 class  HCL_UMinProductDomain_d : public HCL_Base
  class  HCL_UMinProductDomain_d : public HCL_Base HCL_UMinProductDomain_d is the abstract base class for unconstrained minimization algorithms designed for problems in which the objective function is defined on a product space
|  virtual  Table& | Parameters () const Access to parameter table | 
|  virtual  HCL_EvalFunctionalProductDomain_d& | LastEval () const LastEval returns a reference to the functional's evaluation object at the most recent point | 
|  virtual  void | SetScaling ( HCL_LinearOp_d * S, HCL_LinearSolver_d * lsolver=NULL ) SetScaling defines a new inner product in terms of a symmetric, positive definite operator S: <x,y> = (x,Sy) | 
|  virtual  void | UnSetScaling () UnSetScaling returns the inner product to the default. | 
|  virtual  int | Minimize ( HCL_FunctionalProductDomain_d & f, HCL_ProductVector_d & x ) Minimize attempts to find a local minimizer of the functional f, using x as a starting guess | 
 void  IncCount() const
 void  IncCount() const 
 void  DecCount() const
 void  DecCount() const 
 int  Count() const
 int  Count() const 
 virtual  ostream&  Write(ostream &) const
 virtual  ostream&  Write(ostream &) const 
HCL_UMinProductDomain_d is the abstract base class for unconstrained minimization algorithms designed for problems in which the objective function is defined on a product space. In the context of HCL, this means that an object of this type will minimize a HCL_FunctionalProductDomain_d.All objects derived from HCL_UMinProductDomain_d have five methods:
- Minimize This method takes a HCL_Functional_d and a starting point, and attempts to locate a local minimizer of the functional. The return value of the method is the termination code, which indicates why the algorithm terminated. See the documentation for the termination codes for details.
- SetScaling This method takes a HCL_LinearOp_d and a HCL_LinearSolver_d, or alternatively, just a HCL_LinearOp_d, and uses the operator to define a new inner product. The operator must be symmetric and positive definite; the new inner product is defined in terms of the default inner product of the vector space: <x,y> = (x,Sy). The optimization is carried out using the new inner product.
- UnSetScaling This method resets the inner product to the default.
- Parameters This method returns a reference to the parameter table, and allows the programmer to access or change the parameters that control the iteration.
- LastEval This method returns a reference to the evaluation object at the best point found by the algorithm, thus giving the calling routine access to the function value and gradient at the final point. It is an error to call LastEval before Minimize.
 enum
  enum 
 PossibleMinimizer
  PossibleMinimizer
 
 
 
 
 PossibleConvergence
  PossibleConvergence
 LineSearchFailed
  LineSearchFailed
 PossibleDivergence
  PossibleDivergence
 IterationLimit
  IterationLimit
 InaccurateGradient
  InaccurateGradient
 virtual  Table&  Parameters() const
 virtual  Table&  Parameters() const 
 
 
 
 virtual  HCL_EvalFunctionalProductDomain_d&  LastEval() const
 virtual  HCL_EvalFunctionalProductDomain_d&  LastEval() const 
 virtual  void  SetScaling( HCL_LinearOp_d * S, HCL_LinearSolver_d * lsolver=NULL )
 virtual  void  SetScaling( HCL_LinearOp_d * S, HCL_LinearSolver_d * lsolver=NULL )
 virtual  void  UnSetScaling()
 virtual  void  UnSetScaling()
 virtual  int  Minimize( HCL_FunctionalProductDomain_d & f, HCL_ProductVector_d & x )
 virtual  int  Minimize( HCL_FunctionalProductDomain_d & f, HCL_ProductVector_d & x )
alphabetic index hierarchy of classes
 
this page has been generated automatically by doc++
(c)opyright by  Malte  Zöckler,  Roland Wunderling 
contact:  doc++@zib.de