained prob-
lem. I'll then describe the abstract optimization algorithm I used to solve the uncon-
strained problem. A RVL::Functional serves as the interface between the ANA and
the low—level simulation code. After describing this functional, I'll explain how Epe-
tra and AztecOO were used to implement the functional, including the finite—element

code constructing the objects describing the discretized system.

9.1 Advection—Diffusion Problem

There are many problems involving the transport of some substance through a fluid
media. When the motion of the fluid (advection) dominates the passive diffusion of
the substance, such transport can be modeled by the steady—state advection—diffusion

equations

—eAy(z) + c(z) - Vy(z) + r(z)y(z) = f(z)+u(z), z€Q
y(z) = d(z), T € 0Oy
ea%y(a:) = g(x), x € 09,

where 0Q4 N 0N, = 0, 004 U OQ,, = 09, ¢, d, f, g, r are given operators, € < 0 is a
given scalar, and n denotes the outward unit normal [7]. Here, x is a position in space
and y(z) is the concentration of the substance of interest at a given position. The
function c is the velocity field of the underlying fluid, so c(x) - Vy(z) is the advection
term. A scaling factor e controls the strength of the diffusion, and the boundary
terms restrict either the concentration or the flux at positions on the boundary of the

domain. For further discussion of this problem, see Section 8 in [40] and Section 9 in

167

11 T T T T T T

y y
0 10 11 22 23 34 35 45 50 55 60 70 71 82 83 94 95 105
| [L [| | | | L [[|

Figure 9.1: Airport model obtained from Sandia National Labs.

(30].

For this demonstration, I chose to use the airport model, shown in Figure 9.1, as
the problem domain. The boundary set 0€2, represents vents in the climate—control
system of the airport and I impose a 0 concentration on the rest of the boundary
0€)4. The diffusion term is set € = le — 4.

In order to solve an inverse problem to determine an arbitrary source given point-

wise measurements of concentrations, I want to minimize

min - /Q (y(a) — §(2))dz + /Q o (z)dz

yu 2

for some given data ¢(x), subject to the steady—state advection—diffusion constraint
9.1. Using the implicit—function theorem [36], I can restate this quadratic program

as an unconstrained optimization problem

1
min —/(y(u; x) — §(z))*dx + 2 / u?(z)dx
where y(u; z) is the solution of 9.1 for a value of u.

I use a finite—element discretization to approximate the solution of this continuous

problem. The discretized advection—diffusion constrained problem boils down to

miny, Ly - $)7Q(y — 9) + 2u’Ru
st. Ay—Bu—-0=0

168

(A)y = G/Qngj(x)-ngi(x)dx—i—/ﬂc(x)-Vqﬁj(x)qﬁi(x)da:—l—/ﬂr(x)qﬁi(x)qu(x)dx,
b, — /8 g+ /Q (@), ()de,
(B)ij = /Qﬂj(x)¢i($)d$a

Q) = ; ¢;(x)¢i(x)dz
where the linear nodal basis for the state space is {¢1, ..., }, M nodes in the state
space, and the linear nodal basis for the control space is {p1,...,ux}, N nodes in

the control space. R is the discretization of either the L? Tikhonov expression or the

H'-seminorm Tikhonov expression

(R = | m@ta)ds or (Rg = [Viy(a) - Vita)ds

a regularization term.
Assuming A is nonsingular, so there is a unique feasible point y(u) for every
u, the implicit function theorem let me reformulate the problem as minimizing the

functional

F(u) = £ (4™ (Bu+b) = 3)7Q(A™(Bu+b) - §) + Su” Ru

The discretized gradient is then
VoF(u) = BTATQA ' (Bu+b)+ aRu

The computation of the discretized functional and gradient only involves the appli-

cation of linear operators, linear-system solves, and some vector algebra.

9.2 Optimization Algorithm and Functional

To solve the source—inversion problem, I chose to use the Quasi—-Newton method with

a Limited—Memory BFGS approximation to the Hessian of the functional and a back-

169

tracking line search, as described in Section 7.6.5. My implementation of the abstract
algorithm, named UMinLBFGS_BT takes a RVL: :Functional F', an initial guess Vector
ug, and a UMinTable, which is a convenient repository for parameters of unconstrained
minimization algorithms along with reasonable default values of these parameters.
This algorithm is a mediator between the backtracking line search and a UMinLBFGS
class. The UMinLBFGS builds a LBFGSStep using the LineSearchAlg, functional evalu-
ation, and parameters from the table. This step is given to a LoopAlg, composed with
a CountingIterationTable as the terminator. Both UMinLBFGS and UMinLBFGS_BT
are simply convenience classes which reduce the number of choices a user must make
when constructing the solution method from Algorithm and Terminator objects.
The algorithmic work is done inside the ANA LBFGSStep, which is a concrete
implementation of the abstract NewtonStep interface. The run() method of the

NewtonStep is

Vector<Scalar> dir(f.getDomain(), true);

bool cd = calcDir(dir);

bool cs = calcStep(dir);
if (cd && cs) {
bool upd = update();
return upd;
}
else {

return false;

The LBFGSStep implements calcDir () and calcStep() methods using the LBFGSOp
approximation to the Hessian and the given line search. The update () method calls
LBFGSOp: :update() on the appropriate vectors.

While this design is deeply nested to promote reuse, at the top level, the main()

driver is quite simple:

170

AdvDiffFunctional f(Comm, argv[1], dalpha); // Build the functional

Vector<T> u(f.getDomain()); // Build the initial guess
RVL: :RVLAssignConst<double> init(0.0);

u.eval(init);

string jname="job.bfgs";
RVLUmin: :UMinTable<double> tab(jname);
RVLUmin: :UMinLBFGS_BT<T> alg(f,x,tab); // Create algorithm

alg.run(); // run the algorithm

It builds the functional, then the starting point and the parameter table. These are
used to construct the optimization algorithm, which is then run. After the run, u

contains the solution.

9.3 Building a Functional

I created the AdvDiffFunctional which implements F'(y(u), u) and its gradient as de-
scribed in Section 9.1. This implementation follows the standard pattern I see among
concrete Functional and Operator classes in RVL. I wrote two FunctionObjects
to compute the functional value and gradient. (thus implementing the simulation).
They share a reference to a common AdvDiffProblemHolder, which builds and holds
the various finite—element matrices and vectors involved in the discretized prob-
lem (A,B,R,and b). The AdvDiffFunctional owns the AdvDiffProblemHolder and
builds the FunctionObjects as they are needed. The functional also stores the com-
puted value of the state y(u) to avoid recomputing it.

This design leaves everything well encapsulated. The calls to the finite-element

construction code are all isolated inside the constructor for the AdvDiffProblem-

171

Holder. The computations of the functional value and gradient are hidden inside the
function objects. The AdvDiffFunctional is unaware of parallelism entirely except
for passing the necessary Epetra Comm to the problem holder. Thus, to change the
matrices or vectors for the finite-element code, I only change the low—level matrix
creation code and not the RVL objects. Further, the distribution of data for both y
and v among processes is completely controlled by the finite—element code and the
mesh files. The functional class is well suited for any implicitly constrained problem,
and could be reused with different function objects or a different problem holder. In
the future, the functional could be further generalized to satisfy a variety of quadratic
objective functions with linear constraints.

All the parallelism is isolated in the AdvDiffProblemHolder and the two FOs
which implement the simulation. Even these objects only deal indirectly with par-
allelism through the Epetra linear algebra interface and library (discussed in Sec-

tion 5.5) and the AztecOO package of linear system solvers (detailed in Section 9.5).

9.4 Denis Ridzal’s Trilcode in the Problem Holder

I needed some code to fill in the Epetra matrices and vectors which define the dis-
cretized system, namely A, B, and b from the constraint and R from the objective
function. Building these objects requires careful work to assemble all the interac-
tions of the finite—elements. This work had already been done by Denis Ridzal in
his Trilcode, during a summer visit to Sandia National Labs [7]. The availability
of this code and accompanying relatively large problems (0.8 million nodes and 1.6
million elements) were the primary factors motiving the choice of this application as
a demonstration of the parallel capabilities of RVL.

I created an AdvDiffProblemHolder class to interface with the Trilcode. Apart
from the calls to Trilcode, the problem holder class is fairly general. It is simply

a structure which contains references to the three Epetra matrices and one Epetra

172

vector, along with an adapter EpetraMultiVectorSpace which must be built using
map information from the matrices. All the work of the problem holder class is
performed in the constructor. It was slightly tempting to define an abstract problem
interface and allow the current object to be a concrete implementation, but as there
are currently no methods apart from the constructor and destructor, this seemed like
overkill.

The Trilcode is separated into several procedures. A meshreader function fetches
mesh information from a file. This mesh is then given to the assembly function, which
fills in the data structures. I had to modify the assembly function slightly, as the C++
implementation didn’t provide all the functionality of the MATLAB version (I needed
the matrix R). Depending on whether I want to use L? type or H'-seminorm type
regularization, R is filled with products of basis functions or dot—products of gradients
of basis functions.

The assembly method works by repeatedly calling a local assembly method for each
element ;. The local method is given the vertices which correspond to that element
and calculates the contribution of that element to each of the matrices and vector.
These contributions are then added into the correct portion of the data structure.

Adjustments are later made for boundary conditions.

9.5 Implement Function Objects using AztecOO

Aztec is a linear solver framework containing a variety of parallel iterative linear
solvers and preconditioners [45]. For linear solvers, it offers conjugate gradient, con-
jugate gradient squared, transpose-free quasi-minimal residual, bi—conjugate gradient
with stabilization, and restarted generalized minimal residual methods. The precondi-
tioners include a k—step Jacobi-Neumann series polynomial, a k—step using symmetric
Gauss-Seidel, and several variations of non—overlapping domain decomposition pre-

conditioners. The package is aimed at solving large, sparse linear systems in parallel.

173

The inefficiencies of direct solution methods in both operations and memory use are
substantial when solving such systems, making the iterative solvers in Aztec a better
choice.

AztecOO is a package of object oriented interfaces to the Aztec solver library [26].
It was designed to work with Epetra data objects as part of the Trilinos Solver
Framework. Apart from the new interface, AztecOO adds more sophisticated stopping
criteria and a larger choice of preconditioners to the capabilities of Aztec.

The package has one main class named Aztec00, which acts as a mediator between
all of the various components of the package. A problem defined with Epetra objects
may be solved using any of the solution methods and preconditioners from Aztec.
To solve other problems, the Aztec00 class allows users to overwrite most of its
functionality to permit the use of other preconditioners and solution methods.

Although it is not critical to this application, AztecOO is implemented using
only the abstract base interfaces for Epetra. Thus, any linear algebra library which
could be adapted to Epetra could be used with AztecOO. For the current project,
I use concrete Epetra vectors, adapting them to RVL in order to implement an
RVL: :DataContainer (see Section 6.3).

Inside the function objects used to construct the AdvDiffFunctional, AztecOO
solves the linear systems which define the implicit advection—diffusion constraint. It is
used once to calculate y(u) = A~ (Bu-+b) as part of the objective function evaluation.
Another solve is needed to calculate A="y(u) in the gradient calculation.

Using AztecOO is easy. I define an Epetra LinearProblem called Problem from a
matrix A, right—hand side vector b, and a solution vector z. Then I create a AztecOO

solver, set some of its options, and tell it to iterate:

Aztec00 Solver(Problem);
Solver.SetAztecOption(AZ_output, AZ_warnings);
Solver.SetAztecOption(AZ_solver, AZ_gmres);

Solver.SetAztecOption(AZ_precond, AZ_Jacobi);

174

int res;

res = Solver.Iterate(1000,1e-12);

Notice the similarity in design of the Aztec00 solver algorithm to many of the al-
gorithms in Chapter 7. The algorithm object is created from the minimal required
pieces, which themselves are encapsulated. The parameters for the algorithm are set
through access methods to achieve the desired behavior. Finally, the algorithm is
run, and returns an error code to indicate an algorithmic failure. Here, the stopping
criteria is a combination of an iteration count of 1000 and a desired solution tolerance
on ||7||l2/||Irol|l2, where r = b — Axz. However, after delving into source code, this is
where the resemblance to my algorithm package ceases, as the Iterate() method

simply wraps a call to the Aztec procedure

AZ_iterate(x_, b_, options_, params_, status_, proc_config_,

Amat_, Prec_, Scaling_);

which performs the actual solve using the given vectors, matrices, and parameters.

9.6 Results

Optimizing the functional on a small, square domain using a four—processor cluster
seemed insufficient to fully demonstrate the effectiveness of the design. At that size,
it took more time to perform the file I/O than the calculations. I needed a larger
problem and more hardware to produce satisfactory ‘proof’.

Denis was kind enough to generate a large example using the airport model from
Sandia National Labs, shown in Figure 9.1. This model was obtained by simulating
air velocities in a two story airport. The two—dimensional problem is roughly ‘H’
shaped, with a large open well connecting the two floors. There are several air vents,
some blowing air into the building and some venting. The velocity data is combined
with a finite—element discretization of the building and parameters in the equations

are chosen to roughly model the flow of air.

175

The following results are for a finite-element mesh involving 1654965 elements
and 832510 nodes. The mesh is partitioned into 16, 32, and 64 subdomains, and the
mesh files are roughly 1 Gigabyte of data total. Results were obtained from the Rice
Terascale Cluster, a cluster of over 272 Intel Itanium 2, 64 bit processors, each running
at roughly 900 MHz. I chose to use the Myrinet interconnect (Gigabit Ethernet is
also available) due to its low latency.

I ran 27 different runs of the code to test all combinations of 16, 32, 64 processors,
1072,107%,10"® tolerances, and three different preconditioners. The tolerances are
given to AztecOO, which will stop GMRES when ||7||/||7o|| < tol or the chosen 1000
iterations have been run. Occasionally, the 10~ tolerance could not be satisfied in
1000 iterations. The three preconditioners were options provided by AztecOO and

these descriptions are paraphrased from the user’s guide [26]:

e k—step Jacobi, where I used the default & = 3.
e Neumann series polynomial of order k, again using the default £ = 3.

e An additive Schwarz preconditioner, tailored to domain decomposition prob-

lems. Each processor approximately solves the local subsystem using Saad’s

ILUT.

The data in Table 9.1 demonstrates that I get pretty close to the ideal speedup
of 2 when I double the number of processors, especially when the solver takes enough
iterations to overcome the file I/O and matrix setup costs. Twice as many processors
solves the same problem in a roughly half the time. This validates that the code is
working correctly in parallel, as this sort of behavior is what I expected. Figure 9.2
shows the runtime decreases as the number of processors vary when using the various
preconditioners. Notice that I get the linear speedup with the worse preconditioners,
but the Neumann preconditioner performs somewhat better. However, the additive
Schwarz preconditioner, which is tailored for domain decomposition problems, per-

forms so well that the communication overhead destroys the expected speedup.

Nodes | Solver Tolerance | Preconditioner | Wall Time
16 le-2 J 0:21:24
32 le-2 J 0:12:04
64 le-2 J 0:07:24
16 le-4 J 0:96:12
32 le-4 J 0:49:15
64 le-4 J 0:25:34
16 le-8 J 6:52:48
32 le-8 J 3:28:10
64 le-8 J 1:42:31
16 le-2 N 0:11:36
32 le-2 N 0:07:11
64 le-2 N 0:05:08
16 le-4 N 0:45:05
32 le-4 N 0:23:28
64 le-4 N 0:13:02
16 le-8 N 3:12:25
32 le-8 N 1:35:49
64 le-8 N 0:47:30
16 le-2 S 0:02:07
32 le-2 S 0:02:03
64 le-2 S 0:02:56
16 le-4 S 0:03:17
32 le-4 S 0:02:44
64 le-4 S 0:03:19
16 le-8 S 0:07:22
32 le-8 S 0:04:38
64 le-8 S 0:04:20

Table 9.1: Wall clock runtimes for Advection—diffusion problem

176

177

s Runtime using various preconditioners under various tolerances on the linear solver
10 T T T
i Jacobi 1e-2]
I — & — Jacobi le-4
- Q e Jacobi 1e-8
R Neumann le-2
- <> - | = ©— Neumann le-4
Neumann 1e-8
—<— additive Schwarz 1le-2
10 & oL — X — additive Schwarz 1e-4\1
A T - X - additive Schwarz 1e-§

Minutes

10|

10
16 32 64

Number of Processors

Figure 9.2: Runtimes telling AztecOO to use various preconditioners and requiring

GMRES to run to a 10~8 tolerance on the residual.

178

Runtime increases per solution tolerances

10 ¢

Jacobi 16

- — Jacobi 32

Jacobi 64
Neumann 16
— © — Neumann 32
Neumann 64
—<— additive Schwarz 16|
10 | — X — additive Schwarz 32
i X - additive Schwarz 64

Minutes

Log of Solution Tolerance

Figure 9.3: Increases in runtime due to tightened residual tolerances required of

GMRES

179

The other Figure 9.3 essentially transposes the data to view the effect of the tighter
tolerances on runtimes. Doubling the desired number of digits of accuracy seems to
quadruple the workload when using the Jacobi and Neumann preconditioners. The
effect is greatly reduced when using the additive Schwarz preconditioner, but it is
somewhat tougher to separate the communication overhead and matrix setup costs
from the GMRES iterations. Even at 1078, GMRES takes only roughly 100 iterations
to converge when using the additive Schwarz preconditioner.

While these timings are nothing too suprising, they show several things. First, the
parallel functional behaves as it should when I vary the preconditioner and tolerance.
Second, regardless of the AztecOO settings, the optimization algorithm can use the
functional values and gradients it gets to find a local minimum, which in this case must
be global since it is a quadratic objective with linear constraints. Third, with a little
effort, the RVL package and its extensions can be ported to a large parallel cluster
using the Intel compiler, when they were originally designed and tested in serial using
the GNU compilers. While this doesn’t prove the code is portable, it does increase
our hopes, as the Intel compilers are supposed to be close to the C++ standard. All
told, these results validate our efforts to combine independently developed abstract
numerical algorithms and parallel simulation code into working applications. The

adapters are reusable. The functional is reusable for any problems of the form

min 3ly[2 + 4 (u, Ru)
st. Ay—Bu—b=0
which are assembled using Epetra. Both the adapters and the functional can serve

as guides for interoperating RVL interfaces with simulators.

Chapter 10

Conclusions

The problem domain (NLPs) naturally leads us to implement code objects that mimic
the behavior of the conceptual mathematical objects defining the problem — those
involved in calculus in Hilbert space. The careful application of design principles to
the implementations of such objects results in code which is reusable, composable,
and modifiable. The mathematical concepts define object behavior, which is specified
in abstract interfaces. The concrete implementations of these interfaces encapsulate
the low—level details which come from the particular problem and the programming
environment.

By writing algorithm objects to depend only on abstract interfaces to the calculus
objects, I have shown that I can exchange the underlying data structures without
modifying the algorithms. The exact same LBFGS Quasi—-Newton algorithm will
optimize functionals on ", grids, and parallel finite—element code. Even better, the
underlying implementation of the functional doesn’t even have to be written using the
same abstract interface, as I can adapt interfaces to each other in order to interoperate
code written by different authors in different places, without modifying the base
code. I've shown two examples of this, involving RVL, RVLAlg, TSOpt, MOOCHO,
TSFCore, Epetra, AztecOO, and other packages. I've discussed adaptation to other

interfaces, demonstrating which features aid and which hinder adaptation. As designs

180

181

improve, adaptation becomes easier and more powerful. It enables authors to write
using a comfortable interface with fewer concerns about not being able to use or be
used by other packages.

Suddenly, standards become less important. Why mandate a standard interface?
Instead, I support an evolutionary struggle between interfaces. Good designs will
be used and thrive, and as they do so, will get better. By interacting, good ideas
are shared and bad ideas die out. Standards should be replaced every decade or so.
Evolving, flexible interfaces continue growing. This is equally true for data structures
as it is for algorithms. Spending less time reimplementing old ideas leaves more time

for implementing new ones.

Design Lessons

I learned many design and programming lessons while writing this thesis. While the
details of each lesson are scattered throughout the thesis, here is a brief summary of

the particular lessons relevant to solving simulation driven optimization problems:

e Abstract interfaces allow reuse of code by decoupling interface and implemen-

tation.

e Abstract interfaces should be minimalist, and not include any method unless

every concrete implementation will provide it.

e Specialize an abstract interface to add functionality or identify a subclass — e.
g. not every linear operator is invertable. An inverse() method belongs in a

specialized interface.
e An index method for element access to a data structure can be very inefficient.

e Beware the pervasiveness of parallel details, which are only truly needed in
a few places. Communication framework can usually be abstracted to limit

dependencies on a particular form of parallelism.

182

e When adapting data structures, it is possible to efficiently adapt from an ex-

posed pointer to any other data access method. The reverse is not always true.
e Algorithms are objects too.

e Write single algorithm steps instead of entire loops. This permits different

stopping criteria to be used with the same step.

e Composites are a good way of reusing code by combining several objects into a

new object of the same type.

e Adaptation permits the reuse of tools and implemented code written for one
interface with a different interface. This facilitates the creation of applications

combining software from many different sources.

Future Work

There is work left to be done. The RVL design only encompasses calculus in Hilbert
Spaces. Some people would argue that all real problems involve discrete and cat-
egorical data as well as continuous data in Hilbert Space. In order to accommo-
date such data, abstract parent interfaces to the Vector and Space classes would
be needed which had less required functionality. The low—level DataContainer and
FunctionObject interfaces, with the generalizations for mixed—type operations, are
well suited for integer and categorical data without any further modifications.

This extension would permit the implementation of a wider variety of useful algo-
rithms. However, while RVL provides the tools necessary for defining the data objects
and operators for nonlinear programs, it does not have any abstractions for the pro-
grams themselves. Many other packages have an explicit Problem class, containing
their idea of an abstract problem. It would be useful to consider what interface can
be put on the ‘model’. Can a constraint class be built to permit composition of con-

straints? Even the notion of a constraint is useless without an ordering for vectors.

183

The ordering introduces further complications of its own. It is also possible that the
Problem classes are misconceived, and a simpler approach would suffice.

Further ‘proof’ of the generality of RVL/ALG could be offered. The potential ef-
ficiency of implementations in the RVL design is untested and some of this efficiency
(or inefficiency) is a compiler issue. However, such efficiency could be easily demon-
strated by co-opting the work of other authors through adaptation. Efficiency gains
through grouping of parallel reductions and Level 3 BLAS are all at a low—level, and
could be encapsulated seamlessly within RVL interfaces.

There are many solution algorithms and data structures still to be implemented in
RVL. Denis Ridzal is already at work implementing a SQP method, but there are other
linear and nonlinear optimization algorithms which might be incorporated. The hy-
pothetical adaptive grid data structure could also be implemented to demonstrate the
arguments against dimensionality in high—level data structures. Since the interfaces
are standardized, it might be useful to implement scripts for automating construc-
tion of objects like local data containers. Many LDCs only differ in the particular
names, types, and amount of meta-data that is encapsulated along with the array
data. It would be helpful to have a script that would parse a (type, name, access)
list into a working LDC, where type is any type, name is the chosen variable name,
and access specifies whether a variable is public, protected, or private as well as
read/write accessible.

Apart from algorithms, I have ideas for terminators which would be extremely
useful. In particular, while I am certain that such a thing is feasible, I have not
implemented a GUI terminator. It would be some work, but with TK/TCL, it is
possible to implement a terminator which could display information about functional
values, convergence rates, various graphs and plots as well as provide controls for
various parameters and solution algorithms. This is an extremely ambitious project,
and would require a significant time investment. However, it would be beneficial as

both a teaching and research tool.

Bibliography

1]

2]

3]

[4]

[5]

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, third edition, 1999.

Charles Audet and J. E. Dennis Jr. Analysis of generalized pattern searches.

Technical Report TR00-07, Rice University, 2000.

Charles Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms
for constrained optimization. Technical Report TR04-02, Rice University, 2004.
Submitted to SIAM for publication.

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaar-
den, and M. Woodger. Revised report on the algorithmic langauge algol 60. In

Peter Naur, editor, Communications of the ACM, volume 6, pages 1-17, January

1963.

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, .M. Haibt, H. L. Herrick,
R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and
R. Nutt. The fortran automatic coding system. In Proceedings of the West-
ern Joint Computer Conference, pages 188-198, New York, NY, February 1957.

Institute of Radio Engineers.

184

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

185

John W. Backus. The history of fortran i, ii, iii. In Richard L. Wexelblat, editor,
History of Programming Languages, pages 25—45. Academic Press, New York,
NY, 1981.

R. Bartlett, M. Heinkenschloss, D. Ridzal, and B. van Bloemen Waanders. Do-
main decomposition methods for advection dominated linear—quadratic elliptic

optimal controlproblems. Technical report, Sandia National Laboratories, 2005.

Roscoe A. Bartlett. Interfaces extending tsfcore for the development of non-
linear abstract numerical algorithms and interfacing to nonlinear applications.

Technical report, Sandia National Laboratories, 2003.

Roscoe A. Bartlett. MOOCHQO : Multifunctional Object-Oriented arCHitecture

for Optimization, User’s Guide. Sandia National Labs, 2003.

Roscoe A. Bartlett. A package of light—weight object—oriented abstractions for
the development of nonlinear abstract numerical algorithms and interfacing to
linear algebra libraries and applications. Technical report, Sandia National Lab-

oratories, 2003.

Roscoe A. Bartlett, Bart G. Van Bloemen Waanders, and Michael A. Heroux.
Vector reduction/transformation operators. ACM Transactions on Mathematical

Software, V(N):1-25, February 2003.

0O.J. Dahl and K. Nygaard. SIMULA 67 Common Base Proposal. Norwegian
Computing Center, Oslo, 1967.

Hala Dajani. Client-server component architecture for scientfic computing. Mas-

ter’s thesis, Rice University, 2003.
Balay et. al. PETSc Users Manual. Argonne National Laboratory, August 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns : Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

186

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic program-
ming. ACM Transactions on Mathematical Software, 29(1):58-81, March 2003.

Mark S. Gockenbach and William W. Symes. An overview of hcl 1.0. ACM
Transactions on Mathematical Software, 1(25):191-212, 1999.

Stefan Goedecker and Adolfy Hoisie. Performance Optimization of Numerically
Intensive Codes. SIAM, 2001.

Adele Goldberg and David Robson. Smalltalk—-80: The Language and Its Imple-
mentation. Addison-Wesley, Reading, MA, 1983.

Paul Graham. Hackers and Painters. O’Reilly, May 2004.

Andreas Griewank. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optimization Methods and Software,

1:35-54, 1992.

John L Hennessy and David A Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., second edition, 1996.

Michael A. Heroux. The trilinos/petra user’s guide. Technical report, Sandia

National Laboratories, 2001.

Michael A. Heroux. Epetra Developers Coding Guidelines. Sandia National Lab-

oratories, December 2003.

Michael A. Heroux. Epetra home page. http://software.sandia.gov/trilinos/-
packages/epetra/, 2003.

Michael A. Heroux. AztecOO User Guide. Sandia National Laboratories, July
2004.

J. E. Dennis Jr. and Robert B. Schnabel. Numerical methods for unconstrained

optimization and nonlinear equations. Prentice—Hall, 1983.

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

187

J. E. Dennis Jr. and Virginia Torczon. Derivative-free pattern search methods for
multidisciplinary design problems. In 5th AIAA/NASA/USAF/ISSMO Sympo-
stum on Multidisciplinary Analysis andOptimization, pages 922-932. American

Institute of Aeronautics and Astronautics, September 1994.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988.

P. Knabner and L. Angermann. Numerical Methods for Partial Differential Equa-
tions. Texts in Applied Mathematics, Vol. 44. Springer—Verlag, Berlin, Heidel-
berg, New York, 2003.

Tamara Kolda, Roger Pawlowski, and Andrew Salinger. Nox and loca home

page. http://software.sandia.gov/trilinos/packages/nox/index.html, 2005.

Glenn Krasner, editor. Smalltalk—80: Bits of History, Words of Advice. Addison—
Wesley, Reading, MA, August 1983.

D. C. LIU and J. NOCEDAL. On the limited memory BFGS method for large
scale optimization. Math. Programming, 45(3, (Ser. B)):503-528, 1989.

Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom. Testing uncon-
strained optimization software. Transactions on Mathematical Software, 7(1):17—

41, March 1981.

Jorge J. Moré and David J. Thuente. Line search algorithms with guaranteed
sufficient decrease. ACM Transactions on Mathematical Software, 20(3):286-307,
September 1994.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series
in Operations Research. Springer—Verlag New York, Inc., 1999.

Kristen Nygaard and Ole-Johone Dahl. The development of the simula lan-
guage. In Proceedings of the First ACM SIGPLAN Conference on the History

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

188

of Programming Languages, pages 245-272, New York, NY, January 1978. ACM

Press.

Anthony Padula, Shannon D. Scott, and William W. Symes. The standard
vector library: A software framework for coupling complex simulation and opti-

mizations. Technical Report TR04-19, Rice University, 2004.

Roldan Pozo. Template Numerical Toolkit Manual. National Institute of Stan-
dards and Technology, June 2003.

A. Quateroni and A. Valli. Numerical Approzimation of Partial Differential
Equations. Springer, Berlin, Heidelberg, New York, 1994.

Shannon D. Scott and William W. Symes. Towards a standard design for vector

classes. Technical Report 11, Rice University, 2001. Trip Annual Report.

Robert W. Sebesta. Concepts of Programming Languages. Addison-Wesley Pub-
lishing Company, third edition, 1996.

Bjarne Stroustrup. The C++ Programming Language. Addison Wesley Long-
man, Inc., 2000.

William Symes, Anthony Padula, Hala Dajani, and Eric Dussaud. A time-
stepping library for simulation-driven optimization. Technical report, Rice Uni-

versity, 2003.

R.S. Tuminaro, M. Heroux, S. A. Hutchinson, and J.N. Shadid. Official Aztec

User’s Guide: Version 2.1. Sandia National Laboratories, December 1999.

Martin Fowler with Kendall Scott. UML Distilled: a brief guide to the standard

object modeling language. Addison Wesley Longman, Inc., 2000.

