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The Rice Inversion Project, TRIP16, April 24, 2017

INTRODUCTION TO THE 2016 ANNUAL REPORT

Welcome to the 2016 Annual Report volume of The Rice Inversion Project. This
volume contains manuscripts of papers, abstracts and reports completed during
the course of the project year.

The papers

• “Accelerating Extended Least Squares Migration with Weighted Conjugate
Gradient Iteration”, Hou and Symes (in the 2015 Annual Report);

• “An alternative formula for approximate extended Born inversion”, Hou and
Symes;

• “A discrepancy based penalty method for extended waveform inversion”, Fu
and Symes;

• “An adaptive multiscale algorithm for efficient extended waveform inver-
sion”, Fu and Symes;

• “Full Waveform Inversion via Source-Receiver Extension”, Huang, Nam-
mour, and Symes

• “Scattering and dip angle decomposition based on subsurface offset extended
wave-equation migration”, Dafni and Symes; and

• “Kinematic artifacts in the subsurface-offset extended image and their elim-
ination by a dip-domain specularity filter”, Dafni and Symes

have been accepted for publication in Geophysics and have appeared or will appear
in print by mid-2017. “Inversion velocity analysis in subsurface offset domain”,
Hou and Symes, is in review for the same journal.

I am pleased to acknowledge our debt to Sergey Fomel and other contributors
to the Madagascar project, whose reproducible research framework makes our
approach to distribution of reports possible.

– WWS, April 2017
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The Rice Inversion Project, TRIP16, April 24, 2017

Approximate Gauss-Newton iteration for Full
Waveform Inversion

Jie Hou*, William W. Symes, The Rice Inversion Project, Rice University

ABSTRACT
Full waveform inversion (FWI) reconstructs the subsurface model from ob-
served seismic data by minimizing the energy of the difference between pre-
dicted data and observed data. It is often formulated as an optimization prob-
lem and solved by computationally intensive iterative methods. The steep-
est (“gradient”) descent method, with or without line search, uses only first
derivative information and is severely slowed by the ill-conditioned behavior
of FWI. Newton’s method and its relatives take the objective curvature into
account, hence converge more quickly, at the cost of more expensive iterates.
We describe a preconditioned gradient descent method that approximates the
iterates, hence the convergence rate, of the Gauss-Newton method while hav-
ing essentially the same cost per iterate as the steepest descent method. The
preconditioned gradient is based on an approximate inverse to the Born mod-
eling operator. Numerical examples demonstrate that preconditioned gra-
dient descent converges dramatically faster than both conventional gradient
descent and the L-BFGS quasi-Newton method.

INTRODUCTION

Full waveform inversion (FWI) (Lailly, 1983; Tarantola, 1984; Virieux and Operto,
2009) aims to recover detailed models of the subsurface through a model-based
data-fitting procedure, via minimization of the difference between predicted and
observed data in the least squares sense. FWI has the potential to recover high-
resolution model, given an initial model that predicts traveltimes to within a half-
wavelength at frequencies with sufficiently high S/N. It extends in principle to
any modeled physics and data geometry, although many questions remain about
recovering multiple parameters, robustness, and computational efficiency.
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4 Hou and Symes

Mathematically, FWI poses to a large-scale nonlinear minimization problem.
Due to problem size, only local gradient-based methods are feasible (Gauthier
et al., 1986; Pratt, 1999; Crase et al., 1990). An obvious candidate, still used
in many FWI exercises, is gradient descent, more properly known as the steep-
est descent algorithm (Nocedal and Wright, 1999). However, steepest descent
converges slowly for ill-conditioned problems, for which the objective changes
much more rapidly in some directions than in others, and FWI tends to be ill-
conditioned. Newton’s method, on the other hand, takes second order (curvature)
information into account and thus generally converges to a local minimizer in
many fewer iterations than required by steepest descent (Pratt et al., 1998; Akce-
lik et al., 2003; Métivier et al., 2014). The Newton update (and its close relative,
the Gauss-Newton update) requires the solution of a linear system, of size equal to
the number of degrees of freedom in the model. Such systems must themselves be
solved iteratively, due to their size, so that the (Gauss-)Newton steps may be quite
expensive. Alternatively, quasi-Newton methods build up an approximation to
the inverse Hessian using the gradient at the current step and previous steps. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (or its limited memory ver-
sion, L-BFGS) is arguably the most widely-used quasi-Newton method (Nocedal
and Wright, 1999).

The main contribution of this paper is to show how to use an inexpensive
modification of RTM to approximate the inverse Gauss-Newton Hessian, or pseu-
doinverse of the Born modeling operator (Hou and Symes, 2016), thus achieving
something close to the Gauss-Newton convergence rate with updates of roughly
the same expense as steepest descent. Approximations to the inverse Hessian have
a long history in computational work on FWI. Many authors have used a diago-
nal or small-bandwidth approximation to the inverse (Chavent and Plessix, 1999;
Shin et al., 2001; Operto et al., 2004), or a version of the Generalized Radon Trans-
form (Kirchhoff, ray-Born,...) inversion (Jin et al., 1992; Qin et al., 2015; Métivier
et al., 2015), to accelerate FWI iterations. Our work is close to the latter in spirit,
however we use an approximate inverse or “true amplitude migration” opera-
tor that does not require any ray-tracing computations. Similar true amplitude
migration operators have been discussed by others (Xu et al., 2011; ten Kroode,
2012), in the context of reconstructing angle-based reflectivity. Hou and Symes
(2015b) provide an equivalent construction in the subsurface offset domain, and
assess its accuracy as an approximate inverse. Subsequently we showed that this
approximate inverse is very effective for accelerating linearized inversion (“least
squares migration”), both in the subsurface offset domain (Hou and Symes, 2015a)
and for physical domain least squares (Hou and Symes, 2016). Here we illustrate
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a similar effect for nonlinear full waveform inversion.

This paper is organized as follow: we first review the theory of FWI and com-
mon numerical algorithms used for optimization; we then show how to precon-
dition the gradient and modify the approximate inverse operator; we end with
numerical test on 2D Marmousi model, demonstrating FWI with preconditioned
gradient exhibits faster convergence than both steepest (gradient) descent method
and L-BFGS method, all equipped with the same backtracking line search.

THEORY

The 2D wave equation in acoustic constant density medium can be expressed as

1
v2(x)

∂2u

∂t2
(x, t)−∇2u(x, t) = f (t,x,xs);

u(x, t) ≡ 0, t� 0.
(1)

Here x denotes the location in the modeling region, v(x) is the acoustic velocity,
u is the acoustic potential and f is the source term, also parametrized by source
position xs and time t. The forward modeling operator F maps the model m = v2

to seismic data d :
F [m] = d. (2)

FWI is often formulated as an optimization problem by minimizing the following
objective function :

J[m] =
1
2
||F [m]−do||2[+regularizing terms]. (3)

Here m is the velocity model to recover, do is the observed seismic data and || · ||2
stands for L2 norm.

Iterative Optimization

Iterative methods for minimization of J[m] increment the model along a search
direction p:

mi+1 = mi +αipi , (4)
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where i is the iteration number and αi is a step length, chosen by an approximate
optimization along the line through mi in direction pi , to reduce the objective
function.

Steepest (or gradient) descent uses the negative gradient of J as search direc-
tion:

pi = −gi = −FT (F [mi]−do). (5)

Here gi represent the gradient, F = DF is the derivative of F with respect to
model, also known as the Born modeling operator. The superscript T denotes the
adjoint operator, defined with respect to the Euclidean inner product via the “dot
product test”:

FT δd · δm = δd ·Fδm, (6)

asserted to hold for any data perturbation δd and model perturbation δm. FT is a
version of the RTM operator, for which relatively efficient computational methods
are available (Plessix, 2006).

The update direction for Newton’s method is the solution of a linear system:

FT Fpi +D2F T (pi ,F −do) = −gi . (7)

Compared to steepest descent, Newton’s method converges extremely fast, at least
near the minimum of the objective function. This is because the solution of the
Newton system 7 compensates for the ill-conditioning mentioned earlier and to
some extent for the nonlinearity of the objective function. The second term on
the left-hand side of equation 7 vanishes when the model precisely predicts the
data, and may be viewed as a nuisance, as it involves the second derivative of the
modeling operator (however see Métivier et al. (2014), who show the importance
of this term when nonlinear (multiple) scattering is strong). The Gauss-Newton
method neglects the second term, and computes pi as the solution of

FT Fpi = −gi . (8)

Whether Newton (equation 7) or Gauss-Newton (equation 8 updates are chosen, a
very large linear system must be solved, necessarily by an iterative method such as
conjugate gradients (Nocedal and Wright, 1999; Akcelik et al., 2003). As a result,
each iteration typically requires a considerable number of inner iterations to solve
for pi , each inner iteration involving a Born modeling - RTM cycle.

Quasi-Newton methods build up an approximation to the solution pi of either
equation 7 or 8 using a generalization of the secant method, combining current
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gradient and previous search directions (Nocedal and Wright, 1999) to produce a
low rank approximation to the operator on the left hand sides of these equation,
allowing easy solution. An example is the BFGS algorithm. The limited memory
version BFGS method, L-BFGS, avoids excessive memory use by storing only a
limited number of previous search directions on a first-in, first-out basis (Nocedal
and Wright, 1999).

Approximating Gauss-Newton

In this section, we will show how to approximately solve the Gauss-Newton sys-
tem 8 by applying an inexpensive modification to the RTM operator. The update
direction (or preconditioned gradient) for this method is

pi = −F†(F (mi)−d) (9)

where the modified RTM operator F† approximates the pseudoinverse of the Born
modeling operator (FT F)−1FT .

The approximate pseudoinverse used in our work originates in the construc-
tion of a computable approximate inverse to the subsurface offset extended Born
modeling operator F̄, which acts on model perturbations depending on a subsur-
face offset (h-) axis (ten Kroode, 2012; Hou and Symes, 2014, 2015b):

F̄† =W −1
modelF̄

TWdata, (10)

where W −1
model = 4v5

0LP , Wdata = I4
t DzsDzr . L is similar to the Laplacian: in the

wavenumber domain, it is multiplication by |kxz||khz|. It is time integration. F̄T is
the Euclidean adjoint of F̄ (extended RTM) andDzs ,Dzr are the source and receiver
depth derivatives. P is an oscillatory integral operator approximately equal to 1
for nearly focused images. We will deal here only with the focused case (kinemat-
ically data-consistent velocity model), so we will neglect P . Since the extended
image volume is then focused at h = 0, we can neglect the energy at nonzero h,
so replace F̄T with ordinary (non-extended) FT (RTM) in equation 9 to obtain an
approximate pseudoinverse for F (Hou and Symes, 2016):

F† =W −1
modelF

TWdata. (11)

In this case, only Wmodel depends on the subsurface offset h, and can be simply
applied by padding with zeroes along the subsurface offset axis. Alternatively, we
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can use operators defined only on non-extended (h = 0) models and data pertur-
bations: W −1

model = 8v4
0 |kz|, Wdata = |ω|I4

t DzsDzr . This reformulation arises from the
ray geometry of reflection in the focused case, as shown in Figure 1 : at h = 0,

|kxz| = 2
|ω|
v0
cosθ

|khz| =
|kz|
cosθ

.

(12)

ψ
ψ

β α

θθ

ψ

xs xr

Reflector

ks

kr

kh

kxzkhz

Figure 1: Sketch of the subsurface for h = 0. xs ,xr represent the location of the source and receiver; ks ,kr are the slowness
vectors of the source and receiver rays; kh is symmetric to ks in terms of vertical axis; θ is half of the angle between ks
and kr ; α is the incident angle between source ray and vertical direction; β is the incident angle between receiver ray and
vertical direction; ψ is half of the angle between kh and kr .

Notice the weight operators Wmodel, Wdata in either case are filters, and to-
gether are of order zero in frequency. Therefore, they will not change the fre-
quency balance of the RTM image volume, but only alter amplitude and phase.
Notice also that the approximate inverse operator has almost the same computa-
tional cost as the conventional RTM operator.

FWI with Approximate Gauss-Newton Iteration

FWI can be implemented in both time domain and frequency domain. Here we
will test in time domain only. The workflow of FWI with the approximate Gauss-
Newton, or preconditioned gradient descent, method is :

1. compute the data residual and its norm (equation 3);

2. apply the approximate inverse operator on the data residual (equation 9);

3. determine a suitable step length αi using backtracking line-search method;

4. update the velocity model (equation 4).
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NUMERICAL EXAMPLES

We apply the algorithm described above to an example based on the Marmousi
model (Versteeg and Grau, 1991). The model is resampled to 20 m grid. A 500
m water layer (not shown in the figures) is added on the top. A fixed spread of
231 sources and 461 receivers are placed at 20 m below the surface. A 2-8 finite
difference scheme is used to simulate 4 s seismic data. The source, regarded as
known in these experiments and not updated, is a (2.5-5-20-25)-Hz band pass-
wavelet with 2ms time sample. The initial model (Fig 7b) used in FWI is the
smoothed version of the true model (Fig 5).

Both the gradient and preconditioned gradient at the first iteration are shown
in Fig 2. The amplitude distribution of the preconditioned gradient is clearly
more balanced: both the shallow part and the deep part are well recovered, while
most of the energy in the conventional gradient focuses in the shallow part.

Figure 2: (a) Gradient; (b) Preconditioned gradient for the first iteration.

We then optimize FWI objective function with both gradient descent method
and L-BFGS method. The gradient descent method will be applied with both the
conventional gradient and preconditioned gradient; as explained above, in the
second case, the iteration approximates the Gauss-Newton method. The conver-
gence history is shown in Figure 3. We can see the approximate Gauss-Newton
method reduces the objective function to 1 % of its initial value in 10 iterations,
whereas steepest descent and L-BFGS, respectively, achieves to reduce the residual
only to 30 % and 15 % in 40 iterations.

Figure 6 displays the result of 100 steepest descent iterations; Figure 8, the
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Figure 3: Blue line: residual for the steepest descent method, relative to initial residual. Red line: relative residual for
approximate Gauss-Newton method. Cost per step is approximately the same. Green line: residual for the L-BFGS method.

result of 40 L-BFGS; Figure 7, 1 iteration of approximate Gauss-Newton itera-
tion; and Figure 9, 40 iterations of approximate Gauss-Newton iteration. We set
the L-BFGS iteration to retain 15 prior search directions. We can see 1 iteration of
approximate Gauss-Newton method gives a result comparable to that of 100 itera-
tions of steepest descent or 40 L-BFGS iterations. All three algorithms can recover
the shallow part of the model accurately, but only approximate Gauss-Newton
recovered the deep part at all well.

Figure 4: Smoothed version of true model as initial guess



Preconditioned FWI 11

Figure 5: Marmousi model

Figure 6: Recovered model after 100 iteration steepest descent method
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Figure 7: Recovered model after 1 iteration approximate Gauss-Newton method

Figure 8: Recovered model after 40 iteration L-BFGS method
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Figure 9: Recovered model after 40 iteration approximate Gauss-Newton method

DISCUSSION AND CONCLUSIONS

We have described a preconditioned gradient descent algorithm that approxi-
mates the Gauss-Newton algorithm and its rate of convergence, by replacing the
adjoint (RTM) operator in the definition of FWI gradient with an approximate in-
verse operator. In an initial test using the Marmousi velocity model, the approx-
imate Gauss-Newton algorithm significantly outperformed both steepest (gradi-
ent) descent and L-BFGS iterations. Most importantly, the proposed algorithm
has computational cost per iteration roughly equal to that of the steepest descent
method, that is, computation of the FWI gradient.

Several fundamental puzzles deserved mention. The approximate pseudoin-
verse to the Born modeling operator, at the heart of the approximate Gauss-
Newton method, is based on high-frequency asymptotic analysis of Born scatter-
ing, even though the actual computations do not involve any ray tracing or other
asymptotic calculations. The asymptotic analysis assumes separation of scales, a
model/data relationship not required for the formulation of FWI, and not valid in
principle for the model in our example (Marmousi). We do not at present under-
stand the apparent effectiveness of the algorithm in this setting. Multiparameter
models (variable density acoustics, elasticity) may admit a similar approach. We
do not begin to understand how to formulate high frequency asymptotic approx-
imation in the presence of attenuation.

Finally, we note that the algorithm described here does not solve the cycle-
skipping problem. The standing assumption in this work is that the initial ve-
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locity model predicts traveltimes within at most a half-wavelength error at sig-
nificant S/N. Given that assumption, the approximate Gauss-Newton algorithm
appears to offer significant efficiency advantages over other common approaches
to FWI.
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totic iterative elastic inversion: Geophysical Journal International, 108, 575–
588.

Lailly, P., 1983, The seismic inverse problem as a sequence of before-stack migra-
tions, in Conference on Inverse Scattering: Theory and Applications: Society
for Industrial and Applied Mathematics, 206–220.

Métivier, L., F. Bretaudeau, R. Brossier, S. Operto, and J. Virieux, 2014, Full wave-
form inversion and the truncated newton method: quantitative imaging of com-
plex subsurface structures: Geophysical Prospecting, 62, 1353–1375.

Métivier, L., R. Brossier, and J. Virieux, 2015, Combining asymptotic linearized
inversion and full waveform inversion: Geophysical Journal International, 201,
1682–1703.

Nocedal, J., and S. Wright, 1999, Numerical Optimization: Springer Verlag.
Operto, S., C. Ravaut, L. Improta, J. Virieux, A. Herrero, and P. Dell’Aversana,

2004, Quantitative imaging of complex structures from dense wideaperture
seismic data by multiscale traveltime and waveform inversions: a case study:
Geophysical Prospecting, 52, no. 6, 625–651.

Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gra-
dient of a functional with geophysical applications: Geophysical Journal Inter-
national, 167, 495–503.

Pratt, R., 1999, Seismic waveform inversion in the frequency domain, part 1: The-
ory, and verification in a physical scale model: Geophysics, 64, 888–901.

Pratt, R. G., C. Shin, and G. J. Hick, 1998, Gaussnewton and full newton methods
in frequencyspace seismic waveform inversion: Geophysical Journal Interna-
tional, 133, no. 2, 341–362.
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Inversion velocity analysis via approximate Born
inversion

Jie Hou*, William W. Symes, The Rice Inversion Project, Rice University

ABSTRACT
Optimization-based Migration Velocity Analysis (MVA) updates long wave-
length velocity information by minimizing an objective function that mea-
sures the violation of a semblance condition, applied to an image volume.
Differential Semblance Optimization (DSO) forms a smooth objective func-
tion both in velocity and data, regardless of the data frequency content. De-
pending on how the image volume is formed, however, the objective function
may not be minimized at a kinematically correct velocity, a phenomenon char-
acterized in the literature (somewhat inaccurately) as “gradient artifacts”. In
this paper, we will show that the root of this pathology is imperfect image
volume formation resulting from various forms of migration, and that the use
of linearized inversion (least squares migration) more or less eliminates it. We
demonstrate that an approximate inverse operator, little more expensive than
RTM, leads to recovery of a kinematically correct velocity.

INTRODUCTION

Full waveform inversion (FWI) (Lailly, 1983; Tarantola, 1984; Virieux and Op-
erto, 2009) is capable of recovering detailed models of the subsurface structure
through a waveform-based data-fitting procedure. However, it may stagnate at
physically meaningless solutions in the absence of a kinematically accurate start-
ing model. Within the limitation to single scattering, migration velocity analysis
(MVA) (Yilmaz and Chambers, 1984; Yilmaz, 2001) complements FWI by extract-
ing long scale velocity. Image domain MVA involves construction of an extended
image volume, which not only depends on the image point but also on an extra
parameter (e.g surface offset, subsurface offset, incidence angle). When velocity
and data are kinematically compatible, this volume should have particularly sim-
ple structure (flat, focused,...). Deviations from this semblance principle can be

17
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used to drive velocity updates, either by direct measurement (eg. residual move-
out picking, (Stork, 1992; Lafond and Levander, 1993; Liu and Bleistein, 1995;
Biondi and Sava, 2004)) or via optimization of an objective function.

This paper focuses on a particular choice of optimization approach, namely
differential semblance optimization (DSO) in the subsurface offset domain (Symes,
2008). Implementations of this MVA approach have been based on double square
root migration (Shen et al., 2003), one-way shot record migration (Shen and Symes,
2008), RTM (Shen, 2012; Weibull and Arntsen, 2013), and various sorts of inver-
sion (Biondi and Almomin, 2012; Liu et al., 2014; Lameloise et al., 2015). Both
numerical and theoretical (Symes, 2014; ten Kroode, 2014) evidence suggest that
this approach should be effective in recovering velocity macromodels under fail-
ure conditions for FWI. However other studies have suggested that the method
may produce poor velocity update directions, in particular that the objective gra-
dient may be contaminated with artifacts that prevent rapid convergence to a cor-
rect velocity (Fei and Williamson, 2010; Vyas and Tang, 2010).

We show here that use of (linearized) inversion to create image volumes largely
eliminates the “gradient artifact” pathology, and describe a computationally effi-
cient method to achieve this goal. In fact, the “artifacts” actually are features of
the objective function definition, not of the gradients. This is not a new obser-
vation: Khoury et al. (2006) showed that subsurface offset DSO, using common
azimuth migration to construct the image volume, could produce erroneous ve-
locities returning lower objective function values than the “true” velocity. Liu
et al. (2014); Lameloise et al. (2015) confirm this observation and show that use
of inverted (rather than migrated) image volumes tends to improve DSO velocity
updates, essentially because the inverted image volume is much better focused at
the target velocity. Our innovation is to show that good velocity updates may be
achieved with image volumes obtained by an approximation to linearized inver-
sion, costing little more than RTM and involving no ray-theory computations (ten
Kroode, 2012; Hou and Symes, 2015).

In this paper, we will compare three different imaging operators : conventional
RTM operator, the adjoint of the extended Born modeling operator and an approx-
imate inverse to the extended Born modeling operator. The conventional RTM
operator only involves cross-correlating the forward source wavefield and back-
ward receiver wavefield. The adjoint operator differs the RTM operator by time
derivatives and velocity scaling. Hou and Symes (2015) modify the adjoint op-
erator into an approximate inverse operator by applying model and data-domain
weight operators. To distinguish it from the other possibilities, we call MVA with
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the approximate inverse operator Inversion Velocity Analysis (IVA).

In the following sections, we will first review the theory of MVA via DSO in
the subsurface offset domain; we then compare three imaging operators and their
possible influence on the DSO objective function; we end with numerical test on
2D Marmousi model, demonstrating that better imaging leads to better velocities.

THEORY

The 2D constant density acoustic Born modeling operator F[v0] can be expressed
as

(F[v0]δv)(xs,xr, t) =
∂2

∂t2

∫
dxdhdτG(xs,x− h,τ)

× 2δv(x)
v0(x)3 G(x + h,xr, t − τ).

(1)

Here δv is the model perturbation or reflectivity, v0 is the background velocity
model and G is the Green’s function.

The Born inverse problem is to fit data d(xs,xr, t) by proper choice of v0(x) and
δv(x). As explained for example in Symes (2008), data fit is impossible unless v0 is
kinematically correct to within a half-wavelength error in traveltime prediction.
On the other hand, if δv is extended to depend on subsurface offset h, that is,
replaced by δv̄(x,h) and used as input in an extended Born modeling operator F̄,

(F̄[v0]δv̄)(xs,xr, t) =
∂2

∂t2

∫
dxdhdτG(xs,x− h,τ)

× 2δv̄(x,h)
v0(x)3 G(x + h,xr, t − τ).

(2)

then any model consistent data d can be fit with essentially any v0 by proper
choice of δv̄. The extended modeled data F̄[v0]δv̄ is equal to the (non-extended)
Born modeled data F[v0]δv when δv̄(x,h) = δv(x)δ(h), that is, when δv̄ is focused at
h = 0, which is the semblance condition for subsurface offset extended modeling.
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Imaging Operators

The conventional RTM with space shift imaging condition is often formulated as

I(x,h) =
∫
dxsdxrdtdτG(xs,x− h,τ)

×G(x + h,xr, t − τ)d(xs,xr, t),
(3)

where d is seismic reflection data. It is, however, not exactly the adjoint to the
extended Born modeling operator, which is

I(x,h) =
2

v0(x)3

∫
dxsdxrdtdτG(xs,x− h,τ)

×G(x + h,xr, t − τ)
∂2

∂t2
d(xs,xr, t).

(4)

The difference is minor: the velocity scaling and second time derivative. Nonethe-
less, the time derivative is quite important in the sense that the extended normal
operator F̄T F̄ is order zero. Without the time derivative, the frequency compo-
nents will be affected. Hou and Symes (2014, 2015) modify the adjoint operator
into an approximate inverse to the extended Born modeling operator, by applying
model and data domain weight operators. It has the form,

F̄† =W −1
modelF̄

TWdata, (5)

with
W −1

model = 4v5
0LP , Wdata = I4

t DzsDzr . (6)

Here L =
√
∇2

(x,z)∇
2
(h,z), It is time integration, F̄T is the adjoint of extend Born mod-

eling operator and Dzs ,Dzr are the source and receiver depth derivatives. P is a
Fourier-like operator and approximately equal to 1 near h = 0, and will be ne-
glected.

Differential Semblance Optimization

The DSO objective function is

J[v] =
1
2
||hI(x,h)||2, (7)
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in which I(x,h) is produced via the application of either RTM (equation 3), adjoint
Born modeling (equation 8), or the approximate inverse F̄† (equation 9) to the
data. Since the image volume depends on v0, so does J .

To examine the effect of imaging operator choice, we first plot the objective
function values along a line segment in velocity model space. The model we use
combines a constant background velocity model (2.5 km/s) and single flat reflec-
tor at 2 km depth. All three imaging operators are applied on the tapered Born
data with a range of velocities : from 2 km/s to 3 km/s. The objective function
values for different velocities are then plotted in Figure 2. All three objective
functions are smooth in velocity and unimodal. However, only the objective func-
tion using the approximate inverse operator reaches the minimum at the correct
velocity. Both the RTM and adjoint operator version shift toward lower velocity
(RTM: 2200 m/s; Adjoint operator : 2400 m/s). Moreover, the objective function
using approximate inverse better resolves the minimizer.
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Figure 1: Normalized objective function with three different imaging operators. The velocity ranges from 2 km/s to 3km
/s.

NUMERICAL EXAMPLES

The comparison is performed on a truncated Marmousi model (Versteeg and Grau,
1991). The true model, shown in 4a, is a smoothed version of the original model,
in order to be wary of low frequency noise in the RTM image. The synthetic data
is generated with 2-8 finite difference modeling. The acquisition geometry is a
fixed spread of 151 sources and 301 receivers at 20 m depth. A (2.5-5-20-25)-Hz
bandpass wavelet with 2ms time sample is used to generate 3s Born data. Opti-
mization is carried out with L-BFGS algorithm (Nocedal and Wright, 1999). We
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set the L-BFGS iteration to retain 20 prior search directions. We start the opti-
mization from a highly smoothed initial model (Figure 4b).
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Figure 2: Normalized convergence curves for three different imaging operators. The solid line is the convergence curve
and the dashed line is the objective function value at the correct velocity. The green line represents the RTM operator; the
blue line represents the adjoint operator; the red line represents the approximate inverse operator.

25 iterations L-BFGS are used to generate the results. Figure 3 displays the
normalized convergence curves for the optimization with different imaging oper-
ators. All three convergence curves mangage to go beyond the objective function
value at the correct velocity, indicating that the objective function doesn’t reach
the minimum at the correct velocity value. Among them, the approximate in-
verse version gives the best objective function behavior in the sense that both the
objective function value at correct model and the discrepancy between the con-
verged value and objective function value at the correct model are the smallest.
Figure 3 shows a comparison of the true, initial, updated models with three dif-
ferent imaging operators. As can be seen in the comparison, same optimization
procedure with different imaging operators can produce quite different results.
All five models are then used as background model to apply approximate inverse
operator on the synthetic data (equation 9). Figure 4 compares the zero-offset im-
ages. All three recovered models significantly improve the quality of the images,
compared to the clearly distorted initial image. Careful examination reveals that
the result using approximate inverse operator is more correct: the location of the
reflectors and the amplitude are closer to the image with true velocity. Finally, six
offset gathers are pulled out from the middle of the image volume to compare in
Figure 5, demonstrating approximate inverse operator produces a more focused
image volume.



IVA 23

Figure 3: (a) True model; (b) Initial Model; 25 iteration L-BFGS result for (c) RTM operator; (d) the adjoint operator; (e) the
approximate inverse operator.
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Figure 4: Zero-offset approximate inverse image associated with different velocity models shown in Figure 3.



IVA 25

Figure 5: Image gathers in the subsurface offset domain corresponding to the images in Figure 4.
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CONCLUSIONS

We have compared velocity analysis via DSO with three different imaging oper-
ators and analyzed their corresponding performance. The numerical examples
show that the closer that the imaging operator to inversion, the better the DSO
velocity estimate. An approximate inverse as in Hou and Symes (2015) adds no
additional cost but improves velocity estimation substantially.
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ABSTRACT
Matched Source Waveform Inversion (MSWI) uses non-physical (extended)
synthetic energy sources to maintain waveform data fit throughout nonlinear
inversion. A maximal variant of this approach extends the synthetic source to
the entire space-time volume. Velocity is updated via a penalty on the spread
of the synthetic source away from the physical source location: reducing this
penalty by focusing the source at its correct location forces the velocity to
achieve kinematic consistency with the data. Because data fit is maintained
during this process, the stagnation typical nonlinear full waveform inversion
is avoided, and convergence to an acceptable velocity is obtained without ex-
tremely low frequency data or particularly accurate starting models.

INTRODUCTION

Full waveform inversion (FWI) can provide detailed maps of subsurface medium
parameters, such as compressional wave velocity and density, by iteratively up-
dating these parameters to optimize the fit between simulated data and recorded
seismic data in the least squares sense (Tarantola, 1984a,b). However, both syn-
thetic and field data examples illustrate the tendency of FWI to stagnate at unsat-
isfactory solutions (often described as local minima) with large data misfit, unless
the method is provided with an initial model that predicts arrival times to within
a half-period in the lowest usable data frequencies (Bunks et al., 1995; Pratt, 1999;
Virieux and Operto, 2009). Initial models and/or low frequency data of suitable
accuracy are sometimes acquired, and in that case FWI imaging may yield signifi-
cant improvements over other methods (Vigh et al., 2010; Plessix et al., 2010), but
such information is not always available.

29
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The approach to nonlinear waveform inversion reported in this paper belongs
to a variant of FWI, in which additional parameters are added to the model so that
data fit can be maintained throughout the update process. Such model extensions
are non-physical, and must be suppressed during the course of the inversion by
means of a penalty term added to the data misfit term of ordinary FWI. Many
forms of model extension have been explored. The space-time source extension
used in the work reported below adds to the model distributed synthetic energy
sources, occupying the entire space-time volume used for wave modeling. These
extended sources are adjusted, together with the velocity model, so that data is fit
and while source energy is focused at the physical source positions. When both
goals are achieved, the FWI problem is solved.

Various source extensions have been explored in prior work (Song and Symes,
1994; Symes, 1994; Plessix, 2000; Plessix et al., 2000; Pratt and Symes, 2002; Gao
and Williamson, 2014; Warner and Guasch, 2014). Most of these works use the
source-receiver extension, in which a (possibly) different source wavelet (at the
physical source location) is used to model each data trace, and a penalty is im-
posed for trace dependence of the sources. Huang and Symes (2015a) apply this
concept to crosswell tomography, and show that with suitable choice of penalty,
provided that no caustics (or multiple energy paths) occur between source and
receiver, the objective of this extended version of FWI has the same stationary
points as does the traveltime tomography objective, and in particular is convex
over a much wider domain in model space than is the FWI objective. As will be
explained below, inversion based on the space-time source extension appears to
have the same tomographic property but without the requirement that the wave-
field be free of caustics.

We mention that another genre of model extension, involving addition of non-
physical axes to velocity and other mechanical parameters of the subsurface, has
also been explored extensively (Shen and Symes, 2008; Biondi and Almomin,
2012, 2014; Lameloise et al., 2015), also (Symes, 2008) for a survey of older work.
These mechanical parameter extensions may achieve roughly the same tomo-
graphic goals as do source extensions of the type discussed here, under various
conditions.
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THEORY

We model seismic wave propagation using the constant density acoustic wave
equation with isotropic point source. The pressure field u(x, t;xs) for the source
position x = xs satisfies (

1
v2
∂2u

∂t2
−∆u

)
(x, t;xs) = f (t)δ(x− xs) (1)

u|t=0 =
∂u
∂t

∣∣∣∣
t=0

= 0 (2)

The forward operator S[v]f which relates the velocity v(x) and wavelet function
f (t) to the scattering field at the receiver xr , i.e.,

S[v]f (xr , t;xs) = u(xr , t;xs). (3)

Conventional full waveform inversion based on this model consists in finding the
pair (v,f ) such that the residual wavefield is minimized in the least squares sense:

JFWI[v,f ] =
1
2

∑
xs,xr

∫
|S[v]f (xr , t;xs)− d(xr , t;xs)|2dt.

where d(xr , t;xs) is recorded data.

Extended Model and Annihilator

The extended seismic wavefield ū corresponding to the extended source model f̄
and velocity v satisfies a modification of equation 1:

1
v2
∂2ū

∂t2
−∆ū = f̄ (x, t,xs) (4)

ū|t=0 =
∂ū
∂t

∣∣∣∣
t=0

= 0 (5)

The extended forward modeling operator is defined by

S̄[v]f̄ (xr , t;xs) = ū(xr , t;xs). (6)

Note that the dimensional of data space is smaller than that of the extended source
function space, so it is hardly surprising that we can easily fit the data, that is,
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solve d = S̄[v]f̄ by adjusting f̄ for more or less arbitrary v. That is, we now have
too many solutions of the inverse problem. To eliminate the nonuniqueness, note
that the extended model should be reduced to f̄ (x, t,xs) = δ(x − xs)f (t) if given
the true velocity, which motivates us to introduce an annihilator A to penalize
nonphysical source energy away from x = xs. Many such annihilators exist. In
this work we use

Af̄ (x, t;xs) = |x− xs|f̄ (x, t;xs). (7)

Matched Source Waveform Inversion (MSWI)

We combine a data fitting term using the the extended forward map 5 with the
mean-square of the annihilator output 2 to produce the matched source waveform
inversion (MSWI) objective function,

Jα[v, f̄ ] =
1

2α

∑
xr ,xs

∫
|S̄[v]f̄ (xr , t;xs)− d(xr , t;xs)|2dt

+
1
2

∑
x,xs

∫
|Af̄ (x, t;xs)|2dt. (8)

Note that the MSWI objective functional is quadratic with respect to extended
source function f̄ , though it is still nonlinear in velocity v. It is therefore natural
to adopt a nested approach: solve first for f̄ - a linear, hence presumably easier
problem - to create a reduced objective depending only on v, then minimize the
reduced objective over v. Nested optimization of partially linear objectives was in-
troduced under the name Variable Projection Method (VPM) by Golub and Pereyra
(1973, 2003) and used to estimate sources and parameter perturbations in wave-
form inversion (van Leeuwen and Mulder, 2009; Rickett, 2012; Li et al., 2013). In
fact, VPM and similar nested algorithms were used in extended waveform inver-
sion from the beginning (Kern and Symes, 1994), and for essential reasons, not
merely as a computational convenience (Huang and Symes, 2015b).

Algorithm 1. VPM for MSWI Method

1. Define the v-dependent extended source f̄ [v], by minimizing the objective 8 over f̄ :
this amounts to solving the normal system

(S̄[v]T S̄[v] +αATA)f̄ [v] = S̄[v]T d. (9)
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2. Minimize over v the reduced objective function,

Jredα [v] =
1

2α

∑
xr ,xs

∫
|S̄[v]f̄ [v]− d|2dt +

1
2

∑
x,xs

∫
|Af̄ [v]|2dt
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Figure 1: Amplitude of the backpropagation wavefield S̄T d for (a) true velocity, (b) 10% low velocity, and (c) 10% high
velocity

To illustate the mechanics of this algorithm, we use a time-harmonic transmis-
sion inversion problem for which the correct velocity is the constant v = 2 km/s.
Put the single source at xs = (2,0.6) km, and record data at zr = 2 km from xr = 0
km to xr = 4 km. The input source frequency is 10 Hz. We compare the amplitude
of backpropagation S̄[v]T d of the recorded data, i.e. the right hand side of (9), for
true velocity and 10% low and high velocity as showed in Figure 1a-1c. In fact,
this field is proportional to the first iteration of any gradient-descent method for
solving 9, so can serve as a proxy for the solution. Only for the correct velocity is
this wavefield focused at the source position, while for other velocities it is not.
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Zhang and Gao (2008), Zhang and Wang (2009), and Jin and Plessix (2013) base
algorithms for velocity updating on this principle, measuring energy spread via
an operator similar to our A. Note that the actual solution f̄ of the least-squares
problem 9 is much better focused, just as least-squares migration generally pro-
duces a better focused image than RTM, and therefore is a more sound basis on
which to base a velocity update.

NUMERICAL EXAMPLES

We adopt the frequency continuation approach to solve the MSWI problem op-
timized by steepest descent gradient method with backtracking line search. For
each frequency, a model update is constructed with a fixed number of steepest
descent gradient iterations. The updated model is taken as the initial model for
inversion at the next frequency. During each iteration, we use a direct matrix solve
(Gaussian elimination) to solve the normal equation (9), which requires forming
the matrix of the normal operator, to guarantee the accuracy of the gradient.
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Figure 2: Transmission configuration: (a) target velocity; (b) shot gather at xs = 1km
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Figure 3: Inverted models after 25 iterations of (a) MSWI and (b) FWI.

Example 1 (Transmission). The model (Figure 2a) contains a low velocity anomaly
embedded in a constant velocity background. 197 receivers are placed at depth zr = 1.99
km from 0.02 km to 1.98 km, spaced 0.01 km apart. 50 shots are placed at depth
zs = 0.01 km from 0.02 km to 1.98 km, shot interval 0.04 km. The frequencies used in
inversion are f = 6,10,14,18 Hz. The regularization parameter α = 10−6.
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Figures 2a-2b show the true velocity and recorded data at the center shot, re-
spectively. The inverted models after 25 iterations for each frequency by MSWI
and FWI method are shown in Figure 3a-3b, respectively. Due to the absence of
the low velocity anomaly, the initial velocity produces a big arrival time error in
the predicted data, which causes FWI to fail, while the main low velocity feature
is inverted by MSWI to high precision.
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Figure 4: (a) True velocity; (b) ray trace at the first shot position xs = 0.05km

Example 2 (Diving Wave). The model consists of a low velocity Gaussian anomaly
embedded in linear increasing background velocity. 200 receivers are placed at depth
zr = 0.04 km from xr0.02 km to 7.98 km with dxr = 0.02 km. 80 shots are placed at
depth zs = 0.02 km from xs = 0.05 km to 7.95 km with dxs = 0.1 km. Successively
inversion frequencies are f = 6,7,8,9,10 Hz. The regularization parameter α = 10−3.

The true velocity is shown in Figure 4a. We perform the ray trace on this
model as depicted in Figure 4b. As we can see, there are three types of waves
arriving at receivers including direct wave, diving waves, and later arrivals due
to the low velocity anomaly. We start the inversion with the correct background
(linear) velocity. The initial velocity and inverted velocity are displayed in Figure
5a-5c after 25 iterations for each frequency. The low velocity anomaly is well
reconstructed (Figure 4a).

Example 3 (Marmousi Model). The Marmousi model (Bourgeois et al., 1991) is mod-
ified by adding 0.2 km water on the top. Thus the model is 9.2 km in horizontal extent
3.2 km deep. We generate 114 shots starting at xs = 0.08 km to 9.12 km with dxs = 0.08
km at depth zs = 0.16km. The receivers are placed at depth zr = 0.04 km from xr = 0.08
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Figure 5: (a) Initial velocity; inverted velocity by (b) FWI method and (c) MSWI using (6-10) Hz data

km to 9.12 km with dxr = 0.04 km. Thus each shot generates 227 traces. 5 frequencies
are used in the inversion: 4, 5, 6, 7, and 8 Hz. The regularization parameter α = 10−3.

To avoid the obvious “inverse crime”, we generate the synthesized data using
a finer mesh than is used in the inversion. The target velocity model, 1D linear
increasing initial velocity and the inverted velocity after 50 iterations for each
frequency are shown in Figure 6a-6c from top to bottom. The inverted and tar-
get velocities are quite close, allowing for the limited resolution available to the
inversion due to limited frequency range.

DISCUSSION AND CONCLUSION

MSWI is one kind of nonlinear waveform inversion that imposes few constraints
on the model or data geometry, hence can succeed with many kinds of waveform
data, including transmission, reflection and diving/refraction, without any pre-
processing. The source focus annihilator (A in equation 2) forces the extended
source to focus at survey source positions, and leads to a velocity update not de-
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Figure 6: (a) Marmousi model; (b) 1D initial velocity; (c) inverted velocity after 50 MSWI iterations at each frequency.

pending on prior knowledge of the source, an estimate for which is a by-product
of the inversion. The data is fit throughout by appropriate choice of the weight α,
allowing the method to avoid the stagnation at poorly-fitting models that appears
to afflict FWI.

MSWI with space-time extension, as defined here, is closely related to Wave-
form Reconstruction Inversion (WRI) (van Leeuwen and Herrmann, 2013). WRI
updates the velocity model via minimization of the minimum mean square error
by which a trial wavefield u fails to solve the wave equation 1, penalized by a
multiple of its mean square data misfit. The residual solution error field is exactly
the extended source f̄ of the present paper, which corresponds 1-1 with the trial
wavefield u via the uniqueness theorem for the inhomogeneous wave equation.
Besides focusing on the right-hand side rather than the solution, the approach ex-
plained here employs a different annihilator than do van Leeuwen and Herrmann
(2013).

The implementation used in the examples presented here was formulated in
the 2D frequency domain. Direct extension to 3D would require solution of the
3D Helmholtz equation, currently a limiting factor. Alternatively, 3D time do-
main solution is certainly possible in principle, but requires storage of the full
space-time source wavefield f̄ . Extension to 3D therefore requires either very
large floating point or very large storage requirements, a limitation it shares with
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several other alternatives to FWI. On the other hand, extension to more general
physics, for example various flavors of elastodynamics, is in principle straightfor-
ward.
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ABSTRACT
Matched source waveform inversion via volume extension introduces addi-
tional, non-physical sources acting at time t = 0. The extra sources permit
the data to be fit well, even when velocity is kinematically inconsistent with
data. Assuming point or near-point sources at known locations, a distance-
weighted penalty on source energy is minimized when the data is fit and the
sources act only at the known locations, thus solving the FWI problem. Good
data fit throughout the inversion process produces a considerably more con-
vex objective function than does the standard data-domain FWI formulation.
A good theoretical foundation for this approach exists for pure transmission
problems, while numerical examples suggest that in fact it may be a feasi-
ble approach to reflection and transmission inversion (separately or together)
when the data lack adequate S/N at sufficiently low frequencies for conven-
tional FWI to succeed.

INTRODUCTION

Full waveform inversion (FWI) obtains detailed maps of material parameters in-
terior to the earth by matching simulated to recorded data in the least squares
sense (Gauthier et al., 1986; Tarantola, 1984). This highly nonlinear and ill-
posed inverse problem is also computationally large, forcing reliance on iter-
ative optimization methods which may stagnate at geologically uninformative
solutions (Pratt, 1999; Virieux and Operto, 2009). Many alternative methods
have been suggested that may circumvent FWI’s requirement of a starting model
that predicts traveltimes to within one-half wavelength for frequencies with good
S/N. Some recent examples include (Shen and Symes, 2008; Weibull and Arntsen,
2013; Biondi and Almomin, 2014; Warner and Guasch, 2014; van Leeuwen and
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Herrmann, 2013). See Symes (2008) for an overview of older literature on this
topic.

All of the works just cited expand the convergence domain of FWI by adding
parameters to the earth model. The approach presented in this paper belongs
to this model extension genre as well: it is a matched source waveform inversion
method. The physical model consists of coefficients in the wave equation (me-
chanical paramters) and a source mechanism, represented as a right-hand side in
the wave equation. We assume that the physical source is localized, essentially
point-like, and adjoin a non-physical auxiliary source field that acts at t = 0 (an
exploding reflector model, essentially). The role of the auxiliary source field (the
additional parameters in this volume extension of the acoustic model) is to enable
fit to data, for all velocity models, hence the name “matched source”. We penalize
the auxiliary source field by its mean square, weighted by distance to the source:
minimizing this penalty forces the auxiliary source to zero, and recovers the phys-
ical source and thus the solution to the inverse problem, since data fit has been
maintained throughout the process.

The matched source approach was introduced by Symes (1994): the additional
parameters in that work were receiver dependent source wavelets, acting at the
physical source positions. This source-receiver extension has been used in a variety
of contexts (Plessix, 2000; Pratt and Symes, 2002; Luo and Sava, 2011; Warner
and Guasch, 2014). For combinations of acquisition geometry and velocity that
generate unique ray paths between source and receiver, the objective function is
equivalent to the traveltime misfit, which explains the large domain of conver-
gence and essentially tomographic nature of the inversion (Huang and Symes,
2015). However, for more refractive models generating multiple ray paths, the
domain of convergence shrinks to resemble that of FWI (Symes, 1994). The ad-
vantage of the volume extension presented here is the persistence of the large
domain of convergence even for highly refractive models generating multiple ray
paths, as will be illustrated below. The volume extension appears to share this
advantage with the space-time extension, essentially equivalent to Wavefield Re-
construction Inversion (van Leeuwen and Herrmann, 2013). However the volume
extension requires only one time level of the field to be stored, as opposed to the
full space-time (or space-frequency) volume needed (in principle) in WRI.

We describe the volume extension and the matched source inversion based on
it in the next section, along with a sketch of its theoretical justification for trans-
mission inversion (direct or diving waves). Then we present several examples, of
both transmission and reflection inversion.



MSWI via Volume Extension 43

THEORY

We assume that the modeled data d(xr ,xs, t) is the restriction to known survey
source and receiver locations xs,xr , of a solution u to the constant density acoustic
wave equation,

1
v2
∂2u

∂t2
−∆u = δ(x− xs)f (t) (1)

u|t=0 =
∂u
∂t

∣∣∣∣
t=0

= 0 (2)

where v is the unknown seismic velocity, and f (t) is the input source wavelet.

We introduce forward modeling operator S[v]f to relate the velocity v and
source function f (t) to the data as just described. Full Waveform Inversion (FWI)
adjusts the velocity to minimize the difference between the modeled data and
recorded data in the least squares sense, that is,

JFWI =
1
2

∑
xs,xr

∫
|S[v]f (xr ,xs, t)− d(xr ,xs, t)|2dt

Gradient-based optimization methods applied to this problem tend to stagnate
far from a useful model estimate if the initial model is does not predict travel
times of important events in the data to within a half-wavelength at frequencies
with good S/N.

Extended modeling and volume extension

The volume extension is defined by solving the extended acoustic wave equation,

1
v2
∂2ū

∂t2
−∆ū = f (t)δ(x− xs) + f̄ (x− xs)δ(t) (3)

u = 0, t < 0 (4)

Here f (t) is the physical point source wavelet, the pair (f (t), f̄ (x,xs)) is the ex-
tended source, ū(x, t;xs) is the acoustic potential field, and v(x) is the velocity
field. The extended forward modeling operator is defined by sampling the pres-
sure field,

S̄[v](f , f̄ )(xr , t;xs) =
∂
∂t
ū(xr , t;xs). (5)
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If the data d is fit, that is, S̄[v](f , f̄ ) = d, and f̄ vanishes, so that the total source
focuses at the source position xs, then v solves the FWI problem. We introduce a
penalty or annihilator operator A(f , f̄ )(x,xs) = |x− xs|f̄ (x,xs) for which A(f , f̄ ) = 0
precisely when f̄ = 0. Then the solution of the FWI problem also solves

minimize ‖A(f , f̄ )‖2 subject to S̄[v](f , f̄ ) ' d

As unconstrained optimization problems are easier to attack, we introduce a penalty
form of this problem (the variable projection method (Golub and Pereyra, 2003)):
we minimize over v

Jα[v] =
1
2

∑
xr ,xs

(∫
|S̄[v](f , f̄ )− d|2 +α

∫
|A(f , f̄ )|2

)
(6)

s.t. Nα[v](f , f̄ ) ≡ (S̄[v]T S̄[v] +αATA)(f , f̄ ) = S̄[v]T d (7)

for a penalty parameter α > 0 to be determined.

Transmission case

In this section we summarize several important properties of the matched source
waveform inversion problem 6 for slowly varying velocity on the wavelength
scale. In the asymptotic limit, this simply means that the velocity is smooth as
a function of spatial position, so all arrivals are transmitted, i.e. either direct or
diving waves, and no reflections exist in the data. This case applies for example
to crosswell geometry. We will make a number of assertions about S and related
operators, mathematical justifications of which are technical and will be given
elsewhere.

We idealize the receiver arrays to continuous subsets of a receiver surface em-
bedded in space (for example, z = zr), and assume that the extended sources f̄ are
constrained to produce no energy propagation (at least asymptotically) along rays
that graze the receiver array, i.e. are tangent to it at some point. Assuming this
grazing ray constraint, the normal operator Nα[v] defined in equation 7 is contin-
uous in its argument - that is, a small mean-square change in (f , f̄ ) results in a
small mean-square change in Nα[v](f , f̄ ). Also, Nα[v] is regular as a function of v
as well.
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Nα[v] may be rendered invertible by adding a small multiple of the identity
operator (Tihonov regularization). We presume that this has been done, and
treat Nα[v] as invertible. Then it is also possible to show that S̄[v]Nα[v]−1S̄[v]T

is smooth in v. Since J[v] may be re-written as

Jα[v] =
1

2α
〈(I − S̄[v]Nα[v]−1S̄[v]T )d,d〉,

Jα[v] is also smooth in v.

Computationally, the gradient of Jα can be obtained via the adjoint state method
(Plessix, 2006).

Most importantly,Nα is approximately local, in the sense that a high-frequency
pulse input, localized near x in space and near k in phase space, will produce a
high-frequency pulse localized in the same way. That is, Nα does not move events
in the extended source f̄ . For that reason, it is invertible, up to an error of lower
order in spatial frequency: it replaces each localized pulse by a scaled version
of itself, to good approximation, with the scaling being positive it the ray gener-
ated by the position x and momentum k intersects the acquisition geometry. That
is, the part of the extended source that generates waves propagating within the
experimental aperture is recovered by Nα[v]−1, apart from a position- and dip-
dependent scaling.

This within-aperture invertibility differentiates the volume extension from the
source-receiver extension described by Huang and Symes (2015), which has a sim-
ilar invertibility property if the velocity model is sufficiently close to homogenous
that it does not generate multiple ray paths connecting sources and receivers, but
loses invertibility for more complex models.

NUMERICAL EXAMPLES

Example 4 (Crosswell transmission tomography). The model consists of a low ve-
locity Gaussian anomaly embedded in a constant background velocity v0 = 2 km/s. 99
receivers are placed at depth zr = 1.98 km from 0.02 km to 1.98 km with dxr = 0.02
km for all of 24 shots at depth zs = 0.02 km from 0.08 km to 1.92 km with dxs = 0.08
km to imitate transmission problem. In both volume-based MSWI and FWI we invert
the data simultaneously with frequencies from f = 9 Hz to f = 20 Hz.
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Figure 1: Transmission configuration: (a) true velocity; (b) initial constant velocity
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Figure 2: Shot gather at xs = 1km for (a) true velocity and (b) initial constant velocity
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Figure 3: Inverted velocity after 50th iterations by (a) volume-based MSWI method and (b) FWI method
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Figure 1a-1b shows the target velocity and the initial velocity, respectively. The
recorded data and initial data are ploted in Figure 2a-2b, which show that there
is significant multipathing present in the data and a large traveltime difference
between recorded data and initial data. The inverted results by MSWI and FWI
after 50 LBFGS iterations are shown in Figure 3a-3b, respectively. As expected,
FWI fails due to the large traveltime mismatch in the initial model, whereas MSWI
recovers a reasonable velocity estimate.

We note that the MSWI based on source-receiver extension (Huang and Symes,
2015) also fails to invert this example, due the multipathing and consequent loss
of normal operator invertibility for that extension.

Example 5 (Reflected wave tomography). The model consists of three layers, with
dense sampling of sources and receivers distributed across the surface, Figure 4a. The
initial velocity model is v0 = 1.5 km/s.

MSWI and FWI results are shown in Figure 4b-4c, respectively. FWI method
can only reconstuct the first interface position correctly. The volume-based MSWI
method produces a rather decent resconstruction with correct velocity between
the layers and the right second interface position.
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Example 6 (Salt body reconstruction). The model (portion of Pluto model (Stoughton
et al., 2001)) consists of a high velocity “salt” inclusion in a layered medium. The
initial model is a 1D linearly increasing velocity with depth. The frequency band used
for inversion is from 4 to 10 Hz.

The target velocity and initial velocity are showed in Figure 22a-22b, respec-
tively. The inverted velocity by FWI after 200 iterations is ploted in Figure 23. It
mischaracterized the structure badly. MSWI method after 100 iterations recovers
the structure reasonably accurately (Figure 5d).

DISCUSSION AND CONCLUSION

We have described matched source waveform inversion based on a volume exten-
sion, which allows close data fitting throughout the inversion process, and achieve
a good reconstruction of the velocity in cases where FWI fails due to lack of low
frequency data. We are able to offer a theoretical explanation for the behaviour of
the algorithm in the transmission case. Numerical examples suggests that volume
extension MSWI is effective in both transmission and reflection modes.

Current implementation of the inner linear subproblem 7 uses direct matrix
methods, and forms the the dense matrix explicitly. This approach is feasible in
2D but problem 7 will need to be solved iteratively in 3D. Both precondition-
ing the inner solve, and computing the gradient accurately with inaccurate inner
solves, are important topics for future research. Additionally, for reflected wave
tomography, the outer nonlinear iteration converges quite slowly, which may be
caused by the problem’s extreme ill-posedness.
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Mathematical Fidelity and Open Source Libraries for
Large Scale Simulation and Optimization

William W. Symes

ABSTRACT
Optimization algorithms used to solve inverse problems in geoscience have
abstract mathematical descriptions many of them (Conjugate Gradient it-
eration, Newtons method,) are socalled matrix free algorithms, that is, they
manipulate their mathematical objects (vectors, functions) without reference
to their internal details. Similarly, time-stepping algorithms for dynamical
simulation may be described in terms of update rules for dynamical states,
without reference to the internal structure of these states or the precise ac-
tion of the rules. Both of these algorithmic settings provide opportunities
for creation of re-usable open source code bases, applying to many different
tasks. Not only do such libraries save programmer effort and reduce the in-
cidence of errors, but also they could potentially make possible comparison
of inversion techniques by providing common implementations for common
components. This paper lays out some examples of features that computa-
tional types should inherit from their mathematical models, and some solu-
tions to the programming problems that arise in implementing such types.
[To be presented in Workshop 8, EAGE, Vienna, June 2016]

INTRODUCTION

One of the more celebrated papers in the theory of turbulence begins a discus-
sion of fluid dynamics with the statement: “The time evolution of a velocity field

is given by the Navier-Stokes equations:
dv
dt

= Xµ(v)” (Ruelle and Takens, 1971).

While this description of viscous incompressible fluid flow might seem a bit terse,
in fact it was just the right setting for a step change in the understanding of tur-
bulence.
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Analogously, the structure of scientific software for dynamical simulation and
optimization can also be stripped down to mathematical basics, and the fun-
damental components reflected accurately in software, with beneficial effect on
scope and flexibility. As the concepts involved are mathematical, rather than
computational, computer languages unsurprisingly do not provide them, so new
types, defined by their behaviour, rather than by their implementation, must be
supplied.

The sections to follow will describe some basic types required for expressing
algorithms in simulation and optimization, and points out that their computa-
tional realizations should possess just those attributes necessary to define their
behaviour and relations, and no more. Differing levels of abstraction are appro-
priate for different parts of a complex application: optimization algorithms deal
in vectors and functions, for instance, whereas differential equation solvers are
built out of grids and update rules. Open source libraries of optimization algo-
rithms formulated in terms of basic vector calculus types could provide a cur-
rently lacking basis for comparison of inversion algorithms in geoscience.

WHAT’S A VECTOR?

A vector is not an array. Consider two length-three arrays, [1.5,1.5,1.5] and [2.0,2.0,2.0].
It is tempting to say that these can be added, but they cannot - did I mention that
the units of the first three values are km/s, of the last three, gm/cm3? The linear
algebra concept vector space resolves this issue - membership of two vectors in the
same vector space asserts that they can sensibly be added. Specification of a vec-
tor space of physical data involves specification of units as well, and legitimate
manipulation of those units. The operations that vectors must support may be
found in the first chapter of a good book on linear algebra, and these operation
are attributes of the vector space, not of the vectors that belong to it. Thus a vec-
tor is “in” a vector space when the former refers to the latter for its operations,
and for compatibility checks. The reward for formulating algorithms in terms of
abstract types such as “vector” and “vector space” is that such implementations
inherit a guarantee to function in the same way in every specific instance.

Many enormously useful numerical libraries, such as Matlab (Mathworks, 2015)
and PETSc (Balay et al., 2015), confound the concept of array with that of vec-
tor. One by-product of this confusion is inevitably the demand that dimension be
specified - however dimension is not a mandatory attribute of a vector space, even



Alternative Approximate Inverse 55

of a computationally realizable one (consider the vector space of polynomials in
a real variable, for instance). Vectors are ultimately implemented with data con-
tainers holding floating point samples, of course - usually arrays, but optionally
lists, trees, or other suitable data structures. Thus a vector has a data container of
some sort, but is not identical to the container that it owns.

EVALUATING FUNCTIONS

A function f is a triple: a domain V and a range W , both (subsets of) vector
spaces, and a rule for assigning to each vector x in V a memeber f (x) of W . Com-
putational realizations of functions may entail many intermediate computations
and much storage. Freeing the memory used after each evaluation of the function
may be wasteful, since some or all of the intermediate results might be re-used.
Not freeing this information when it is no longer needed is also inefficient in a
different way.

Consider, for example, a function on a collection of data traces (with samples,
headers, etc. making a natural vector space structure) computed by calculating
an attribute (for example stack power) of a migrated image. Evaluation requires
that the image be computed, but the image is not the result returned by the func-
tion. The migrated image must be updated every time the input data vector is
changed, so it is not properly an attribute of the function itself. However, if the
value corresponding to the same data is requested a second time, it is very ineffi-
cient to migrate the data all over again. Since the mathematical relation y = f (x)
appears to present no opportunity to signal whether intermediate data needs to
be re-computed, this appears to be an instance in which the “mathematical API”
is inadequate for computational purposes.

Indeed, a number of libraries, such as ROL and NOX in the Trilinos collec-
tion (Heroux et al., 2005), create a new “computational function” interface, in
effect y = f (x, isnew), giving the programmer the unwelcome responsibility for
asserting the new-ness, or otherwise, of an input vector. With a few reasonable
conventions, this burden is unnecessary. If Vector data is encapsulated, so that it
is altered only by basic linear algebra operations and by evaluations of functions,
then a versioning system is possible, from which in principle it is possible to deter-
mine whether vector data has altered since last access. However the reader will
see with a moment’s reflection that this information cannot reasonably be an at-
tribute of a function. Instead, it is a natural attribute of an evaluation type, that
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combines a function f and a point x in its domain with the semantics of f (x) for
variable x. Intermediate data required during evaluation is often re-usable for the
computation of gradients, Hessians, and so on. Therefore the evaluation should
own an independent copy of the function (the only abstract “handle” on the nec-
essary data) and have access to the vector. The copy of the function should be
freed and re-initialized whenver the version count indicates that the vector data
has changed.

Figure 1 displays the structure of evaluation, with terminology borrowed from
a library that implements it (RVL, described below). Figure 2 flowcharts the eval-
uation process. The evaluation construction makes the mathematical interface for
function evaluation compatible with computational efficiency.

Figure 1: UML-like diagram of a typical function evaluation class. Shows external reference to function and vector, and
internal ownership of a copy of the function.
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Figure 2: Flow diagram for value computation attribute of an evaluation object.
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TIME-DEPENDENT SIMULATION

Any time-domain dynamical law has the form mentioned in the first paragraph.
Therefore a natural implementation of any time-stepping method would repre-
sent the dynamical state as a vector in the sense described above, and the time
step as a function. Spatial gridding then becomes an internal detail of the vector
type, and the time step is a vector-valued function (see for example Gockenbach
et al. (2002)).

However two compelling reasons argue against this approach. First, the math-
ematical interface does not conform to computational requirements. Creation and
destruction of vectors involves quite a lot of infrastructure not really necessary for
time-stepping implementations, and definitely awkward for parallel implemen-
tations. Also, assignment is not mathematically legitimate (“x=f(x)”), yet time-
stepping is naturally written that way. More practically, excellent libraries such
as PETSc (Balay et al., 2015) and Trilinos (Heroux et al., 2005) support implemen-
taton of time stepping but as mentioned above are not consistent with the vector
type explained here, at least not without a considerable amount of “wrapper”
code.

Therefore array and similar types are the natural domain of time stepping,
code, which is naturally used to define functions in the abstract context, and these
are available to abstractly formulated algorithms (Symes et al., 2011).

CONCLUSIONS

Several widely-distributed open source libraries incorporate at least some of the
observations made here. In particular, the Rapid Optimization Library (ROL)
(Kouri et al., 2015), a Trilinos package, uses strong encapsulation of vector data
and comes close to a mathematically consistent function interface. It does not
however employ a vector space type, nor does it take advantage of the evalua-
tion construction. In a different direction, Madagascar (Holden, 2015) is tied to a
specific data representation, but one that is hidden behind a file access interface,
and therefore has intrinsically abstract features. So far as the author knows, only
the Rice Vector Library (RVL) (Padula et al., 2009) consistently implements the
“mathematics as API” concept.

One (of many) obstacles to progress in understanding the effectiveness of Full
Waveform Inversion and similar algorithms is the near-impossibility of bench-
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mark comparison: details of data representation, simulator structure, and op-
timization algorithm pervade FWI algorithms and make head-to-head compari-
son difficult to carry out and even harder to understand. A common approach
to organizing the optimization level of FWI applications, based on the intrinsic
mathematical structure of these algorithms, would remove one obtstacle to such
comparitive research. Use of open-source libraries constructed on this basis is es-
sential to create such a level playing field. Disputes over programming language
and other issues have impeded adoption of a common optimization framework,
but adherance to a common system of types and practices for their use in algo-
rithms, defined by their mathematical traits rather than by their implementation,
could sideline these concerns.
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Full Waveform Inversion via Source-Receiver
Extension

Guanghui Huang* and Rami Nammour† and William Symes*

ABSTRACT
The source-receiver extension models each seismic trace by its own proper
source wavelet. The extra degrees of freedom introduced by this extended
source (trace-dependent wavelet) permit good fit to every data trace, regard-
less of velocity. For kinematically correct velocity, all of the traces in each
common source gather are well-fit by the same source wavelet. Thus the
variance of the data-fitting source wavelets indicates correctness of veloc-
ity. Provided that a common source signature is known, an effective measure
of source wavelet variance is the second moment of the squared signature-
deconvolved extended source traces. For pure transmission data with single
arrival events, this function of velocity approximates weighted mean-square
traveltime error, so that its minimization is equivalent to traveltime tomog-
raphy. Moreover, iterative minimization converges from initial models that
would be cycle-skipped for ordinary full waveform inversion. The relation
with traveltime misfit breaks down if multiple ray paths connect sources and
receivers, due to presence in the extended source of slowly decaying energy
at large time lags unrelated to the traveltime error. These slowly decaying
signals arise from Green’s function spectral notches generated by multiple ar-
rivals of similar energy. Tikhonov regularization (prewhitening) of the least-
squares data fitting suppresses these large-lag contributions to the extended
source, at the cost of considerably degraded data fit. Numerical examples sug-
gest that this regularized formulation of source-receiver extended inversion is
capable of recovering reasonably good velocity models from synthetic trans-
mission and reflection data without stagnation at physically irrelevant models
frequently encountered by standard full waveform inversion, but with essen-
tially the same computational cost.

61



62 Huang, Nammour and Symes

INTRODUCTION

Full waveform inversion (FWI) estimates subsurface structure with high preci-
sion by minimizing the differences between the synthesized data and recorded
data in the least square sense (Tarantola, 1984; Virieux and Operto, 2009). How-
ever, the domain of convexity of the FWI objective function for velocity estimation
is generally quite small, on the order of a wavelength in diameter, and iterative
optimization methods starting further from the global minimizer may stagnate
at physically meaningless apparent optima. The root cause of this behaviour is
the tendency of predicted data to be out of phase with, or even orthogonal to,
recorded data in large regions of model space (“cycle-skipped”), and therefore
very far away in the mean square sense. This problem may be avoided to some
extent by a combination of initial model accuracy, high S/N at the lowest recorded
frequencies (achieved in some surveys, not in others), and data fitting in expand-
ing frequency bands, from low to high (Bunks et al., 1995; Pratt, 1999; Pratt and
Shipp, 1999; Sirgue and Pratt, 2004; Virieux and Operto, 2009). The stagnation
problem is somewhat less severe for fitting of refracted energy (diving or trans-
mitted waves), as noted already by Gauthier et al. (1986).

This paper describes an alternative to least-squares data fitting and illustrates
its behaviour with several synthetic examples. The basis of this approach is the
source-receiver extension of constant density acoustic modeling: an independent
source trace is provided for each data trace. Appropriate choice of the source
trace fits the data trace, for any choice of velocity field. Since the mean-square
error is small for all such extended models (velocity plus source traces), some
other objective must take over the role of fit error in standard FWI, and drive the
extended model towards a physical (non-extended) model that explains the data,
hence solves the FWI problem. All traces in a common source gather should share
the same source, so it is natural to penalize the deviation from common source.
Several penalty functions for measuring this deviation are available. Since only
one extended source matches the data for each velocity model, any such penalty
is implicitly a function of velocity, and may be used as an objective fuction in an
iterative optimization algorithm. If the iteration succeeds in driving the exension
penalty to zero, then the process achieves a full waveform inversion: the iterates
fit the data well throughout the inversion process, and converge to a physical
model.

The main objective of this paper is to demonstrate two facts about source-
receiver extended waveform inversion. First, for transmission data with single
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arrivals (that is, a unique ray path between each source and receiver), the objec-
tive function of source-receiver extended waveform inversion is approximately
proportional to the mean-square traveltime error. It follows that under these cir-
cumstances, iterative inversion as envisioned in the preceding paragraph succeeds
in finding a (physical) model that fits the data, that is, achieves a full waveform
inversion. This process produces roughly the same model as does traveltime to-
mography: in effect, it performs tomography with waveform data. The inversion
converges from initial models that are hopelessly cycle-skipped for standard data-
domain FWI, as does traveltime tomography.

Second, for transmission data with multiple arrivals (that is, more than one
distinct raypath connecting at least some source-receiver pairs), the connection
between traveltime tomography and source-receiver waveform inversion is bro-
ken, and the source-receiver objective function exhibits the same tendency to
stagnate at non-optimal solutions as does FWI. This observation applies in partic-
ular to inversion of diving wave data: if the diving waves are triplicated, source-
receiver extended inversion is no more likely to converge to a useful velocity
model than is FWI. We offer an explanation of this phenomenon, and numeri-
cal examples that demonstrate it. In brief, multiple arrivals with certain ampli-
tude relations amongst the branches lead to slowly decaying components in the
extended source, contributing energy at large lags having nothing to do with the
overall traveltime error between predicted and observed data traces.

We suggest a partial remedy for this misbehaviour: from the spectral point of
view, it arises from small eigenvalues of the normal operator or Hessian, equiv-
alent to notches in the Green’s function spectrum. As is routine with other ill-
conditioned inverse problems, one can suppress the effect of small eigenvalues
by Tikhonov regularization (Engl et al., 1996) - in other words, prewhitening de-
convolution by the Green’s function. Provided with an adequate regularization
weight parameter, this regularized source-receiver extended inversion tends to
recover the convexity exhibited by the unregularized method in the single-arrival
case, and converges to an approximation to the global minimizer. A large regu-
larization weight is required to achieve this goal, causing substantial data misfit
(up to 50% in several of our examples). We illustrate all of these claims with nu-
merical examples. The regularization weights used in the examples were chosen
by means of a discrepancy principle, that is, setting them so that the initial data
misfit using the regularized extended model is within limits proportional to the
initial physial model misfit. The necessary proportion of the initial misfit appears
to be substantial - we have used 20-50% in our examples.
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Although our theoretical developments pertain to transmission data, the source-
receiver extension applies also to the reflection configuration. For completeness,
we include an example in which a salt lens is recovered from reflection data via
source-receiver inversion. Rather heavy regularization seems to be required in
this case as well.

The source-receiver extension concept is not new: Song and Symes (1994);
Symes (1994); Plessix et al. (2000); Plessix (2000); Pratt and Symes (2002); Luo
and Sava (2011) investigate data fitting via source-receiver extension to enhance
the convergence of FWI. Warner and Guasch (2014, 2016) uses a very similar ap-
proach as part of Adaptive Waveform Inversion, and show its capacity to enlarge
the domain of attraction for FWI and its practicality for application to contempo-
rary 3D field surveys. Of several possible choices of penalty, we use the dispersion
about zero lag suggested in several of these works (Plessix, 2000; Luo and Sava,
2011; Warner and Guasch, 2014, 2016). The relation between source-receiver ex-
tended waveform inversion and traveltime tomography was explained by Song
and Symes (1994) in the context of crosswell waveform tomography. Symes (1994)
showed that this link is generally broken when multiple arrivals are present in
transmission data, using an argument based on causal deconvolution. Neither of
these older works actually implemented source-receiver extended inversion, as
we do here. Plessix et al. (2000); Plessix (2000) applied the source-receiver ex-
tension approach to field crosswell data. They observed the effect described by
Symes (1994), and avoided it by using source-receiver pairs with sufficiently dif-
ferent depths to avoid most guided wave energy. Tikhonov regularization is used
in many inversion algorithms, including some of source-receiver type mentioned
above, but our use of regularization specifically to control the slowly decaying
energy produced by multiple arrivals seems to be new. Several authors (Luo and
Sava, 2011; Warner and Guasch, 2014, 2016) have applied source-receiver exten-
sion methods to reflection configurations.

It should be understood that many factors could lead to failure of source-
receiver extension to yield an objective with a large domain of convexity about its
global minimizer. To name just a few such factors, reflected waves in transmission
data, or multiply reflected waves for reflection data, or out-of-plane reflections for
2D data, or shear or converted waves are all potentially capable of causing fail-
ure. However we emphasize that even in the complete absence of these other
factors, with data that actually arises in transmission through a slowly varying
background, the presence of multiple energetic arrivals is sufficient to derail this
approach. As our third example underlines, this conclusion applies particularly
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to diving wave fields (the principal data of conventional FWI), which may easily
contain multiple arrivals from a localized source.

In the following pages, we first review the theoretical foundation of source-
receiver extended waveform inversion, and explain the structure of the algorithm.
Then we illustrate its behaviour with four 2D numerical examples. The first two
are set in an idealized crosswell geometry, and illustrate the capability of source-
receiver extended waveform inversion to provide tomographic-quality solutions,
the obstacle to velocity updating posed by multiple arrivals, and a partial remedy
through Tikhonov regularization. The other two examples use surface acquisition
geometry. The first of these is a pure diving wave problem, with no reflections.
The target model generates multiple ray paths in the diving wave field, with the
same damaging effect on velocity updating via source-receiver extended wave-
form inversion as in the previous crosswell example. Tikhonov regularization,
with a regularization weight chosen by trial and error, suffices for these exam-
ples to restore convergence to a useful model. Finally, we include an example
of surface data inversion via source-receiver extension, in which a model of a salt
lens embedded in sediments is recovered from reflection data. All examples begin
with homogeneous or simple layered initial guesses. In all cases, attempted full
waveform inversion fails, whereas the regularized source-receiver extended inver-
sion succeeds. In the “salt” example, the inclusion emerges from the background
without any special effort. All except the first example require regularization,
with the regularization weight estimated by trial and error.

We end with a discussion of several obvious or not-so-obvious capabilities and
limitations of source-receiver extended waveform inversion.

THEORY

The acoustic model of seismic wave propagation treats the excess pressure field u
as the solution of the acoustic wave equation

1
v2
∂2u

∂t2
−∇2u = δ(x− xs)f (t), (1)

u = 0, t << 0 (2)

The energy source is modeled here as a point isotropic radiator with source pulse
f (t). The forward modeling operator maps the source to the data traces, presumed
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to be perfect pressure measurements, and depends on the wave velocity:

S[v]f (xr , t;xs) = u(xr , t;xs). (3)

In equations 1 and 3, the source and receiver locations, xs and xr respectively,
define the acquisition geometry of the survey.

The standard least-squares inversion, or FWI, problem is: given f (t) and d(xr , t;xs),
determine v(x) so as to minimize

JFWI[v] =
1
2
‖S[v]f − d‖2. (4)

The vertical bars denote the mean square or L2-norm squared, in other words the
sum over all active values of xr , t, and xs, possibly scaled by cell volume or other
factors.

As mentioned in the introduction, the function defined by equation 4 is diffi-
cult to minimize directly, so we will explore an alternative approach to its mini-
mization, through models that violate at least some of the modeling assumptions
made above.

Source-Receiver Extended Modeling

The source-receiver extension introduces a trace-dependent source function f̄ (xr , t;xs)
to replace f (t). The extended acoustic system is

1
v2
∂2ū

∂t2
−∇2ū = δ(x− xs)f̄ (xr , t;xs), (5)

ū = 0, t << 0 (6)

and the extended forward modeling operator is defined by sampling the extended
pressure field ū as before:

S̄[v]f̄ (xr , t;xs) = ū(xr , t;xs). (7)

Since the extended source is trace-dependent, it is straightforward to fit the data,
which is not the case in general with the non-extended source unless the data
kinematics are well-predicted by the velocity. Denote by G[v](xr , t;xs) the causal
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Green’s function of the acoustic wave equation, that is, the solution of the system
1, 2 with f (t) = δ(t). Then

S̄[v]f̄ (xr , t;xs) = G[v](xr , t;xs) ∗t f̄ (xr , t;xs). (8)

Equation 8 shows that computing the source-receiver extended forward map in-
volves minimal expense beyond that of the non-extended forward map defined in
equation 3: since G[v] = S[v]δ(t), computing the action of S̄[v] requires comput-
ing the action of S[v], followed by one additional convolution per output trace.

If we denote by (G[v]∗)−1 a convolution inverse to G[v], then

S̄[v](G[v]∗)−1d(xr , t;xs) = d(xr , t;xs). (9)

That is, S[v]−1 = (G[v]∗)−1. This operation assumes that the Green’s function has a
convolution inverse, of course.

In this paper, we will assume that all traces are defined on the same time in-
terval [0,T ]. To accommodate timing errors associated with erroneous velocities,
we extend the time interval for both the (extended) source and the data to [−T ,T ],
padding the data with zeros for t < 0. Then we regard all functions as periodic
in T of period 2T, and use circulant convolution, which of course in the Fourier
domain amounts to multiplication. So the convolution inverse of the Green’s func-
tion is simply its reciprocal in the Fourier domain, which is a priori available only
if the Fourier transform has no zeroes. Sometimes this is the case, sometimes not,
as will be illustrated below.

Assuming that S[v] is invertible, the extended source that explains the data d
is (exactly!)

f̄ [v] = S[v]−1d. (10)

Extended source-receiver waveform inversion

The extended source constructed in equation 10 is mostly likely unphysical, in
which the physics defined at the beginning of this section required that sources
are uniform across all traces, that is, f̄ (xr , t;xs) = f (t). Since the data can be fit
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(assuming deconvolvable Green’s function) for any velocity, it is only this require-
ment that provides velocity updates. A simple way to quantify failure of the ex-
tended source to match a physical one uses an annihilator, that is, an operator A
that produces a zero result when applied to a physicalliy consistent source. Two
possible choices are differentiation of the source with respect to xs and xr (Song
and Symes, 1993; Pratt and Symes, 2002), or forcing the convolution quotient of
the extended and target (non-extended) sources to resemble the delta function,
for example by penalizing the second moment of the squared signal, also known
as dispersion about zero lag (Plessix et al., 1999; Luo and Sava, 2011; Warner and
Guasch, 2014, 2016). We will use the second option in the work reported below,
as it is somewhat simpler to implement. Specifically,

Af̄ (xr , t;xs) = t(f †) ∗ f̄ (11)

Here f † is an approximate inverse, or shaping filter, for the known (common to
all traces) source wavelet f . It satisfies

f † ∗ f = χ, (12)

in which χ is an approximate (band-limited) delta function, for example a zero-
phase bandpass filter.

If we apply A to the v-dependent extended source f̄ [v] defined in equation
10, we obtain an index of velocity correctness: if the velocity model and data are
kinematically compatible, then all of the inverted sources f̄ [v](xr , t;xs) are ap-
proximately the same as the source f (t), hence signature deconvolution should
yield an approximate delta function at zero lag, and that is in turn nearly anni-
hilated by multiplication by t. Kinematic disagreement between model and data
should lead to larger Af̄ .

We capture this idea in an objective function:

J[v] =
1
2
‖Af̄ [v]‖2 (13)

In effect, the model over which this objective is to be optimized includes both
the velocity v(x) and the extended source function f̄ (xr , t;xs), hence is an extended
model. The optimization is treated as a nested problem, with f̄ determined as a
function of v via deconvolution (equation 10), then v determinined by minimizing
J[v] (equation 13).
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Remark 1. The nested design of the optimization problem defined by equations 10,
11, and 13 is essential, not merely a computational convenience. Minimization of
alternative objective functions of v(x), f̄ (xr , t;xs), such as the penalty function

Jα[v, f̄ ] =
1
2
‖Af̄ [v]‖2 +

α2

2
‖S̄[v]f̄ − d‖2, (14)

over v and f̄ jointly, turns out to be very inefficient, with (in principle) arbitrarly slow
convergence. The cause of this misbehaviour is the very different sensitivities of Jα to
v and f̄ . A change in f̄ changes J by an amount proportional to the mean square of f̄ .
In contrast, a change in v results in a change in traveltimes, therefore in general a shift
in the events in S̄[v]f̄ . The rate of change of Jα with respect to v therefore involves the
derivative (in t) of f̄ , which is roughly speaking bigger than f̄ in mean square by a fac-
tor of the maximum frequency. Therefore relatively high-frequency data, desirable from
the point of view of model resolution, yields very different sensitivities to f̄ and v, that
is, ill-conditioning of the Hessian of Jα. Objectives with ill-conditioned Hessians cause
local optimization algorithms to perform poorly - see for example Nocedal and Wright
(1999) for information on this point. A problem more amenable to solution via local
optimization can be recovered by optimizing Jα first over f̄ to create a reduced objective
depending only on v, which is then optimized over v - that is, a nested optimization,
similar to that defined in equations 13, 10. See Symes (2015) for an explanation, and
Huang and Symes (2015b) for an explicit illustration of the performance contrast be-
tween nested and non-nested optimization for a different model extension. We will not
use the penalty function Jα in the work reported here.

Relation with Traveltime Tomography

Consider for the moment 3D wave propagation through slowly varying veloc-
ity fields v for which the associated ray field connects each source-receiver pair
with a unique ray. “Slowly varying” means smooth on the wavelength scale,
lacking embedded reflectors, dominated by relatively low spatial frequencies.
For such smooth single-arrival models, geometric acoustics provides asmptotic
Green’s function approximation:

G[v](xr , t;xs) ≈ a[v](xr ;xs)δ(t − τ[v](xr ;xs)). (15)

Here a is the geometric amplitude, and τ is the traveltime, for the ray between xs
and xr ; of course, both depend on v.
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Assume that the data d is the image under S of a physical model v∗, f , with
v∗ producing a single arrival, that is, enjoying the asymptotic Green’s function
approximation 15. Then

d(xr , t;xs) = S[v∗]f (xr , t;xs) ≈ a[v∗](xr ,xs)f (t − τ[v∗](xr ,xs)). (16)

Assuming that the trial velocity v also produces single arrivals, the extended
source f̄ [v] defined by equation 10 is

f̄ [v] ≈ a[v∗](xr ,xs)
a[v](xr ,xs)

f (t − (τ[v∗](xr ,xs)− τ[v](xr ,xs))). (17)

From equations 11, 12, and 13,

J[v] ≈
∑
xr ,xs

(
a[v∗](xr ,xs)
a[v](xr ,xs)

)2∫
dt t2(χ(t − (τ[v∗](xr ,xs)− τ[v](xr ,xs))))

2

=
∑
xr ,xs

(
a[v∗](xr ,xs)
a[v](xr ,xs)

)2∫
dt (t + (τ[v∗](xr ,xs)− τ[v](xr ,xs)))

2χ(t)2. (18)

Since χ is assumed zero-phase (symmetric about t = 0), this

=
∑
xr ,xs

(
a[v∗](xr ,xs)
a[v](xr ,xs)

)2∫
dt t2χ(t)2

+
∑
xr ,xs

(
a[v∗](xr ,xs)
a[v](xr ,xs)

)2∫
dt (τ[v∗](xr ,xs)− τ[v](xr ,xs))

2χ(t)2 (19)

Since χ is an approximate delta, its square is concentrated near t = 0, so the second
moment of its square (the integral in the first summand in equation 19) is small.
We conclude that

J[v] ≈
(∫

dtχ(t)2
)∑

xr ,xs

(
a[v∗](xr ,xs)
a[v](xr ,xs)

)2

(τ[v∗](xr ,xs)− τ[v](xr ,xs))
2. (20)

That is, J[v] is approximately a weighted mean of the square traveltime error. The
weights are the squared amplitude ratios.

Assuming that the trial velocities v are kept safely away from creating caustics,
the ratio of amplitudes between trial and target (v∗) velocities lies between two
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positive numbers, the exact values of which depend on precisely what is meant
by “safely away”. If J approaches its minimum value (zero) through a sequence of
such velocity models, then the (unweighted) mean square traveltime error must
approach zero also, and vice versa. Thus global minimization of J is equivalent
to global minimization of the standard mean-square traveltime tomography ob-
jective. Similar arguments show that the gradient of J is small only when the
gradient of the traveltime tomography objective is small, and that the Hessian of
J at the exact solution (v = v∗) dominates the Hessian of traveltime tomography
objective (see Huang and Symes (2015a) for details). That is, there is a domain in
model space, whose size is independent of the bandwidth of the data, in which
minimization of J determines the same aspects of the velocity model as does trav-
eltime tomography.

It is possible to make the foregoing statements mathematically precise: that
is, the approximations indicated above are all in the same sense (high frequency
asymptotics), and sets of models “safely” far from generating caustics can be pre-
cisely characterized (Song, 1994). It is also possible to justify precisely the same
conclusions for 2D propagation. These refinements are beyond the scope of this
paper, but are consistent in every way with the proposition that minimization of
the objective J defined here is effectively equivalent to traveltime tomography for
models that generate only single arrivals.

Effect of Multiple Arrivals

The story changes dramatically if the data exhibits multiple energetic arrivals,
even if in other ways it conforms to the limitations mentioned in the last section,
that is, transmission through a slowly varying material model. As pointed out
already in Symes (1994), with multiple energetic arrivals, it is possible that the
(unregularized) source-receiver extended waveform inversion objective may be
as non-convex as the FWI objective. Consequently, the source-receiver extended
waveform inversion algorithm can fail to produce kinematically accurate velocity
estimates.

We present here a different viewpoint from Symes (1994), who based his dis-
cussion on causal deconvolution. As mentioned earlier, our work uses circulant
deconvolution (Fourier division) instead. From this point of view, the pathol-
ogy is a by-product of spectral notches that may develop in the Green’s function.
Though this argument does not yield the precise conclusion about non-convexity,
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it is simpler and indicates another manifiestation of the underlying pathology.

For the generic source-receiver pair (not lying precisely on a caustic), the 3D
Green’s function takes the asymptotic form

G[v](xr , t;xs) ≈
N∑
i=0

ai[v](xr ;xs)H
νiδ(t − τi[v](xr ;xs)). (21)

Here ai is the geometric amplitude, and τi the traveltime, for the ith ray connect-
ing xs and xr . H is the Hilbert transform, and its power νi is either 0 or 1 and is
related to the Maslov index of the ray in the ray field emanating from the source.

S[v]−1 amounts to deconvolution by G[v]. However the Fourier transform of
G is an exponential sum, hence may have zeros or approximate zeros (or, as they
are known in this literature, notches). The simplest cartoon example, actually
relevant to a synthetic example presented later in this paper, is

G(t) ≈ a(δ(t) + δ(t −∆t)) (22)

Then Sf = G ∗ f = 0 if f (t) = cos
πt
∆t

: that is, the Fourier transform of G vanishes at

odd multiples of 1/∆t.

If G has literal zero Fourier componnents, as in the cartoon example, then
equation 9 may not have a solution, that is, G does not have a convolution inverse,
and if 9 has a solution, it is not unique. More likely to occur are very small val-
ues of the Fourier transform for which the corresonding sinusoid will be vastly
overemphasized in the solution of equation 9. If the data d is noise-free data from
the same model, that doesn’t matter, since the small Fourier component of G is
already part of the data. However if the trial model is not very close to the model
used to generate the data, then the corresponding data component is likely to be
large, resulting in a large sinusoidal contribution at the notch frequency and re-
ceiver location to the extended source. Since the sinusoid is non-decaying, f̄ [v]
defined by equation 10 acquires energy at time lags that have nothing to do with
the overall travel time difference between the trial model and the global mini-
mizer. Thus the connection between travel time error and the value of J is broken
in this case.

The more refined analysis presented by Symes (1994) actually shows that the
domain of convexity of source-receiver extended inversion generally has diameter
proportional to a wavelength, similar to FWI: convergence requires that the initial
model predict data event times to within a half wavelength.
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Regularized Source-Receiver Extended Inversion

To make estimation of the extended source f̄ robust against spectral zeroes of
the Green’s function, we replace equation 9 with the regularized least squares
problem: choose f̄ to minimize

1
2
‖S̄[v]f̄ − d‖2 +

ε
2
‖f̄ ‖2. (23)

The minimizer (again denoted f̄ [v]) solves the normal equation

(S̄[v]T S̄[v] + ε2I)f̄ [v](xr , t;xs) = S[v]T d(xr , t;xs) (24)

and depends on v,d, and ε. The matrix of the operator on the left-hand side of
24 is the autocorrelation of G, “prewhitened” by addition of ε2. The effect of
the prewhitening is to uniformly increase the entire power spectrum of G, thus
making the matrix on the left-hand side of equation 24 better-conditioned. Of
course the normal equation 24 is again a convolution equation, and can be solved
exactly by means of the Fourier transform.

We define the regularized source-receiver extension objective J[v] again by
equation 13, but now with f̄ [v] the solution of equation 24.

We expect the modified J[v] to oscillate less than the nonregularized version
discussed above: regularization reduces the very large components in the ex-
tended source, arising from the spectral notches, proportionally more than other
components which presumably contribute energy at time lags more proportional
to the overall traveltime error between the trial and target models. It is easy to see
from low-dimensional matrix analogues that we cannot expect the regularization
parameter ε to be particularly small.

We use a version of the discrepancy principle (control of the data residual) to
set ε. We compute the relative initial data residual e0 and relative extended initial
data residual ē0 using the initial velocity v0:

e0 =
‖S[v0]f − d‖
‖d‖

, ē0 =
‖S̄[v0]f̄ [v0]− d‖

‖d‖
(25)

in which f is the known source wavelet and f̄ is the extended source function,
estimated by solving equation 24 with the initial velocity. We adjusted ε by trial-
and-error until the ratio ē0/e0 lay in the range 0.2− 0.5. The (somewhat arbitrary)
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bounds are chosen to ensure that ε is large enough that the residual is substan-
tially larger than zero (the expected value for ε = 0), but small enough that the
data is substantially better fit than is possible with a physical source (f̄ = f ). Thus
ε is large enough to suppress the notch contributions to some exent, but small
enough to ensure that the larger events in the data must be fit to some extent.
This method for selecting ε has only a heuristic justification, but has functioned
well in the examples shown below and in other similar examples not shown here.

Gradient Computation

We use a gradient-based method to minimize J . Appendix A shows how to com-
pute this gradient. Define w̄ to be the solution of

(S̄[v]T S̄[v] + ε2I)w̄ = ATAf̄ (26)

and r̄ by

r̄ = w̄ ? (d − S̄[v]f̄ )− f̄ ? S̄[v]w̄ (27)

(“?” denotes cross-correlation). Then

∇J[v] = (DS̄[v]δ)T r̄ (28)

in which (DS̄[v]δ)T is the well-known impulsive reverse time migration operator.
See Appendix A for details.

Computational cost

The computational cost of source-receiver extended waveform inversion is com-
parable to the cost of standard least-squares FWI. Each function value J[v] re-
quires computation of the Green’s function (therefore one modeling step), a de-
convolution (solution of equation 24), and some vector algebra. A gradient eval-
uation ∇J[v], as defined in the last section, adds another deconvolution (equation
26), and two more convolutions (equation 27) and some more vector algebra, fol-
lowed by reverse time migration (equation 28). Thus each step of a gradient based
optimization is of roughly the same cost as a step of the same algorithm to FWI.
Concerning a comparison of total costs over the entire iteration, all that can be
said in general is that an algorithm that produces a useful approximation in a rea-
sonable number of steps is in a real sense infinitely cheaper than one that does
not.
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FWI as post-process

In principle, the principal goal of inversion is production of an explanatory phys-
ical model that fits the data. The regularization level required to induce conver-
gence of source-receiver extended inversion from seriously wrong initial models
has a negative effect on data fit. However in the examples to follow, regularized
source-receiver inversion produces kinematically accurate velocity models, while
relaxing the data fit constraint of the unregularized algorithm. Its output should
be acceptable input to conventional FWI, and the latter algorithm should reduce
the remaining data misfit. Therefore we shall in most cases follow inversion via
source-receiver extension with FWI initialized on the final source-receiver model.

NUMERICAL EXAMPLES

We present two sets of numerical examples illustrating the performance of source-
receiver extended waveform inversion in comparison to FWI. The first set uses an
idealized crosswell geometry, with the source locations on one face of the rectan-
gular scattering domain, the receivers on the opposite face. The second set mimics
surface acquisition, with sources and receivers on the same face of the rectangular
domain.

We use the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm with backtracking line search to assure compliance with the weak version
of Wolfe’s conditions for global convergence to a stationary point (Nocedal and
Wright, 1999). For each example, we will apply LBFGS both to solve the full-
bandwidth FWI problem, and to minimize the source-receiver extended wave-
form inversion objective defined in equation 13, and the FWI objective (equation
4). Forward modeling is implemented in frequency domain, using a nine-point
(4th order, cross-shaped) stencil to approximate the Helmholtz operator, and a di-
rect matrix solver. The least squares problems defined in equations 24 and 26 are
diagonal in the Fourier domain because of our use of circulant deconvolution, so
these are solved to machine precision as well. The objective function and gradient
are therefore computed to machine precision, at the discrete level.
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Crosswell Acquisition Geometry

The first two examples use idealized crosswell acquisition, that is, sources lie on
one boundary face of a rectangular scattering region, receivers on the opposite
face. The first shows that source-receiver extended waveform inversion without
regularization (i.e. ε = 0) may converge to a reasonable solution of inverse prob-
lem when FWI fails to do so. In this example, the data exhibits only a single arrival
(though partly as a result of wavefront healing). Our previous analysis (Huang
and Symes, 2015a) explains the behaviour of source-receiver extended waveform
inversion in this case: when raypaths from source to receiver are unique, source-
receiver extended waveform inversion is equivalent to least-squares traveltime
tomography, and delivers a comparable solution. The second shows that unreg-
ularized source-receiver extended waveform inversion may fail in the same way
as FWI if multiple arrivals are present in the data with significant energy. We
observe that this phenomenon may be understood as ill-posedness of the inner
(source-estimation) problem, and that Tikhonov regularization can restore appar-
ent convergence to a tomographic-quality solution.

Weak Low-Velocity Lens

The target velocity model for the first example is a Gaussian low velocity anomaly
embedded in a constant background velocity v0 = 2 km/s (Figure 1), i.e.,

v(x,z) = 2− 0.7e−
(x−1)2

0.52 −
(z−1)2

0.252 km/s (29)

The sources and receivers (indicated with white triangle and green circle in Fig-
ure 1, respectively) are placed at xs = 0.01 km and xr = 1.99 km, respectively.
Thirty-nine shots are evenly spaced between zs = 0.05 km to zs = 1.95 km, and
199 receivers are located from zr = 0.01 km to zr = 1.99 km with ∆zr = 0.01 km.

For display purposes, we synthesize a time-domain solution of the target prob-
lem from frequency-domain fields, and show the recorded data for the center shot
at zs = 1 km in Figure 2a. The effective time-domain source is a boxcar 0.5-30 Hz
bandpass filter. We use the constant velocity v0 = 2 km/s as the initial model.
The simulated data in Figure 2b using the initial velocity for the centered shot
shows a traveltime error larger than a half-wavelength at the median frequency
of 12 Hz for the central data traces of the recorded data. For inversion, we use
the data frequency band from 3 Hz to 20 Hz. After 21 LBFGS iterations, FWI
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is stuck in a physically meaningless solution, whereas source-receiver extended
waveform inversion produces a reasonable estimate of v, see Figure 3a-3b for the
detailed result, respectively. To further confirm the kinmenatic accuracy of the
source-receiver extended waveform inversion solution, we display the extended
sources at initial velocity (Figure 4a) and final inverted velocity (Figure 4b).
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Figure 1: First crosswell example: target velocity model with slow Gaussian anomaly. Lowest velocity is 1.7 km/s

We can understand this example on basis of theory presented in the last sec-
tion. Examination of Figure 2a reveals that a caustic likely is present in the ray
field of this example, but that finite frequency has “healed” it and presented an
effective single arrival. Therefore, we would expect the source-receiver extended
inversion to converge even from an initial model that is cycle-skipped for FWI to
a model of tomographic quality, and indeed it does.

Strong Low-Velocity Lens

The second example (Figure 5) keep the shape velocity anomaly, but makes it
stronger:

v(x,z) = 2− 0.6e−
(x−1)2

0.52 −
(z−1)2

0.252 (30)

Now the lowest velocity of this model is 1.4 km/s. We use the same source and
receiver geometry and the data frequency band as the first example. Synthetic
data (Figure 6a-6c) for three shot position zs = 0.1,0.5,1 km shows energetic later
arrivals. For comparison, Figure 7a-7c shows simulated data with initial velocity
v0 = 2 km/s at the same shot positions.
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Figure 2: First crosswell example: comparison of shot gathers for the center shot zs = 1 km: (a) target data and (b) simulated
data using initial velocity
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Figure 3: First crosswell example: inverted velocity after 21 LBFGS iterations with 3-20 Hz bandpass data by (a) FWI and
(b) source-receiver extended waveform inversion (ε = 0). Initial velocity is v0 = 2 km/s in both cases.
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Figure 4: First crosswell example: extended sources for central shot zs = 1 km using (a) initial velocity, and (b) inverted
velocity by source-receiver extended waveform inversion

The misfit of traveltimes in the initial data is even more severe than was the
case in the first example, and FWI indeed fails as we expect (Figure 8a). However,
source-receiver extended waveform inversion without regularization also fails to
produce a kinematically accurate velocity after 100 LBFGS iterations (Figure 8b),
for the reasons explained in the theory section.

To illustrate the mechanism of failure, we simulated data in Figure 9a-9c with
the trial velocity vt = 0.8v + 0.2v0, which is close to the target velocity model. We
can see there are still quite obvious triplications present in the simulated data.
Taking a single trace zr = 0.55 km (Figure 10a) for the center shot gather at zs = 1
km for example, we plot the spectrum of the normal operator S̄T S̄, which is the
same as the power spectrum of the Green’s function, in Figure 10b. For traces
with multiple energetic arrivals, the spectrum oscillates and almost vanishes at
several frequencies, suggesting the existence of an effective numerical null space
of the normal operator.

To illustrate the effect of regularization, we plot the extended source, esti-
mated by solving equation 24 with the trial velocity vt, for regularization param-
eters ε = 10−6,0.5,5 in Figure 11a-11i. Oscillatory and non-decaying traces are
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present in the extended source function f̄ [vt] for ε = 10−6, but are suppressed by
increasing ε.

The objective function for different values of ε = 10−6,0.5,5 on a line seg-
ment in model space, between the initial and target velocities, appears in Figures
12a,12b, and 12c. Parameter α = 0 corresponds to the target velocity, α = 1 to the
initial velocity. These plots show that the region of convexity of source-receiver
extended waveform inversion objecitive is quite small for small ε, however ex-
pands to include the initial velocity for large enough ε.
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Figure 5: Second crosswell example: target velocity model with slow Gaussian anomaly. Lowest velocity is 1.4 km/s.
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Figure 6: Second crosswell example: shot gathers of recorded data for shot at (a) zs = 0.1 km, (b) zs = 0.5 km and zs = 1
km, respectively

As mentioned before, the arrival time error in the initial 3-20 Hz data (Figure
7a-7c) is too large to permit successful FWI, starting with v0 = 2 km/s (Figure 8a).
We find that ε = 5 satisfies the discrepancy criterion articularted in the theory sec-
tion. With this choice, f ifteen LBFGS iterations produce the velocity estimate in
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Figure 7: Second crosswell example: shot gathers of simulated data using initial veloctiy v0 for shot at (a) zs = 0.1 km, (b)
zs = 0.5 km and zs = 1 km, respectively
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Figure 8: Second crosswell example: inverted velocity after 100 LBFGS iterations with 3-20 Hz data by (a) FWI and (b)
unregularized source-receiver extended waveform inversion (ε = 0). Initial velocity is v0 = 2 km/s in both cases.
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Figure 9: Second crosswell example: shot gathers of simulated data using trial velocity vt = 0.8v + 0.2v0 for shot at (a)
zs = 0.1 km, (b) zs = 0.5 km and zs = 1 km, respectively
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Figure 10: Second crosswell example: (a) data trace at zr = 0.55 km for shot at zs = 1 km and (b) spectrum of normal
operator S̄T S̄ of trace (a)

Figure 13a. Both position and shape of Gaussian anormaly are well resolved. Ad-
ditionally, the extended source functions are almost focused on the zero-lag time
after regularized source-receiver extended waveform inversion (Figure 14a-14c),
indicating that the final velocity estimate is kinematically accurate. In view of its
kinematic accuracy, the final estimate from source-receiver extended waveform
inversion should be a usable initial estimate for FWI: indeed, 25 LBFGS iterations
of full-bandwidth FWI produces a quite accurate inversion (Figure 13b).

Surface Acquisition Geometry

In the remainder of this section, we apply regularized source-receiver extended
waveform inversion to waveform inversion to two examples with surface acquisi-
tion geometry, that is, both sources and receivers separated by a hyperplane from
the scattering region.

the relative initial data residual e0 and relative extended initial data residual
ē0:

e0 =
‖S[v0]f0 − d‖
‖d‖

, ē0 =
‖S̄[v0]f̄0 − d‖
‖d‖

in which f0 is the known source wavelet and f̄0 is the extended source function,
estimated by solving equation 24 with the initial velocity. We adjusted ε by trial-
and-error until the ratio ē0/e0 lay in the range 0.2− 0.5. The (somewhat arbitrary)
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Figure 11: Second crosswell example: plots of regularized extended source functions for three regularization parameters
ε = 10−6,0.5,5 for shot at zs = 0.1,0.5,1 km, respectively. (a) ε = 10−6, zs = 0.1 km; (b) ε = 10−6, zs = 0.5 km; (c) ε =
10−6, zs = 1 km; (d) ε = 0.5, zs = 0.1 km; (e) ε = 0.5, zs = 0.5 km; (f) ε = 0.5, zs = 1 km; (g) ε = 5, zs = 0.1 km; (h) ε = 5, zs = 0.5
km; (i) ε = 5, zs = 1 km;
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Figure 12: Second crosswell example: objective function evaluated at velocities (1−α)v+αv0, 0 ≤ α ≤ 1, for various choices
of regularization parameter ε: (a) ε = 10−6, (b) ε = 0.5, (c) ε = 5
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Figure 13: Second crosswell example: (a) inverted velocity by regularized source-receiver extended waveform inversion
(ε = 5) after 15 iterations; (b) FWI result after 25 iterations using the regularized source-receiver extended waveform
inversion inversion in (a) as initial velocity
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Figure 14: Second crosswell example: extended sources after regularized source-receiver extended waveform inversion
inversion for shot at (a) zs = 0.1 km, (b) zs = 0.5 km and zs = 1 km
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bounds are chosen to ensure that ε is large enough that the residual is substan-
tially larger than zero (the expected value for ε = 0), but small enough that the
data is substantially better fit than is possible with a physical source (ε =∞). This
method is admittedly crude: we will return to the choice of ε in the discussion
section.

Diving Wave Inversion

The predominant contemporary use of FWI is to invert diving wave energy (Virieux
and Operto, 2009; Vigh et al., 2013). This example examines the use of source-
receiver extended waveform inversion, with and without regularization, for a
model generating diving waves with triplications. The model is smooth on the
wavelength scale, hence transparent: the data consists only of direct and diving
waves, with no reflections.

The target model (Figure 15a) consists of a low velocity Gaussian anomaly
embedded in linearly increasing background velocity. 100 receivers are placed at
depth zr = 0.04 km from xr = 0.04 km to xr = 7.96 km with ∆xr = 0.08 km. 67
shots are placed at depth zs = 0.08 km from xs = 0.04 km to xr = 7.96 km with
∆xs = 0.12 km. The frequency band used in inversion is 5-11 Hz. The choice
ε = 10 gives ē0 = 6.45% and e0 = 20.95%, satisfying the criterion explained earlier.

The initial model in the iterative inversion is the linearly increasing back-
ground (Figure 15b), which produces diving wave arrivals without triplication.

Comparison of the data for target and initial data in Figures 16a-16c and Fig-
ure 16d-16f shows that as expected, first arrival times differ by well over a cycle,
and of course the triplication structure does not appear in the initial data at all,
Therefore one would expect FWI to stagnate far from a useful model estimate,
as indeed happens (Figure 17a). Unregularized source-receiver extended wave-
form inversion (ε = 10−6) also fails: this is a pure transmission problem, and
precisely the same phenomenon occurs as in the strong lens crosswell example
(Figure 17b). On the other hand, regularized source-receiver extended waveform
inversion with the choice of penalty weight ε = 10 explained above produces an
satisfactory model estimation in the same number of iterations (Figure 18). Ex-
amination of extended sources at initial and final regularized source-receiver ex-
tended waveform inversion model suggests that the kinematics of the data have
been adequately captured in the final model (Figures 19a, 19b, 19c, 19d, 19e, and
19f).
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The output of regularized source-receiver extended waveform inversion also
performs well as an initial model for FWI, as it has already matched the data
arrival times. FWI with 50 iterations of LBFGS, starting at the model shown in
Figure 18, produces the slightly more refined model shown in Figure 20. The
simulated data (Figure 21a-21c) generated by the final inverted results show the
best match with the recorded data in Figure 16a-16c.
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Figure 15: Diving wave example: (a) target velocity model with Gaussian low velocity lens embedded in the linearly
increasing background velocity and (b) v0(z) linearly increasing initial model

Pluto

We modify a portion of the Pluto model (Stoughton et al., 2001) to create the target
model in Figure 22a, mimicing an isolated salt pillow, gridded with a cell of 0.01
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Figure 16: Diving wave example: shot gathers of recorded data for shot at at (a) xs = 0.2 km, (b) xs = 2 km, and (c) xs = 4
km; Shot gathers of simulated data by initial velocity for shot at at (d) xs = 0.2 km, (e) xs = 2 km, and (f) xs = 4 km

km × 0.01 km. The velocity in the “salt” inclusion is 4.5 km/s; the background
medium is layer-like with velocity averaging 2.2 km/s. Source depth is zs = 0.02
km. Sources range from xs = 0.06 km to xs = 2.94 km. Fixed spread receivers
range from xr = 0.02 km to xr = 2.98 km placed at depth zr = 0.04 km. The
maximum time in the recorded data is 4 seconds and the frequency band is 4-10
Hz. We choose the regularization parameter ε = 1, for which initial relative errors
are ē0 = 3.2% and e0 = 6.6%, respectively.

Note that in this example, positions of the sources and receivers permit “un-
dershooting”, that is, transmitted and reflected ray paths that transit the region
under the inclusion. Therefore the data should contain adequate kinematic infor-
mation to determine the velocity throughout the model, except for the poorly illu-
minated edges. On the other hand, the large velocity contrast between the “salt”
and surrounding “sediments” implies that FWI will likely fail to reconstruct the
inclusion from an initial model (Figure 22b) in which it is absent. Indeed, 200
FWI LBFGS iterations method locates the inclusion top, mispositions the bottom,
and grossly underestimates the velocity in between (Figure 23).
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Figure 17: Diving wave example: inverted velocity after 200 iterations using 5-11 Hz data by (a) FWI and (b) unregularized
source-receiver extended waveform inversion (ε = 10−6)
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Figure 18: Diving wave example: inverted velocity using 5-11 Hz data after 200 iterations by regularized source-receiver
extended waveform inversion (ε = 10)
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Figure 19: Diving wave example: top row: extended sources by initial model for shot at (a) xs = 0.2 km, (b) xs = 2 km,
and (c) xs = 4 km; Bottom row: extended sources by inverted velocity after regularized source-receiver extended waveform
inversion inversion for shot at (d) xs = 0.2 km, (e) xs = 2 km, and (f) xs = 4 km
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Figure 20: Diving wave example: inverted velocity by 50 FWI iterations, beginning with following regularized source-
receiver extended waveform inversion velocity (Figure 18)
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Figure 21: Diving wave example: shot gathers of simulated data with final source-receiver extended waveform inver-
sion+FWI inverted result (Figure 20) for shot at (a) xs = 0.2 km, (b) xs = 2 km, and (c) xs = 4 km, respectively

Regularized source-receiver extended waveform inversion, in contrast, comes
much closer to locating both top and bottom of the inclusion, and filling it with
approximately correct velocity values, Figure 24a. Focus of the extended source
estimates at zero time lag is much improved (Figure 25d-25f) over the initial
model (Figure 25a-25c). In fact, the model depicted in Figure 24a appears to be a
reasonable initial guess for FWI, providing approximately correct kinematics. A
further 50 LBFGS iterations of FWI with frequency band 4-16 Hz data results in
an accurate reconstruction of the inclusion (Figure 24b).

The final data residual in Figure 25d-25f implies the inverted model has fit
especially the refracted energy in the data quite well, in comparison to the initial
data residual, shown in Figure 26a-26c.

DISCUSSION

We have already mentioned in the Introduction that the source-receiver exten-
sion used here is the basis for a number of other algorithms, for example Adap-
tive Waveform Inversion (Warner and Guasch, 2014, 2016). Other source exten-
sion concepts have also been productive. Waveform Reconstruction Inversion as
described by van Leeuwen and Herrmann (2013) is roughly equivalent to intro-
ducing artificial sources “everywhere”. See (Huang and Symes, 2016a; Wang and
Yingst, 2016) for discussion of other related algorithms. Contrast Source Inver-
sion, described for example by Abubakar et al. (2011), may also be regarded as
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Figure 22: Pluto example: (a) target velocity and (b) 1D initial velocity
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Figure 23: Pluto example: inverted reuslt by FWI method after 200 iterations using 4-10Hz data

a source extension approach. Other extended modeling modifications of FWI
have been motivated by wave equation migration velocity analysis (“WEMVA”,
(Biondi and Sava, 2004)). These WEMVA-like extensions add parameters to the
velocity model itself, for example subsurface offset (space shift) (Shen et al., 2003,
2005; Khoury et al., 2006; Shen and Symes, 2008; Shen, 2012; Biondi and Al-
momin, 2012; Weibull and Arntsen, 2014; Lameloise et al., 2015; Shen and Symes,
2015), time shift (Yang and Sava, 2011; Biondi and Almomin, 2014), scattering
angle (De Hoop et al., 2003; Shen and Calandra, 2005), shot coordinates (Symes
and Carazzone, 1991; Kern and Symes, 1994; Chauris and Plessix, 2013; Sun and
Symes, 2012), and surface offset (Mulder and ten Kroode, 2002; Chauris and No-
ble, 2001). The common feature in all of these extension based modifications
to FWI is their tendency to produce the same sort of long-wavelength velocity
updates as does traveltime tomography, that is, to extract kinematic information
from the data. We have shown here that source-receiver extended inversion ac-
complishes this goal in the special case of single arrivals. Similar computations
show that subsurface offset extended waveform inversion and reflection slope
tomography have proportional Hessians at a global solution (Symes, 2014; ten
Kroode, 2014).

We have addressed a major difficulty in source-receiver extended waveform
inversion, its tendency to develop apparent multimodality in the event that en-
ergy arrives in the data along multiple ray paths. This phenomenon presents a
real impediment to using source-receiver extended waveform inversion for cross-
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Figure 24: Pluto example: (a) inverted result produced by regularized source-receiver extended waveform inversion after
200 iterations using 4-10 Hz data; (b) FWI result after 50 iterations using 4-16Hz data with regularized source-receiver
extended waveform inversion velocity in (a) as initial estimate.
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Figure 25: Pluto example: Top row: regularized extended source functions with initial velocity for shot at (a) xs = 0.06 km,
(b) xs = 1.5 km, and (c) xs = 2.94 km; Bottom row: regularized extended source functions with regularized source-receiver
extended waveform inversion velocity for shot at (d) xs = 0.06 km, (e) xs = 1.5 km, and (f) xs = 2.94 km
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Figure 26: Pluto example: (a) Data residual between recorded data and data simulated with initial velocity for shot at (a)
xs = 0.06 km, (b) xs = 1.5 km, and (b) xs = 2.94 km; (b) Data residual between recorded data and simulated data using
source-receiver extended waveform inversion + FWI velocity (Figure 24b) for shot at (d) xs = 0.06 km, (e) xs = 1.5 km, and
(f) xs = 2.94 km
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well tomography, for example, since waveguides are quite commonly encountered
in that application. Multiple arrivals are also common in diving wave fields, and
can be present for many other reasons. We have advanced an explanation in the
context of periodic convolutional modeling, namely the presence of spectral zeros
and near-zeros of the Hessian, and partly recovered convexity by Tikhonov regu-
larization, a standard technique for selecting solutions of ill-posed problems. Our
justification for rather heavy-handed regularization is only heuristic, but does
seem to be effective in many settings, including cartoon examples of crosswell
tomography and diving wave FWI, as the examples show.

Other extension methods mentioned above show strong parallels with the ob-
servations made here. In particular, the failure of convexity caused by multiple ar-
rivals echoes the similar failure of the surface extension in the presence of source
wavefield caustics (Nolan and Symes, 1996; Stolk and Symes, 2004; Symes, 2008).
This better-analyzed pathology arises from the impossibility of distinguishing ar-
rivals by midpoint slowness in individual offset gathers, for instance. A conse-
quence is the failure of the inner problem to have a unique solution. Just so,
arrival slowness cannot be inferred from a single trace, so the source-receiver
extension does not permit separation of arrivals by slowness, and consequently
the inverse (S̄[v])−1 does not in general exist. For medium based extensions, the
remedy is to use so-called subsurface offset instead of surface offset, leading to a
well-posed inner problem and consequently smooth and stable reduced objective
(Shen et al., 2003, 2005; Khoury et al., 2006; Shen and Symes, 2008; Stolk et al.,
2009; Symes, 2014; ten Kroode, 2014). Other source extensions, in contrast to
source-receiver, allow similar conclusions to be drawn, and lead to extended in-
version algorithms that avoid cycle-skipping, maintain data fit, and do not require
strong regularization (Huang and Symes, 2016b).

In the examples presented here, we have used a very large number of LBFGS
iterations (hundreds in several examples). The need for so many iterations may
be linked to the rather small amount of data used (an almost all cases, 5 - 10
frequencies), which of course also makes the iterations rather inexpensive. We
believe that such computational largesse is appropriate for a study designed to
explore the source-receiver extended waveform inversion concept. However it
certainly begs the question: can reasonable results be obtained in a more reason-
able number of RTM applications, say O(10)?

Our use of circulant convolution to model the relation between source and
data traces is computationally convenient. In particular, it enables inexpensive
and machine-precision solution of the normal equation 24 as the matrices in-
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volved are diagonal. As our examples are both computed and inverted entirely in
the frequency domain, this is an appropriate methodology. However this method-
ology is commonly termed an “inverse crime” - that is, the same tools used for
modeling as for inversion. Field data comes in the form of time domain traces,
with finite duration and not necessarily amplitude-decaying. A time cutoff is
necessary, either implicitly or explicitly, and that operation does not commute
with convolution. Therefore an appropriate version of problem 24 applicable to
field data will need a different solution mode, either Gaussian elimination or the
Levinson algorithm, or (more likely) an iterative solver such as conjugate gradient
iteration.

An inexact solve of the inner problem via an iterative method would bring to
the fore another difficulty. The velocity gradient (equation 28) involves reverse-
time migration, the transpose operator of the derivative of the modeling opera-
tor S[v] with respect to velocity. S[v] amounts to convolution with the Green’s
function G[v]. In the simplest (single arrival) case, ignoring amplitudes, G[v] =
δ(t − τ[v])). The derivative of S[v] with respect to v is the convolution with the
derivative of G[v] with respect to v: from the chain rule, the directional deriva-
tive in the direction δv in velocity model space is

DG[v]δv = −dδ
dt

(t − τ[v])Dτ[v]δv. (31)

That is, the derivative of S̄[v] involves convolution with a multiple of dδ/dt (in this
simple case), that is, a shift of the derivative of the input trace, whereas S̄[v] shifts
the (undifferentiated) input trace. The Fourier transforms of the two results differ
by a factor of frequency. The same is true of the migration operator, that is, the
transpose ofDS̄[v], and the conclusion remains true in the high-frequency asymp-
totic sense with the proper amplitudes and without the single-arrival assumption.
Iteratively computing the extended source f̄ [v] (solution of equation 24) and aux-
iliary field w̄ (solution of equation 26), using (for example) the conjugate gradient
algorithm, results in small mean-square errors, as follows from standard theory
(Golub and van Loan, 2012; Nocedal and Wright, 1999). However the derivative
of an RMS-small error trace is not necessarily RMS-small: it can be as large by
a factor of the highest frequency present with significant energy. Therefore the
convergence of the gradient obtained by iterative approximation of the expres-
sion in equation 28 can be arbitrarily slower (with sufficient bandwidth) than the
convergence of the extended source. See (Huang, 2016) for explicit illustration
of this effect using a different extension, and (Symes, 2015) for recent theoretical
progress in using special accelerators for iterative solution of the inner problem
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(equations 24, 26) to accelerate convergence of the gradient.

Note that the use of circulant convolution and consequent machine-precision
solution of the inner problem by regularized deconvolution eliminates the source
of outer gradient inaccuracy just described.

The sharp-eyed reader familiar with the Warner’s AWI algorithm (Warner and
Guasch, 2014, 2016) will notice that our definition of the objective function (equa-
tion 13) lacks the normalization by the mean square of f̄ employed in AWI. There
are excellent reasons to normalize such an objective. The principal reason is the
amplitude trade-off that occurs in reflection: data fit to a reflection is not affected,
to first order, by scaling the reflectivity up and the source down by the same fac-
tor. Therefore one would not expect an effective velocity update in the reflection
case without normalization of the source. The reader might well ask how we got
away with it. The answer is that transmitted waves do not suffer from this scale
ambiguity, and all of our examples contained transmitted waves. In particular,
the data in the reflection-dominated example (Pluto) contained direct wave en-
ergy, as the boundary conditions used here are absorbing in all directions so the
dipole effect of the free surface is absent. Clearly this device is not one to rely
upon, and a modification of our algorithm to normalize J following the model
of Warner and Guasch (2014, 2016) (and many previous works on joint source-
model estimation, such as (Minkoff and Symes, 1997)) is indicated. As pointed
out by Warner and Guasch (2014, 2016), the additional computational expense
from normalization is minimal.

CONCLUSION

We have presented an extended modeling approach to overcome the tendency of
FWI to stagnate at uninformative models. The key ingredient in this approach
is the addition of parameters to the model, in the form of unphysical source pa-
rameters, which allow the model to fit the data at every stage of the inversion.
Specifically, we allow the source pulse to depend on the source and receiver co-
ordinates. Other choices of source extension are possible, see below. To eliminate
the unphysical additional parameters and recover an FWI solution, we have im-
posed a penalty on the variance of the extended source across source and receiver.
Since the extended source is uniquely determined by the data and the velocity
model, the penalty is a function of the velocity.

We have analyzed the use of this penalty as an inversion objective function.
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We find that in the simplest case, single-arrival transmission data, this objecive is
closely related to mean square traveltime error, so that its minimization yields a
tomographic-quality result, even starting from initial models that would grossly
cycle-skipped for straightforward FWI. For more complex data with multiple ar-
rivals, the link to traveltime inversion is much more tenuous, and strong regu-
larization is required to produce global convergence. In either case, an iterative
local optimization method applied to source-receiver extended waveform inver-
sion produces a sequence of models approaching a kinematically accurate model,
even starting with a grossly inaccurate initial velocity estimate. The approach is
close enough that convergent FWI iteration can be started from an source-receiver
extended waveform inversion solution. Thus in a sense the combination source-
receiver extended waveform inversion + FWI appears to globalize the convergence
of FWI, at least in some cases.
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APPENDIX: COMPUTATION OF GRADIENT

In this section, we show how to compute the gradient of inversion velocity analy-
sis objective function via trace-based extension. The directional derivative of the
objective function J with respect to velocity v in the direction (velocity perturba-
tion) δv is given by

DJ[v]δv = 〈ATAf̄ [v],Df̄ [v]δv〉 (A-1)

Using the normal equation 24, we have

(S̄[v]T S̄[v] + ε2I)Df̄ [v]δv = (DS̄[v]δv)T d −D(S̄[v]T S̄[v] + ε2I)f̄ [v]
= (DS̄[v]δv)T (d − S̄[v]f̄ [v])− S̄[v]T (DS̄[v]δv)f̄ [v](A-2)

Let’s introduce an auxiliary extended source w̄[v](xr , t;xs) such that

(S̄[v]T S̄[v] + ε2I)w̄[v] = ATAf̄ [v]. (A-3)

Then, we have by combining (A-2)-(A-3)

DJ[v]δv = 〈w̄[v], (DS̄[v]δv)T (d − S̄[v]f̄ [v])− S̄[v]T (DS̄[v]δv)f̄ [v]〉 (A-4)
= 〈DS̄[v]w̄[v],d − S̄[v]f̄ [v]〉 − 〈S̄[v]w̄[v], (DS̄[v]δv)f̄ [v]〉 (A-5)

Note that (DS̄[v]δv)f̄ [v](xr , t;xs) = f̄ [v]∗(DS̄[v]δv)δt(xr , t;xs), and that 〈S̄[v]w̄[v], f̄ [v]∗
(DS̄[v]δv)δt〉 = 〈f̄ [v] ? S̄[v]w̄[v], (DS̄[v]δv)δt〉 where “?” denotes cross-correlation
and δt is the delta function of t for every trace. A similar transformation of the
other term above shows that

DJ[v]δv = 〈r̄[v], (DS̄[v]δv)δt〉 (A-6)

where the “residual” r̄[v](xr , t,xs) is:

r̄[v] = w̄[v] ? (d − S̄[v]f̄ [v])− f̄ [v] ? S̄[v]w̄[v] (A-7)

(note that this is a trace-by-trace computation). Therefore

∇J[v] = (DS̄[v](·)δt)T r̄[v] (A-8)

The transpose of the impulsive Born simulation operator DS̄[v](·)δt is the well-
known impulsive reverse time migration operator, that is the zero-lag cross-correlation
between the incident Green function G and the adjoint field with the residual r̄[v]
as the adjoint source.
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ABSTRACT
The derivative of the forward (modeling) map for wave inverse problems is
unbounded in the natural metric of the model and data spaces. This un-
boundedness complicates the accurate computation of the reduced gradient
in separable wave inverse problems: iterative estimation of the linear vari-
ables may not lead to convergent computation of the gradient. If the linear
part of the modeling operator possesses a computable inverse up to a smooth-
ing error, however, and if the data is high-frequency in a precise sense, then
the gradient may be decomposed into a computable non-iterative part and
a convergent remainder. The resulting form of the gradient error control is
well-suited to integration with inexact trust-region optimization methods.

INTRODUCTION

Separable (partly linear) modeling operators for wave inverse problems arise ei-
ther via Born approximation (Kern and Symes, 1994; Chauris and Noble, 2001;
Mulder and ten Kroode, 2002; Shen and Symes, 2008; Weibull and Arntsen, 2013;
Biondi and Almomin, 2014) or by including source (right-hand side) parameters
as model degrees of freedom (Song and Symes, 1994; Plessix, 2000; Pratt and
Symes, 2002; Luo and Sava, 2011; Warner and Guasch, 2014; van Leeuwen and
Herrmann, 2013). Extended model spaces add yet more degrees of freedom to the
linear parameters of a separable modeling operator, to permit data fit for a large
set of nonlinear parameter (“velocity model”) values. The non-extended (“phys-
ical”) subspace is the kernel of an “annihilator”. Minimizing the norm of the
annihilator output over all data-fitting models picks out an approximation to the
solution of the physical least squares inverse problem. A natural approach to this
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minimization is via elimination of the linear variables to create a reduced func-
tion of the nonlinear variables (Kern and Symes, 1994; van Leeuwen and Mulder,
2009; Li et al., 2013). If the nonlinear parameters include velocities, indices of
refraction, or equivalent, then the modeling operator is differentiable with loss of
regularity: a convergent sequence of approximate solutions of the data-fit prob-
lem does not (necessarily) lead to a convergent sequence of derivative values. Con-
sequently, the computable approximate solutions of the data-fit problem do not
lead to convergent gradient approximations for the reduced objective, which may
reduce the effectiveness of iterative optimization strategies (Huang and Symes,
2015).

In the paragraphs to follow, I show that the gradient computation may be mod-
ified to become convergent if three conditions are satisfied:

• the linear part of the forward modeling operator possesses a computable
parametrix (inverse modulo compacts, or “asymptotic inverse”) in the form
of its adjoint with respect to suitable weighted norms, and

• the inverse problem is embedded in a family of problems indexed by a data
frequency parameter.

• the (inevitable) Tihonov regularization parameter is coupled to data fre-
quency.

Then the reduced gradient computation may be modified to become convergent
as well.

Reliance on parametrices might seem surprising. However, parametrices for
linearized inverse wave problems have a long history, mostly as a subtopic of com-
putational geometric optics (Cohen and Bleistein, 1977; Beylkin, 1985; Beylkin
and Burridge, 1990; Virieux et al., 1992; Araya and Symes, 1996; Operto et al.,
2000). Recently several authors have described direct (“wave equation”) parametrix
constructions without any ray-geometric computations (Zhang et al., 2005, 2007;
Xu et al., 2011; ten Kroode, 2012; Hou and Symes, 2015). For inversion of source
parameters, even the usual “exact” inversion by Fourier division is actually a
parametrix, due to the inevitable presence of time cut-off.

The existence of the parametrix permits the decomposition of the gradient
into two summands: the first does not involve the solution of the inner (linear)
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problem at all, while the second does but is manifestly continuous in the linear
variables. Hence approximation of the linear part of the solution by a convergent
iteration results in a convergent gradient approximation.

While convergence is assured by the three conditions above, properly inter-
preted, control over the actual error in the gradient is indirect, depending on
quantities that are difficult or impossible ot estimate accurately. However I also
show that gradient error control of the type established here is compatible with
so-called inexact trust-region optimization algorithms (Heinkenschloss and Vi-
cente, 2001), with (in principle) assured convergence to a stationary point. That
is, control over gradient error must be linked to convergence metrics of the opti-
mization algorithm.

Some uses of model extension for inverse wave problems have been criticized
for so-called “gradient artifacts”, that is, computed gradients that appear to give
rise to slow convergence or undesired model features (Fei and Williamson, 2010;
Vyas and Tang, 2010). However it now appears that nothing was wrong with
the gradients - instead, the reduced objective functions of separable least squares
problems were defined with insufficiently precise solution of the linear (inner)
inverse problem (Kern and Symes, 1994; Liu et al., 2014; Lameloise et al., 2015).
The present paper could be viewed as an elaboration upon the latter work.

OPERATORS

This is a Hilbert space story. In fact, the natural objects in this study are Hilbert
space scales, that is sequences of Hilbert spaces H = {H s, s ∈ Z}, decreasing in the
sense that H s+1 ⊂H s, s ∈ Z. Define the sets

H∞ = ∩s∈ZH
s, H−∞ = ∪s∈ZH

s.

The inner product inH s will be denoted 〈·, ·〉s, and the corresponding norm is ‖·‖s.
Usually several scales will be involved in most of our assertions; the scale to which
the inner product or norm belongs should be clear from context.

An operator L of order k ∈ Z from a scaleH1 to a scaleH2 is linear function from
H−∞1 to H−∞2 for which L|H s

1
∈ B(H s

1,H
s−k
2 ) for all s ∈ Z. Denote by Opk(H1,H2) a

set of operators of order k, satisfying the additional order properties: for Li ∈
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Opki1 (H1,H2), i = 1,2,

L1L2 ∈Opk1+k2(H1,H2), [L1,L2] ∈Opk1+k2−1(H1,H2). (1)

Invk(H1,H2) ⊂Opk(H1,H2) is the subset of invertible operators of order k.

The motivating example of this structure are scales of L2 Sobolev spaces, and
scalar (pseudo-)differential operators on them.

The domain of a separable extended model consists of two components. The
first is a (background) model Hilbert spaceMb and an open set of admissible mod-
els U ⊂ Mb. In all examples, Mb is a space of (possibly) vector-valued) smooth
(C∞, “low frequency”) functions on a suitable physical domain representing the
physical parameters of a wave dynamics model, and members of U obey addi-
tional constraints (such as bounds) required to make the dynamical laws they
parametrize well-posed.

The other component of the model domain is a Hilbert space scale of extended
models M̄ = {M̄k , k ∈ Z}. A distinguished subscale M = {Mk , k ∈ Z},Mk ⊂ M̄k,
represents the non-extended or physical models. The annihilator A ∈ Op0(M̄,N )
has M as its kernel:

m̄ ∈ M̄, Am̄ = 0⇔ m̄ ∈M. (2)

. The extension map E ∈Op0(M,M̄) is injective.

The model range or data space is another Hilbert scale D.

The extended modeling operator, or forward map, is a continuous function

F̄ :U →Op0(M̄,D)

It is smooth with loss of regularity:

mb 7→ F̄[mb]|M̄k ∈ Cp(U,B(M̄k ,Dk−p)), (3)

but
mb 7→ F̄[mb]|M̄k < Cp(U,B(M̄k ,Dk−p+1)), (4)

and in particular
mb 7→ F̄[mb]|M̄0 < Cp(U,B(M̄0,D0)). (5)

However, the normal operator is smooth

FT F ∈ C∞(U,Op0(M̄,M̄), (6)
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as follows from the factorization lemma:

DF̄[mb]δmb = F[mb](Q1[mb]δmb) (7)

in which Q1 ∈ C∞(U ×Mb,Op
1(M̄,M̄)) is essentially skew-symmetric:

Q1 +QT1 =Q0 ∈ C∞(U ×Mb,Op
0(M̄,M̄)). (8)

Finally, assume that F̄ has the Egorov property: if L1 ∈ C∞(U,Opk(M̄,M̄)), then
there exists L2 ∈ C∞(U,Opk(D,D)) so that for every mb ∈U ,

F̄[mb]L1[mb] = L2[mb]F̄[mb]. (9)

and vis-versa.

Remark: In the examples, F̄[mb] is a Fourier Integral Operator whose canoni-
cal relation is a local canonical graph, and whose symbol and canonical relation
depends smoothly on mb. Both the regularity with loss of a derivative (Blazek
et al., 2013) and normal regularity of F̄T F̄ follow from these facts: in this case,
F̄T F̄ is a pseudodifferential operator. For examples of the factorization lemma,
see ten Kroode (2014); Symes (2014). The Egorov property follows from the usual
Egorov’s theorem (see for example Taylor (1981)).

The physical modeling operator is a similar map

F :U →Op0(M,D)

with the same smoothness with loss of regularity.

The extended and physical modeling operators are related through the exten-
sion map: for each mb ∈U ,

F[mb] = F̄[mb] ◦E.

OBJECTIVE

In the notation just introduced, the separable inverse problem of this paper may
be crudely stated as:

Given d ∈D0, find m ∈Mb,ml ∈M0 so that F[m]ml ≈ d (10)
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In view of the extension structure, this problem is equivalent to

Given d ∈D0, find m ∈Mb, m̄ ∈ M̄0 so that F̄[m]m̄ ≈ d, Am̄ ≈ 0 (11)

For consistent data (that is, for which “≈” can be replaced with “=” in either of
the above statements, a solution is also a global minimizer of both

‖F̄[m]m̄− d‖2 and ‖Am̄‖2 (12)

The fundamental difficulty of this type of problem lies in the mapping properties
of m 7→ F[m] or F̄[m]: because of these maps are differentiable only with loss of
regularity (statements 3, 4, and 5), the first of the two functions in display 12 (the
“data residual”) is not smooth as a map Mb × M̄ → R. This lack of smoothness is
the ultimate reason that solution of the basic “full waveform inversion” problem
10 is still a topic of active research, rather than a routine tool in exploration and
academic seismology, more than thirty years after it was introduced.

Two objectives such as 12 can be combined in various ways to produce con-
strained and unconstrained optimization problems. Both are quadratic in m̄, so
minimization of either in this variable seems a tractable problem. Minimizing
the second (“semblance”) function so that the data residual becomes a function
of m only (a so called reduced objective) does not improve matters: the resulting
unconstrained optimization is equivalent to 10 and has a non-smooth objective.

Remarkably, eliminating m̄ by minimizing the data residual, yields a smooth
reduced semblance objective: this conclusion will be justified below. Generally it
cannot be assumed that F̄ is coercive, even if it is injective. Therefore some form
of regularization must be added to the data residual to guarantee existence of a
stable minimizer. It is also turns out to be essential to permit more freedom in the
metric structure of domain and range spaces also.

Introduce a data weighting operator Wd ∈ C∞(U,Inv0(D,D)). When restricted
to D0, Wd is self-adjoint and positive definite, hence induces a norm on the order
0 data space:

〈d1,d2〉d = 〈d1,Wdd2〉0 for d1,d2 ∈D0 (13)

Similarly, introduce a model weight operator Wm ∈ C∞(U,Inv0(M̄,M̄)) on the
model space, self-adjoint and positive definite when restricted to M̄0, with cor-
responding norm and inner product

〈m̄1, m̄2〉m = 〈m̄1,Wdm̄2〉0 for m̄1, m̄2 ∈ M̄0 (14)
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Reformulate data residual minimization for the linear variables m̄ as

minm̄‖F̄[m]m̄− d‖2d +λ2‖Rm̄‖2m (15)

in which R is a bounded and coercive regularization operator, whose range is some
other Hilbert space. The normal equation is

Nλ[m]m̄ = F̄†[m]d, Nλ[m] = F̄†[m]F̄[m] +λ2R†R, (16)

in which F̄† = W −1
m F̄[m]TWd[m] is the adjoint of F̄ with respect to the weighted

norms and F̄T is the adjoint with respect to the scale 0-norms. Similarly R† is the
adjoint of R with respect to the weighted model-space norm.

Denote by m̄λ ∈ C∞(U ×D,M̄0) the solution of 7, and define the reduced ob-
jective function

Jλ[m,d] =
1
2
‖Am̄λ[m,d]‖20 (17)

If Jλ[m,d] attains its obvious lower bound, then m̄λ[m,d] ∈ M̄0 and (m,m̄λ[m,d])
solves the extended inverse problem 11.

GRADIENT

Minimization of Jλ by any variant of Newton’s method requires computation of
the gradient of Jλ. Formally,

DJλ[m,d]δm = 〈Dm̄λ[m,d]δm,ATAm̄λ[m,d]〉0

= 〈−Nλ[m]−1(DNλ[m]δm)m̄λ[m,d] +Nλ[m]−1(DF̄†[m]δm)d,ATAm̄λ[m,d]〉0
InsertingWmW

−1
m , referring to the definition of 〈·, ·〉m, and noting thatW −1

m AT = A†

and that Nλ is self-adjoint in the model norm, obtain

= 〈−(DNλ[m]δm)m̄λ[m,d] + (DF̄†[m]δm)d, q̄λ[m,d]〉m (18)

where q̄λ[m,d] is the solution of

Nλ[m]q̄λ[m,d] = A†Am̄λ[m]. (19)

The first term in right-hand side of equation 18 defines a continuous function
of m̄λ[m,d]. Since Nλ = W −1

m F̄TWd F̄ + λ2R†R, the rule 9 implies the existence of
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P ∈ C∞(U,Inv0(M̄,M̄)) so that Nλ = W −1
m F̄T F̄P + λ2R†R. This shows in turn that

Nλ ∈ C∞(U,Op0(M̄,M̄)), thanks to the assumptions on Wd ,Wm, 9 once again, and
the 6. In particular, DNλ[m]δm ∈Op0(M̄,M̄), so the bilinear form

q̄, m̄ 7→ 〈(DNλ[m]δm)m̄, q̄〉m (20)

is continuous in M̄0 × M̄0. Also,

〈(DNλ[m]δm)m̄, q̄〉m = 〈(D(F̄†[m])δm)F̄[m]m̄, q̄〉m

+〈(F̄†[m](DF̄[m]δm)m̄, q̄〉m = −〈Wm[m]−1(DWm[m]δm)F̄†[m]F̄[m]m̄, q̄〉m
+〈F̄†[m]Wd[m]−1DWd[m]F̄[m]m̄, q̄〉m + 〈(DF̄[m]δm)†F̄[m]m̄, q̄〉m

+〈F̄†[m](DF̄[m]δm)m̄, q̄〉m
= −〈(DWm[m]δm)F̄†[m]F̄[m]m̄, q̄〉0 + 〈(DWd[m]δm)F̄[m]m̄, F̄[m]q〉0

+〈F̄[m]m̄, (DF̄[m]δm)q̄〉d + 〈(DF̄[m]δm)m̄, F̄[m]q̄〉d (21)

Concerning the second term in 18, note that

(DF̄†[m]δm) =D[(Wm[m])−1F̄[m]TWd[m]d](δm)

= −Wm[m]−1(DWm[m]δm)F̄†[m]d + F̄†[m]Wd[m]−1DWd[m]d + (DF̄[m]δm)†d (22)

The first two terms in equation 22 involve only bounded operators on M̄0. The
contribution to the second term in the right hand side of equation 18 is

〈(DF̄†[m]δm)d, q̄〉m =

−〈Wm[m]−1(DWm[m]δm)F̄†[m]d, q̄〉m + 〈F̄†[m]Wd[m]−1DWd[m]d, q̄〉m
+〈(DF̄[m]δm)†d, q̄〉m

= −〈(DWm[m]δm)δm)F̄†[m]d, q̄〉0 + +〈(DWd[m]δm)d, F̄[m]q̄〉0

+〈d, (DF̄[m]δm)q̄〉d (23)

Now the difficulty is plain to see: if q̄ = q̄λ[m,d] in the last term on the right
hand side of equation 23 is replaced with an approximation in the sense of the
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0 norm, as would be the result of an iterative process for solving 19 (or equation
7), no bound on the resulting error in the inner product above, hence in the re-
sulting approximation to DJλ[m,d]δm or the gradient of Jλ, can be asserted, since
DF̄[m]δm is not continuous in the sense of M̄0.

Ignoring for the moment the apparent instability, combine equations 21 and
23 to obtain an expression for the derivative of Jλ[m,d]:

DJλ[m,d]δm = 〈(DWm[m]δm)F̄†[m](F̄[m]m̄λ[m,d]− d), q̄λ[m,d]〉0

+〈(DWd[m]δm)(F̄[m]m̄λ[m,d]− d), F̄[m]q̄λ[m,d]〉0

−〈F[m]m̄λ[m,d]− d, (DF̄[m]δm)q̄λ[m,d]〉d − 〈(DF̄[m]δm)m̄λ[m,d],F[m]q̄λ[m,d]〉d
(24)

There follows an expression for the gradient, using the partial duals DF̄[m]∗, a
continuous quadratic form :D0 × M̄1→Mb defined by

〈δm,DF̄[m]∗(d,m̄)〉Mb
= 〈d, (DF̄[m]δm)m̄〉d = 〈(DF̄[m]δm)†d,m̄〉m

= 〈Wd[m]−1d, (DF̄[m]δm)m̄〉0 (25)

and DWm[m]t, a continuous bilinear map M̄0 × M̄0→Mb defined by

〈δm,DWm[m]t(m̄, q̄)〉Mb
= 〈(DWm[m]δm)m̄, q̄〉0

DWd[m]t is defined similarly. Then the m-gradient of Jλ is given by

∇mJλ[m,d] =DWm[m]t(F̄†[m](F̄[m]m̄λ[m,d]− d), q̄λ[m,d])

+DWd[m]t(F̄[m]m̄λ[m,d]− d), F̄[m]q̄λ[m,d]

−DF̄[m]∗(F̄[m]m̄λ[m,d], q̄λ[m,d])−DF̄[m]∗(m̄λ[m,d], F̄[m]q̄λ[m,d])

+DF̄[m]∗(d, q̄λ[m,d]) (26)

Every part of this expression is manifestly stable, that is, substitutions of approxi-
mations m̄λ,a, q̄λ,a in their computation will entailO(‖m̄λ−m̄λ,a‖0,‖q̄λ−q̄λ,a‖0) error,
except for the last term
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STABLILITY

In this section, I will show that the last term in 26 can expressed as the value at
m̄ = m̄λ[m,d] and q̄ = q̄λ[m,d] of of continuous function of d,m̄, q̄, thus giving a
stable computation of the gradient in the sense explained at the end of the last
section.

The construction depends on the availability of a parametrix or approximate
inverse modulo lower order error, of a particular form. The utility of the con-
struction depends on the computability of the parametrix, that is, on its being a
straightforward modification of the transpose. (Hou and Symes, 2015) demon-
strated the existence of such special parametrices for a particular separable in-
verse problem (extended linearized constant density acoustic inversion with hori-
zontal subsurface offset extension) and parametrices with similar properties exist
for other extended modeling operators as well.

In fact, most parametrices of the type I’ve mentioned are only microlocal, and
moreover can only be computed approximately. These limitations will be ad-
dressed in coming sections.

Assume that the data and model weight operators Wd ,Wm can be chosen so
that F̄ is approximately unitary with respect to the norms ‖ · ‖d ,‖ · ‖m: satisfies

F̄†F̄ − I ≡ S ∈ C∞(U,Op−1(M̄,M̄)). (27)

Thus Nλ = S + I +λ2R†R). Thus equations 7, 19 are equivalent to

m̄λ = (I +λ2R†R)−1(F̄†d − Sm̄λ) (28)
q̄λ = (I +λ2R†R)−1(A†Am̄λ − Sq̄λ) (29)

= (I +λ2R†R)−1(A†A(I +λ2R†R)−1(F̄†d − Sm̄λ)− (I +λ2R†R)−1Sq̄λ (30)

Replacing q̄λ in 26 with the right hand side in the last equality of 28, obtain

DF̄[m]∗(d, q̄λ[m,d]) =DF̄[m]∗(d, (I +λ2R†R)−1A†A(I +λ2R†R)−1F̄†[m]d

−(I +λ2R†R)−1A†A(I +λ2R†R)−1S[m]m̄λ[m,d]

−(I +λ2R†R)−1S[m]q̄λ[m,d]). (31)

The operators appearing in the last two terms of 31 are of order −1, mapping M̄0

continuously to M̄1. So the continuity property of DF̄[m]∗ noted above implies
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that the last two terms above are stable, that is, substitution of approximations
m̄λ,a and q̄λ,a for m̄λ and q̄λ in the right-hand side of equation 31 will result in an
O(‖m̄λ,a − m̄λ‖0,‖q̄λ,a − q̄λ‖0) error.

It remains to be seen that the first term on the right hand side of equation 31
is stable: a priori, it only makes sense for d ∈ D1 (hence m̄λ ∈ M̄1). A continu-
ous extension to d ∈ D0 follows however from the factorization property 7. For
convenience, define

B = (1 +λ2R†R)−1A†A(1 +λ2R†R)−1.

Then the first term on the right-hand side of 31 is

〈δm,DF̄[m]∗(d,BF̄†[m]d)〉Mb

= 〈d, (DF̄[m]δm)BF̄†[m]d〉d

= 〈d, F̄[m](Q1[m]δm)BF̄†[m]d〉d

= 〈F̄†[m]d, (Q1[m]δm)BF̄†[m]d〉m (32)

The essentially-skew property of Q (equation 8) holds also for the weighted inner
product 〈·, ·〉m, since the weight operator Wm is invertible and of order 0: specifi-
cally,

(Q1[m]δm)† = −(Q1[m]δm) + (Q0,m[m]δm), (33)

with Q0,m = Q0 + W −1
m [Q1,Wm] ∈ C∞(U,Op0(M̄,M̄)). So the right-hand side of

equation B-1 is

= 〈F̄†[m]d, ([B, (Q1[m]δm)] +B(Q1[m]δm))F̄†[m]d〉m

+〈F̄†[m]d, ([B, (Q1[m]δm)] + ((Q0,m[m]−Q1[m])δm)B)F̄†[m]d〉m. (34)

Add the right hand sides of equations B-1 and 34 and divide by 2 to obtain

〈δm,DF̄[m]∗(d,BF̄†[m]d)〉Mb

=
1
2
〈F̄†[m]d, ([B, (Q1[m]δm)] + (Q0,m[m]δm))F̄†[m]d〉m. (35)
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The right-hand side of equation 35 is a quadratic form in F̄†[m]d, defined by a
self-adjoint operator (the sum of the various commutators and products in the
above expression) of order zero. Therefore

DF̄[m]∗(d,BF̄†[m]d)

is a ‖ · ‖0-continuous Mb-valued quadratic form in d, hence extends continuously
to d ∈D0, whence ∇mJλ[m,d] is ‖ · ‖0-continuous in d.

For Hilbert spaces H1,H2, denote by Q(H1,H2) the Banach space of continuous
H2-valued quadratic forms on H1. Then the result of the foregoing calculations is
summarized in

Theorem 1. Define Gλ ∈ C∞(U,Q(D0 × M̄0 × M̄0,Mb) by

Gλ[m](d,m̄, q̄) =DF̄[m]∗(d, (1 +λ2R†R)−1A†A(1 +λ2R†R)−1F̄†[m]d

− (1 +λ2R†R)−1A†A(1 +λ2R†R)−1S[m]m̄

− (1 +λ2R†R)−1S[m]q̄])

+DWm[m]t(F̄†[m](F̄[m]m̄− d), q̄)

+DWd[m]t(F̄[m]m̄− d, F̄[m]q̄)
−DF̄[m]∗(F̄[m]m̄, q̄)
−DF̄[m]∗(m̄, F̄[m]q̄)

(36)

Then
∇mJλ[m,d] = Gλ[m](d,m̄λ[m,d], q̄λ[m,d]), (37)

in which m̄λ[m,d] and q̄λ[m,d] are solutions of equations 7 and 19 respectively.

Proof. The content of the definition 36 of Gλ is that it is a continuous quadratic-
form-valued function. This fact has been established for each of the summands:
for the first term by equation 35, for the second and third by equation 31 and fol-
lowing discussion, the fourth and fifth by equation 22, and the last two by equa-
tions 20 and 21 and surrounding discussion. These calculations also established
equation 37.

Remark 2. For computational purposes, it is more convenient to work directly with the
defining Hilbert space structure of the background, domain and range spaces, rather
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than with the background, model and data norms, and to formulate the background
model space norm also as a weighted norm. For example,

〈δm,DF̄[m]∗(d,A†AF̄†[m]d)〉Mb

= 〈d, (DF̄[m]δm)A†AF̄†[m]d〉d

= 〈Wdd, (DF̄[m]δm)W −1
m ATAF̄†[m]d〉0.

So

∇mJλ[m,d] =W −1
b DF̄[m]t(Wd[m]d,Wm[m]−1ATAF̄†[m]d) +K[m](m̄λ, q̄λ), (38)

where Wb is the background model space weight operator defining the norm ‖ · ‖Mb
, and

DF̄[m]t is the transpose with respect to the 0-norms (usually, L2, or in the discrete case
Euclidean length) rather than the Mb and ‖ · ‖d norms:

〈δm,DF̄[m]t(d,m̄)〉0 = 〈d, (DF̄[m]δm)m̄〉0. (39)

Assuming that F̄ is implemented by a time-stepping finite difference or finite element
method, this notion of transpose can be computed by a variant of the adjoint state
method. For the case that F̄ is a linearization (that is, Born approximation), so that
DF̄ is actually a second derivative, this application of the adjoint state method was
introduced by Symes and Santosa (1988), and employed by Kern and Symes (1994) in
computations similar to those presented here.

CONTROLLABILITY

The stability result of the last two sections is not in itself sufficient foundation for
a convergent optimization algorithm, for two reasons:

1. The solution errors m̄λ,a − m̄λ and q̄λ,a − q̄λ are not directly observable, since
neither m̄λ nor q̄λ are known in practice;

2. typical iterative solution algorithms for equations 7 and 19 do not necessar-
ily reduce their solution errors.
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Observable quantities actually reduced by iterative algorithms include the data
residual ‖F̄[m]m̄λ,a − d‖d , the residual for each of the equations 7 and 19, and the
norms of the approximate solutions m̄λ,a and q̄λ,a.

It might be objected that the solution errors and residuals for equations 7 and
19 are related, the former being at most λ−2 times the latter (λ2 being a lower
bound for the normal operator Nλ). Of course such bounds are not uniform in λ,
hence are not useful in formulation of an effective algorithm.

As will be explained in the next section, the necessary form for the gradient
error estimate is

‖g −∇Jλ[m,d]‖Mb
≤ Kε (40)

in which K ≥ 0 and ε is a parameter of the estimation process that produces
m̄λ,a, q̄λ,a, in effect that m̄λ,a, q̄λ,a are functions of m ∈ U,d ∈ D0, e > 0. Only min-
imal assumptions will be made about the estimation process - as will be seen
below, only requirements on the residuals produced in equations 7 and 19.

However, such estimates appear to require explicit use of scale separation,
abstracted in part by introducing a family d = {dλ : λ > 0} ⊂ D0 of data, and cor-
responding separable least squares problems. The high frequency cone condition

‖dλ‖k ≤ Ckλ2‖dλ‖k+1, k ≥ k0 (41)

gives a quantitative expression of scale separation. The lower index bound k0 is
presumed to be at most −1.

Remark 3. For the Sobolev scale, this condition identifies the regularization parameter
λ2 with wavelength.

From here on, m̄λ[m,d] and q̄λ[m,d] denote the solutions of the parametrized
systems

Nλ[m]m̄λ[m,d] = F̄†[m]dλ (42)

and
Nλ[m]q̄λ[m,d] = A†Am̄λ[m,d]. (43)

Linking the size of the residuals

em,λ[m,d] = Nλ[m]m̄λ,a[m,d]− F̄†[m]dλ, (44)

eq,λ[m,d] = Nλ[m]q̄λ,a[m,d]−A†Am̄λ,a[m,d,e] (45)
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to the solution errors m̄λ,a − m̄λ and q̄λ,a − q̄λ requires some assumption about the
approximate solutions m̄λ,a and q̄λ,a. Note that any Krylov method for solution of
the systems 42 and 43, preconditioned by (I +λ2R†R)−1, yields first iterates

m̄λ,1[m,d] = (I +λ2R†R)−1F̄†[m]dλ (46)

q̄λ,1[m,d] = (I +λ2R†R)−1A†Am̄λ,1[m,d] (47)

for which the residuals are

em,λ,1 = S[m](I +λ2R†R)−1F̄†[m]dλ, (48)

eq,λ,1 = S[m](I +λ2R†R)−1A†Am̄λ,1[m,d], (49)

Theorem 2. Suppose that for ε > 0, m̄λ,a[m,d,ε] and q̄λ,a[m,d,ε] are approximate
solutions of 42 and 43 for which the residuals em,λ,ε and eq,λ,ε satisfy

‖em,λ,ε‖m ≤ ε‖em,λ,1‖m (50)
‖eq,λ,ε‖m ≤ ε‖eq,λ,1‖m (51)

Then there exists K > 0 and λ0 ≥ 0 so that for λ ≤ λ0,

‖m̄λ,a[m,d,ε]− m̄λ[m,d]‖m ≤ Kε‖dλ‖d (52)
‖q̄λ,a[m,d,ε]− q̄λ[m,d]‖m ≤ Kε‖dλ‖d (53)

uniformly in m ∈U , for fixed choice of {Ck} in 41.

Proof. Since
Nλ[m](m̄λ,a[m,d,ε]− m̄λ[m,d]) = em,λ,ε,

‖m̄λ,a[m,d,ε]− m̄λ[m,d]‖0 ≤
K

λ2 ‖em,λ,ε‖0 ≤
Kε

λ2 ‖em,λ,1‖0

≤ Kε
λ2 ‖dλ‖−1 ≤ Kε‖dλ‖d

The next-to-the last inequality follows from the definition of em,λ,1 and the uni-
form Op−1 bound on S[m], the last from 41 for k = −1. Thus 52 is established.
Since eq,λ,1 takes the same form, a similar estimate holds for it.

Corollary 1. Under the assumptions of Theorem 2, there exists K ≥ 0 for which∣∣∣∣∣12‖Am̄λ,a[m,d,ε]‖2 − Jλ[m,d]
∣∣∣∣∣ ≤ Kε (54)

‖Gλ[m](d,m̄λ,a[m,d,ε], q̄λ,a[m,d,ε])−∇Jλ[m,d]‖Mb
≤ Kε (55)

for m ∈U and sufficiently small λ.
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Proof. Follows from continuity of Gλ as described in Theorem 1, and bounds on
the solution errors established in Theorem 2.

OPTIMIZATION

In view of the error inherent in the calculations explained in the previous sections,
standard variants of Newton’s method for local minimization cannot be guaran-
teed to converge to a local minimizer of Jλ. Minimization of the reduced objective
requires use of iterations that converge in the presence of inexact gradient and ob-
jective function evaluations. Such an algorithm would necessarily need to couple
error and step size control.

Since error-contaminated function and gradient computations are hardly rare,
it is unsurprising that this topic has a fairly large literature (Dembo et al., 1982;
Carter, 1991; Deuflhard, 1991; Carter, 1993; Eisenstat and Walker, 1994). All of
these works and many more recent ones share a major drawback: they mandate
absolute control of function and/or gradient error, implying in particular that the
computed gradient be a descent direction. While of course this condition must
eventually hold, it is nearly impossible to check in practice: many sources of error
are like those considered in the preceding sections, in that they give no direct
measure of gradient or function error, but only allow indirect control.

One exception to this pattern is the work of Heinkenschloss and Vicente (2001);
Kouri et al. (2013, 2014) on error control in the context of trust region methods
for sequential qudratic programming, an approach to constrained optimization.
Trust region globalization is a general concept that applies also to unconstrained
formulations (Conn et al., 2000; Nocedal and Wright, 1999). The condition that
Heinkenschloss and Vicente (2001) place on gradient error takes the form: error
≤ Kε, where ε is a control parameter but K is unknown or at least poorly con-
trolled. Thus nothing can be said a priori about the size of the gradient error, or
even whether the computed gradient is a descent direction, except in an asymp-
totic sense. Reference to Corollary 1 shows that the theory developed above pro-
vides exactly this sort of condition.

The trust region approach to minimization of a C2 function f defined on a



Accurate Reduced Gradients 121

Hilbert space H bases its kth step on a quadratic model approximating f near xk.

mk(s) = fk + 〈s,gk〉+
1
2
〈s,Hks〉.

Here fk is the computed value and gk the computed gradient at xk. Hk is an ap-
proximation, possibly quite crude, to the Hessian of f at xk. The basic trust region
algorithm seeks the step s = xk+1 − xk as the optimum of the constrained problem

minimize mk(s) subject to ‖s‖ ≤ ∆k , (56)

The trust radius ∆k is also subject to update as the iteration proceeds, so as to
satisfy a sufficient decrease criterion leading to assured global convergence to a
local minimizer, under various conditions (smoothness, Hessian definiteness, etc.)
some of which will be mentioned below.

I will describe a simple variant of the trust radius step, depending on two
computed quantities: actual reduction,

actred = f (xk)− f (xk + s)

and predicted reduction,

predred =mk(0)−mk(s) = −(〈s,gk〉+
1
2
〈s,Hks〉)

, and on four magic numbers, 0 < η1 < η2 < 1 and 0 < γ1 < 1 < γ2.

Choose a search direction p by minimizing the model as an unconstrained prob-
lem: that is,

p = −H−1
k gk .

Note that Hk is only an approximation to the Hessian of f , and that in a rather
loose sense: it may be computed by building up a Krylov or quasi-Newton approx-
imation to the Hessian or its Gauss-Newton simplification, for example. Thus p
may be only a crude approximation to a Newton or Gauss-Newton step: this algo-
rithm description encompasses so-called truncated Newton-Krylov methods, for
example, and the step selection may interact with the computation of Hk.

Next enter the step update loop:

1. set s = ∆kp
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2. compute actred,predred.

(a) if actred ≤ η1predred, ∆k← γ1∆k, go to 1.

(b) if actred ≥ η2predred, ∆k←min(1,γ2∆k),

3. xk+1 = xk + s, ∆k+1 = ∆k, exit.

To see how this algorithm accommodates function and gradient error, first
presume that there is none: that is, fk = f (xk), gk = ∇f (xk), and Hk ≥ β > 0 for all
k. The theory presumes that the function f is twice continuously differentiable,
bounded below, and has uniform bounds on the gradient and condition number
of the Hessian over the sub-level sets of the objective. It is easy to see that the
condition for a successful step implies that

fk − fk+1 ≥ C‖gk‖∆k (57)

references, these assumptions imply a natural floor under the trust radius ∆k.
The trust radius decreases only when the actual function reduction is not at least
the lower proportion η1 of the predicted reduction. However as the trust radius,
hence the step, gets smaller, the actual reduction and the predicted reduction
become close, since the model becomes close to the function to first order. Once
the trust radius is small enough, the conditions for further decrease are never met,
and the trust radius never decreases beyond a fixed positive thresshold. Since the
function values are decreasing from step to step and bounded below, they must
converge. Therefore the actual reduction converges to zero, hence the gradient
must converge to zero thanks to inequality 57. Note that this reasoning does not
establish that {xk} converges - that requires a bit more reasoning. However, if the
sequence of iterates does converge, it must converge to a stationary point.

In fact the expected behaviour of this algorithm is that it eventually settles
down at ∆k = 1, takes the full step, and converges at whatever rate the underlying
approximation to Newton’s method yields.

Convergence with inexact function and gradient evaluations follows from an
extension of the same reasoning. Assume for the moment that the function values
are exact. Then the primary condition to be imposed on the gradient, according
to Heinkenschloss and Vicente (2001), is of the form

‖gk −∇f (xk)‖ ≤ ξmin(‖gk‖,∆k). (58)
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in which it is merely required that the constant ξ ≥ 0 be uniform over the sublevel
set of f in which the iterates lie. Then once again reduction of ∆k during a step
eventually stops short of a uniform positive lower bound, since the inequality 58
forces gk, hence the step s, towards the steepest descent step. For short enough
steepest descent steps the actual reduction exceeds η1 times the predicted reduc-
tion, which leads both to the step being taken and in the computed gradient gk
being reduced in length.

I embed this mechanism in an algorithm for minimization of Jλ following the
pattern of Heinkenschloss and Vicente (2001), section 5. Add ξ > 0 to the list of
magic numbers required by the trust region algorithm; in theory at least ξ = 1 is
adequate.

Define (f ,g,H) = JET (m,ε) via the algorithm

1. compute initial approximate solutions m̄1, q̄1

m̄1 = (I +λ2R†R)−1F̄†[m]dλ (59)
q̄1 = (I +λ2R†R)−1A†Am̄1 (60)

with residuals em,1, eq,1;

2. compute approximate solutions m̄, q̄ of the system 42,43 satisfying with resid-
uals e = (em, eq) satisfying

‖em‖m ≤ ε‖em,1‖m (61)
‖eq‖m ≤ ε‖eq,1‖m (62)

3. compute approximate function value, gradient

f =
1
2
‖Am̄‖2 (63)

g = Gλ[m](d,m̄, q̄) (64)

and approximate Hessian H

Formulation of inexact Trust Region algorithm:

1. (fk , gk ,Hk) = JET (mk ,εk)
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2. while εk > ξmin(‖gk‖m,∆k)

(a) εk← ξmin(‖gk‖m,∆k)
(b) (fk , gk ,Hk) = JET (mk ,εk)

3. s = −∆kH−1
k gk ,mk+1 =mk + s,εk+1 = εk , (fk+1, gk+1,Hk+1) = JET (mk+1,εk+1)

actred = fk − fk+1 (65)

predred =
(
1− ∆k

2

)
∆k〈gk ,H−1

k gk〉m (66)

4. if actred ≤ η1predred, ∆k← γ1∆k, go to 3.

5. if actred ≥ η2predred, ∆k←min(1,γ2∆k),

6. next k

Corollary 2. The sequence {mk} produced by the inexact Trust Region algorithm just
described converges to a stationary point of Jλ.

MICROLOCALIZATION

With a few exceptions, no examples of forward maps F̄ defined by separable in-
verse wave problems have actual parametrices, that is, operators F̄† satisfying the
definition 27. Instead, they have microlocal parametrices. Abstractly, the microlo-
cal property is captured in an approximate projector Π ∈Op0(M̄,M̄), self-adjoint
with respect to ‖ · ‖m and close to idempotent in the sense that

‖Π−Π2‖m ≤
1
4
, 0 ≤Π ≤ 1. (67)

A microlocal parametrix F̄† satisfies

F̄†[m]F̄[m]−Π = S[m] ∈Op−1(M̄,M̄). (68)

In this section, the approximate projector Π is locally constant, that is, the relation
68 holds in a neighborhood of m0 ∈M.
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Augment the linear least squares problem 15 by adding 〈m̄, (I −Π)m̄〉m to ob-
jective. The corresponding effect on the normal operator is:

Nλ[m] = F̄†[m]F̄[m] + (I −Π) +λ2R†R = I + S[m] +λ2R†R.

Define as before m̄λ[m,d] to be the solution of Nλ[m]m̄λ[m,d] = F̄†[m]d, and the
reduced objective Jλ by equation 17.

Computation of Jλ and ∇Jλ goes exactly as before, and Theorems 1 and 2 and
Corollary 1 hold verbatim. The only change comes in the relation between the
minimizer of Jλ and the solution of the inverse problem m,m̄: the data misfit is
small only if one assumes that d can be fit with m̄ nearly annihilated by I−Π. That
is an a priori assumption about the solution, which in examples entails a similar
assumption about data.

REFERENCES

Araya, K., and W. Symes, 1996, 2D and 2.5D kirchhoff inversion using upwind
finite difference amplitudes: Proc. 66th Annual International Meeting, Society
of Exploration Geophysicists, 503–506. (Expanded abstract).

Beylkin, G., 1985, Imaging of discontinuities in the inverse scattering problem
by inversion of a causal generalized Radon transform: Journal of Mathematical
Physics, 26, 99–108.

Beylkin, G., and R. Burridge, 1990, Linearized inverse scattering problem of
acoustics and elasticity: Wave Motion, 12, 15–22.

Biondi, B., and A. Almomin, 2014, Simultaneous inversion of full data bandwidth
by tomographic full-waveform inversion: Geophysics, 79, WA129–WA140.

Blazek, K., C. C. Stolk, and W. Symes, 2013, A mathematical framework for in-
verse wave problems in heterogeneous media: Inverse Problems, 29, 065001:1–
34.

Carter, R., 1991, On the global convergence of trust region algorithms using inex-
act gradient information: SIAM J.Numer. Anal., 28, 251–265.

——–, 1993, Numerical experience with a class of algorithms for nonlinear opti-
mization using inexact function and gradient information: SIAM J. Sci. Comp.,
14, 368–388.

Chauris, H., and M. Noble, 2001, Two-dimensional velocity macro model estima-
tion from seismic reflection data by local differential semblance optimization:



126 Symes

applications synthetic and real data sets: Geophysical Journal International,
144, 14–26.

Cohen, J., and N. Bleistein, 1977, An inverse method for determining small vari-
ations in propagation speed: SIAM Journal on Applied Mathematics, 32, 784–
799.

Conn, A., N. Gould, and P. Toint, 2000, Trust region methods: SIAM.
Dembo, R., S. Eisenstat, and T. Steihoug, 1982, Inexact Newton methods: SIAM

Journal on Numerical Analysis, 19, 400–408.
Deuflhard, P., 1991, Global inexact Newton methods for very large scale nonlinear

problems: Impact of Computing in Science and Engineering, 3, 366–393.
Eisenstat, S., and H. Walker, 1994, Globally convergent inexact Newton methods:

SIAM Journal on Optimization, 4, 393–422.
Fei, W., and P. Williamson, 2010, On the gradient artifacts in migration veloc-

ity analysis based on differential semblance optimization: 80th Annual Inter-
national Meeting, Expanded Abstracts, Society of Exploration Geophysicists,
4071–4076.

Heinkenschloss, M., and L. Vicente, 2001, Analysis of inexact trust-region SQP
algorithms: SIAM J. Optimization, 12(2), 283–302.

Hou, J., and W. Symes, 2015, An approximate inverse to the extended Born mod-
eling operator: Geophysics, 80, no. 6, R331–R349.

Huang, Y., and W. Symes, 2015, Born waveform inversion via variable projec-
tion and shot record model extension: 85rd Annual International Meeting, Ex-
panded Abstracts, Society of Exploration Geophysicists, 1326–1331.

Kern, M., and W. Symes, 1994, Inversion of reflection seismograms by differential
semblance analysis: Algorithm structure and synthetic examples: Geophysical
Prospecting, 99, 565–614.

Kouri, D. P., M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders,
2013, A trust-region algorithm with adaptive stochastic collocation for PDE
optimization under uncertainty: SIAM Journal on Scientific Computing, 35,
A1847–A1879.

——–, 2014, Inexact objective function evaluations in a trust-region algorithm for
pde-constrained optimization under uncertainty: SIAM Journal on Scientific
Computing, 36, A3011–A3029.

Lameloise, C.-A., H. Chauris, and M. Noble, 2015, Improving the gradient of the
image-domain objective function using quantitative migration for a more ro-
bust migration velocity analysis: Geophysical Prospecting, 63, 391–404.

Li, M., J. Rickett, and A. Abubakar, 2013, Application of the variable projection
scheme to frequency-domain full-waveform inversion: Geophysics, 78, R249–



Accurate Reduced Gradients 127

R257.
Liu, Y., W. Symes, and Z. Li, 2014, Inversion velocity analysis via differential

semblance optimization: Presented at the 76th Annual Meeting, Extended Ab-
stracts, European Association of Geoscientists and Engineers.

Luo, S., and P. Sava, 2011, A deconvolution-based objective function for wave-
equation inversion: 81th Annual International Meeting, Expanded Abstracts,
Society of Exploration Geophysicists, 2788–2792.

Mulder, W., and F. ten Kroode, 2002, Automatic velocity analysis by differential
semblance optimization: Geophysics, 67, 1184–1191.

Nocedal, J., and S. Wright, 1999, Numerical Optimization: Springer Verlag.
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An alternative formula for approximate extended
Born inversion

Jie Hou, William W. Symes

ABSTRACT
Various modifications of Reverse Time Migration provide asymptotic inverses
to the subsurface offset extended Born modeling operator for constant-density
acoustics. These approximate inverses have the same quality (asymptotic ac-
curacy) as do Generalized Radon Transform pseudoinverses, but can be com-
puted without any ray tracing whatsoever. In this paper, we describe an ap-
proximate inverse of this type whose additional computational cost, above
that of subsurface offset extended Reverse Time Migration, is negligible.

INTRODUCTION

Reverse time migration (RTM) with space-shift imaging condition (Sava and Fomel,
2003) is the transpose or adjoint of the space-shift (or subsurface offset) extended
Born modeling operator of constant-density acoustics (Stolk et al., 2009). Re-
markably, pre- and post-multiplication with relatively low-cost auxiliary opera-
tors convert the RTM operator from an adjoint into an asymptotic inverse opera-
tor. This observation is implicit in a number of works on “true amplitude migra-
tion” (Zhang et al., 2007; Xu et al., 2011), and was made explicit by ten Kroode
(2012, 2014) and Hou and Symes (2015b). In one of its forms, the approximate
inverse is

F̄† =W −1
modelF̄

∗Wdata, (1)

in which F̄ is the subsurface offset extended Born modeling operator (the depen-
dence on background model is suppressed) and F̄∗ is its adjoint (a form of RTM).
Wmodel and Wdata are model- and data-domain weight operators, defined by

W −1
model = 4v5(D2

x +D2
z )1/2(D2

h +D2
z )1/2P ;

Wdata = I4
t DzsDzr .

(2)

129



130 Hou and Symes

Here, v is the background or migration velocity (v(x,z) in 2D, v(x,y,z) in 3D),
Dx,Dh,Dz are x,h,z-direction derivatives (where h is subsurface offset), It is the in-
definite time integral and Dzs ,Dzr are source and receiver depth derivatives. P (...)
(the reciprocal is used in Hou and Symes (2015b)) is a so-called pseudodifferen-
tial operator (Ψ DO) of order zero, an oscillatory integral defined by its symbol
or amplitude, also denoted P - see equation 11 below. F̄† is an asymptotic in-
verse in the sense that F̄†F̄ − I suppresses high-frequency components, that is,
in the same sense as Generalized Radon Transform (GRT) or Kirchhoff inverses
(Beylkin, 1985; Bleistein, 1987; Operto et al., 2000). Of course GRT inverses re-
quire extensive computation of traveltime and amplitude tables. F̄† requires no
ray-related computations at all.

Note that the operator Wmodel defined by Hou and Symes (2015b) is written
here asW −1

model, so that F̄† is expressed as the adjoint of F̄ with respect to weighted
norms. This observation leads to a dramatic acceleration of iterative extended
least squares migration (Hou and Symes, 2016a).

In this paper, we derive and illustrate an alternative approximate inverse

F̄‡ = −8v4DzQF
∗DtWdata (3)

in which Q is a Ψ DO with properties similar to those of P . We show that F̄‡ is an
asymptotic inverse in the same sense as is F̄†, and illustrate its equivalent accuracy
with a nontrivial numerical example. Note, however, that the expression 3 for F̄‡

does not take the form of an adjoint of F̄ with respect to weighted norms.

The steps necessary to evaluate the right-hand sides of equations 1 and 3 are:

1. Apply the weight operator Wdata to the data. Our previous paper (Hou and
Symes, 2014, 2015b) discusses implementation of this step. For example, for
shallow tow-depth streamer data (free surface, small zs, zr relative to short-
est wavelength to be imaged), the vertical source and receiver derivatives
are present in the recorded traces already, as a side effect of ghosting. If the
data is free of ghost reflections, shift the vertical derivatives to the migration
by using a dipole Green’s function in RTM.

2. For equation 3: apply the time derivative, or include one less time integra-
tion in the definition of Wdata.
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3. Apply the extended RTM operator F̄, formulated with absorbing boundary
if source and receiver vertical derivatives are already applied to the data,
else formulated with vertical dipole source and receiver.

4. 4.a. For equation 1: apply square roots of Laplacians in x,z and h,z (2D) or
x,y,z and hx,hy , z (3D). This step requires partial Fourier transforms of
3D data (for 2D inversion) or 5D data (for 3D inversion).

4.b. For equation 3: apply the z derivative.

5. Apply the operators P (equation 1) orQ (equation 3), or appropriate approx-
imations.

6. Scale by appropriate power of v and numerical factors.

For kinematically accurate v, the output of F∗ focuses near h = 0, and an ap-
propriate approximation for P or Q is the identity operator, that is, a “no-op”. We
will say a few words about the general case in the discussion section.

Comparison of steps 4.a. (for equation 1) and 2. and 4.b. (for equation 3)
suggests that implementation of equation 3 is likely to be less computationally
demanding than implementation of equation 1, as no spatial transforms are in-
volved in the former implementation. At least for kinematically accurate migra-
tion velocity, with Q neglected, equation 3 defines a least expensive RTM-based
approximation inverse, as computationally feasible as subsurface-offset extended
RTM itself.

In the next section, we will outline the theoretical derivation of equations 1
and 3, limiting ourselves to 2D for simplicity. In the following section, we present
an example based on the Marmousi model (Bourgeois et al., 1991). The discussion
section points out some open questions about the constructions described here.

THEORY

In this section, we sketch an approach for construction of approximate inverse
operators, reserving mathematical details for the appendices. We make extensive
use of results from Hou and Symes (2015b). To avoid confusion, we prefix all
citations of equations from that paper by “HS-”. We also use the notation of that
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paper, in particular φ(xr ,xs,x,z,h) = T (xs, zs,x − h,z) + T (xr , zr ,x + h,z) for offset
reflection time as a function of source location (xs, zs), receiver location (xr , zr),
midpoint (x,z), and subsurface offset h. Source and receiver depths are idealized
as the same for all traces, so we drop zs, zr from the argument list of φ. We assume
for simplicity that ∂φ/∂z > 0 in the domain of interest, that is, that reflection
time is increasing with depth throughout the region of nonzero reflectivity. This
assumption is consistent with the use of horizontal subsurface offset.

The key computation is the asymptotic approximation of a Generalized Radon
Transform of the special form

Mau(x,z,h) =
∫
dxrdxsdx

′dz′dh′a(xr ,xs,x,z,h,x
′, z′,h′)

× δ(φ(xr ,xs,x,z,h)−φ(xr ,xs,x
′, z′,h′))u(x′, z′,h′),

(4)

defined by the phase φ and an amplitude function a. Appendix A shows that

Mau(x,z,h) ≈ − 1
4π

∫
dkxdkzdkhe

i(xkx+zkz+hkh) û(kx, kz, kh)
Q(x,z,h,kx/kz, kh/kz)

×
v2

k2
z

∂φ

∂z

(
∂αs
∂xs

∂αr
∂xr

)−1

a

 (xr(x,z,h,kx/kz, kh/kz),xs(x,z,h,kx/kz, kh/kz),x,z,h).

(5)

In this representation, û denotes the Fourier transform of u, andQ(x,z,h,kx/kz, kh/kz)
is a symbol of order zero, that is, the amplitude (non-oscillatory) factor in the
standard representation of a Ψ DO. Properties of symbols are described in many
standard texts, for example Taylor (1981). Q is defined explicitly in Appendix A,
and satisfies

Q(x,z,h,kx/kz, kh/kz) , 0 if kz , 0, Q(x,z,0, kx/kz, kh/kz) ≡ 1. (6)

The term in brackets is a function of the source and receiver locations xr ,xs which
are in turn functions of midpoint and offset coordinates and wavenumbers. This
functional relationship depends on determining the takeoff slowness vectors∇x,zT (xr,s, zr,s,x±
h,z) of rays connecting sources and receivers to scattering points, from the sta-
tionary phase conditions that lead to the asymptotic formula 5. The details are
given in ten Kroode (2012) and Appendix A of Hou and Symes (2015b), and also
sketched in Appendix A.

A convenient starting point for the derivation of formulae 2 and 3 is equation
HS-20, expressing the extended Born operator applied to an extended perturba-
tion δv̄(x,z,h) of the (non-extended) velocity model v(x,z), modified by time in-
tegrations and vertical source and receiver derivatives, and approximated by ray



Alternative Approximate Inversion 133

theory Green’s functions. As in Hou and Symes (2015b), we adopt the notation
convention that θr = θ(xr , zr ,x + h,z) for the surface takeoff angle of the ray from
(x+h,z) to the receiver at (xr , zr), and similarly for θs and other functions of source
and receiver locations and scattering points, with primes for functions of primed
variables. The result of equation HS-20 is (we reproduce it here):

ItDzsItDzr ItF̄δv̄(xr ,xs, t) ≈
∫
dxdzdhasar

cosθr
vr

cosθs
vs

δ(t −φ)
2πδv̄
v3 (x,z,h). (7)

Set

a† = −asara′sa′r
cosθr
vr

cosθs
vs

4π2

v3v′3
, (8)

Equation 7 implies that

(ItF̄)∗(ItDzsItDzr ItF̄) ≈Ma† . (9)

The fact I ∗t = −It and application of approximation 5 turns equation 9 into equa-
tion HS-21 (derivation details can be found in Appendix A of Hou and Symes
(2015b)):

Ma† ≈ −
1

32v(x,z)5π3

∫
dkxdkzdkhe

i(kxx+kzz+khh) δ̂v̄(kx, kz, kh)
kxzkhzP (x,z,h,kx, kz, kh)

. (10)

Here, kxz =
√
k2
x + k2

z , khz =
√
k2
h + k2

z are the symbols of the operator square roots

in the definition of W −1
model. Now invoke the multiplicative property of Ψ DOs: to

leading order in frequency, the symbol of the product (composition) of Ψ DOs is
the (numerical) product of the symbols. That is, kxzkhz is cancelled by applying
W −1

model, and 1/P by applying the Ψ DO

(P u)(x,z,h) =
1

8π3

∫
dkxdkzdkhe

i(kxx+kzz+khh)P (x,z,h,kx, kz, kh)û(kx, kz, kh). (11)

SinceWdata is already implicit in the left-hand side of equation 9, the approximate
inverse 1 is established.

To derive the approximate inverse 3, note that

∂
∂t
δ(t −φ) = −

(
∂φ

∂z

)−1

Dzδ(t −φ). (12)
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Differentiate both sides of equation 7 with respect to t, use equation 12, and inte-
grate by parts to get

DtItDzsItDzr ItF̄δv̄(xr ,xs, t)

≈ −
∫
dxdzdhasar

cosθr
vr

cosθs
vs

(
∂φ

∂z

)−1

δ(t −φ)
2πDzδv̄
v3 (x,z,h). (13)

Accordingly,
(ItF̄)∗(DtItDzsItDzr ItF̄) ≈Ma‡ (14)

with

a‡ = asara
′
sa
′
r
cosθr
vr

cosθs
vs

(
∂φ′

∂z

)−1 4π2

v3v′3
Dz. (15)

Another application of the approximation 5, detailed in Appendix B, leads to

8v(x,z)4(ItF̄)∗(DtItDzsItDzr ItF̄)δv̄(x,z,h)

' 1
8π3

∫
dkxdkzdkhe

i(xkx+zkz+hkh) δ̂v̄(kx, kz, kh)
ikzQ(x,z,h,kx/kz, kh/kz)

.
(16)

Using the fact I ∗t = −It and the multiplicative property of Ψ DOs as before to move
Dz (symbol ikz) and Q to the left-hand side leads directly to equation 3.

NUMERICAL EXAMPLE

In this section, we use the synthetic Marmousi model (Bourgeois et al., 1991) to
compare the accuracy of the two approximate inverse formulae. We use a kine-
matically accurate velocity, in fact we generate the (Born) data with the same ve-
locity model used to invert it via formulae 1 and 3, so the data to which the oper-
ators P and Q are applied is focused near h = 0. Thus, these two operators act as
approximate identities, and are neglected in our computations.

Figure 1 shows the smoothed background velocity model and reflectivity model.
The model is discretized on a 301*921 grid with a spacing of 10 m in both hor-
izontal and vertical directions. The generated Born data have 231 common shot
gathers every 40 m, and each shot has 921 receivers every 10 m. The simula-
tion uses a 2.5-5-30-35 Hz bandpass wavelet with 1 ms temporal sampling. The
recording length is 4 s.
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Figure 1: Marmousi model. (a) Background velocity model obtained by smoothing the original Marmousi model; (b)
Reflectivity model obtained by taking the difference between the original model and the background model.
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Formulae 2 and 3 are applied on the Born data for the Marmousi model. The
extended images have an subsurface offset range [-250 m : 250 m] with 10 m
spacing. Figure 2 plots the extended inversion produced by the two formulae and
their difference. The comparison illustrates that both formulae for the approx-
imate inversion express the same nature and produce very similar results. The
difference mainly corresponds to the energy out of the asymptotic framework,
e.g., diving wave and refractions. As explained by Hou and Symes (2015b), the
physical model can be also recovered by stacking along the subsurface offset axis
(nonextended inversion). We plot the stacked images and their difference in Fig-
ure 3. These two stacked images are visually almost identical. The artifacts that
appearing in the extended images also cancel during the stacking process. The
middle trace extracted from the reflectivity model and the two stacked images
(Figure 4a) further show the similarity of the two formulae. In order to further
verify the effectiveness of the approximate inverse operators, we apply extended
Born modeling operator on the inverted extended images to resimulate the data.
Figure 5 plots the middle shot of the original data, the resimulated data for the
extended images using formulae 1 and 3, and the difference between the two res-
imulated data. The approximate inversion using both formulae produce almost
the same level of relative data misfit, compared to the original data. The mid-
dle trace (zero offset) extracted from the middle shot of the original data and two
resimulated data confirms this view more clearly (Figure 4b). The substantial dif-
ference, especially at large offset, between the two resimulated data (Figure 5d)
results from the energy out of the asymptotic framework and shows the effect of
the different Ψ DOs in two formulae, which is not completely clear yet.

DISCUSSION

We thank Fons ten Kroode for pointing out that the asymptotic inverse 3 may be
derived easily from equations 7 and 8 in (ten Kroode, 2014), which summarize an
argument analogous to that explained here.

The operator defined by equation 1 is the adjoint of F̄ in weighted norms on
model and data spaces defined by Wmodel and Wdata. Since the weighted nor-
mal operator F̄†F̄ is approximately the identity, the operator F̄ is approximately
unitary in the norms defined by the weight operators 2, so that Krylov subspace
iterations such as conjugate gradients converge very rapidly to solutions of the
extended least squares migration problem (Hou and Symes, 2015a, 2016a,b). It
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Figure 2: (a) Extended image inverted with formula 1; (b) Extended image inverted with formula 3; (c) The difference
between the two extended images.
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Figure 3: (a) Stacked image corresponding to the extended image in Figure 2a; (b) Stacked image corresponding to the
extended image in Figure 2b; (c) The difference between (a) and (b).
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Figure 4: Middle trace comparison. (a) Model comparison: blue line is the reflectivity model; green line is the stacked
image using formula 1; red line is the stacked image using formula 3. (b) Data comparison: blue line is the original data,
green line is the resimulated data corresponding to the original formula, red line is the resimulated data corresponding to
the new formula.
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Figure 5: The middle shot of (a) original Born data ; (b) resimulated Born data corresponding to the extended image in
Figure 2a; (c) resimulated Born data corresponding to the extended image in Figure 2b;(d) The difference between (b) and
(c).
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remains to be seen whether the approximate inverse operator shown in equation
3 can play a similar role in accelerating Krylov methods.

The Ψ DOs P and Q are in principle necessary for asymptotically accurate re-
covery of unfocused extended models via 1 and 3. These operators have low ap-
proximate rank, and efficient algorithms exist for approximating their action (Bao
and Symes, 1996; Demanet and Ying, 2011). However, all of these algorithms have
at least the complexity of the Fourier transform, so in fact have substantial cost,
especially in 3D. Moreover, only approximations may be computed; at present,
the degree of approximation necessary to obtain an accurate approximate inverse
is unknown. Experience so far suggests that for convergence acceleration of itera-
tive algorithms, it may be possible to ignore P as we have done here.

The derivations presented here are in principle valid only in the absence of
triplications (multiple wave arrivals). However, there is ample evidence that this
restriction is not really necessary (Stolk et al., 2009; ten Kroode, 2012, 2014). The
absence of turning rays is a more fundamental limitation. To include them would
require inclusion of vertical subsurface offsets (Biondi and Symes, 2004).

CONCLUSIONS

In this paper, we have derived a formula for approximate extended Born inver-
sion, whose additional cost beyond that of extended RTM is negligible. By theo-
retical derivation and numerical experiment, we have demonstrated that the op-
erator derived here, while substantially less expensive to implement (especially
in 3D), achieves the same order of asymptotic accuracy as that described by Hou
and Symes (2015b).
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APPENDIX A

PSEUDODIFFERENTIAL APPROXIMATION OF A
GENERALIZED RADON TRANSFORM

In this appendix, we show that equation 5 gives a high-frequency asymptotic ap-
proximation to the Generalized Radon Transform 4, by modifying the argument
explained in Appendix A of Hou and Symes (2015b). This argument begins with
the assumption that ∂φ/∂z > 0 where the input function u , 0 (in application,
u will be the velocity perturbation δv̄). Clearly, only those (x′, z′,h′) contribute
to the evaluation of Mau(x,z,h) for which of φ(xr ,xs,x,z,h) = φ(xr ,xs,x

′, z′,h′) for
some xs,xr . Solve this equation for z′ = Z(xr ,xs,x,z,h,x

′,h′) - given the assump-
tion, the solution is at least locally unique. Note that as a distribution in (x′, z′,h′),

δ(φ(xr ,xs,x,z,h)−φ(xr ,xs,x
′, z′,h′)) =

(
∂φ

∂z′
(xr ,xs,x

′, z′,h′)
)−1

δ(z′−Z(xr ,xs,x,h,z,x
′,h′)).

(A-1)
Substitute the identity A-1 in the definition 4 and introduce the Fourier transform
of u to obtain

Mau(x,z,h) =
1

8π3

∫
dkx′dkz′dkh′dxrdxsdx

′dh′a(xr ,xs,x,z,h,x
′,Z(xr ,xs,x,h,z,x

′,h′),h′)

×
(∣∣∣∣∣∂φ∂z

∣∣∣∣∣−1

(xr ,xs,x
′,Z(xr ,xs,x,h,z,x

′,h′),h′)e
ikz′

(
x′
kx′
kz′

+h′
kh′
kz′

+Z(xr ,xs,x,h,z,x′ ,h′)
))
û(kx′ , kz′ , kh′ ).

(A-2)
Apply the stationary-phase principle to evaluate the right-hand side of equation
A-2 as in equation HS-A4. At the stationary point, x = x′, z = z′,h = h′, and (drop-
ping the primes on the frequency variables)

(kx, kz)‖∇x,zφ, (kh, kz)‖∇h,zφ. (A-3)
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From relation A-3 it follows that the wavevector (kx, kz, kh) determines the ray con-
necting the scattering points (x ± h,z) to the (xr , zr), (xs, zs) respectively, hence the
latter become functions of the covector (x,z,h,kz, kz, kh). In terms of these func-
tions, to leading order in kz, Mau(x,z,h)

'
∫
dkxdkzdkh

[
2π
kz

]2 [ 1
8π3

]
a(xr(x,z,h,kx/kz, kh/kz),xs(x,z,h,kx/kz, kh/kz),x,z,h,x,z,h)

×
∣∣∣∣∣∂φ∂z

∣∣∣∣∣−1

(xr(x,z,h,kx/kz, kh/kz),xs(x,z,h,kx/kz, kh/kz),x,z,h)ei(xkx+zkz+hkh)δ̂v̄(kx, kz, kh)

×|det Hess(xr(x,z,h,kx/kz, kh/kz),xs(x,z,h,kx/kz, kh/kz),x,z,h)|−1/2. (A-4)

The Hessian factor |det Hess|−1/2 is buried in HS-A27 and HS-A28: we fish it out
as

|det Hess|−1/2 = −v
2

2

(
∂αs
∂xs

∂αr
∂xr

)−1 (∂φ
∂z

)2 1
Q
, (A-5)

in which αs,αr are the ray takeoff angles at source and receiver positions, hence
also functions of (x,z,h,kx, kz, kh). Here the arguments are suppressed temporarily.
Q =Q(x,z,h,kx, kz, kx) is defined in terms of the z-components of ray slowness

qr =
∂T
∂z

(xr , zr ,x+ h,z), qs =
∂T
∂z

(xs, zs,x − h,z) (A-6)

by the quantity in square brackets in HS-A28, multiplied by
(
∂φ

∂z

)−2

:

Q =
v2

(qr + qs)2

[
q2
r

v2
−

+
q2
s

v2
+

+
(

1
v2
−

+
1

v2
+

)
qsqr

]
, (A-7)

in which v± = v(x ± h,z),v = v(x,z). HS-A21 defines qr ,qs in terms of v,v± and
∂φ/∂z, and HS-A24, HS-A25, and HS-A26 define the ∂φ/∂z, as functions of (x,z,h,kx, kz, kh).
The reader will note that Q is dimensionless, and homogeneous of degree zero
in (kx, kz, kh), hence really a function of (kx/kz, kh/kz). A bit of algebra using the
quoted identities also establishes that

Q(x,z,0, kx/kz, kh/kz) = 1. (A-8)

Combining these results with equation A-4, we obtain equation 5.
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APPENDIX B

AN ALTERNATIVE FORMULA FOR APPROXIMATE
INVERSION

Applying approximation 5 to equation 14, we obtain

(ItF̄)∗(DtItDzsItDzr ItF̄)δv̄(x,z,h) ' πv(x,z)−4
∫
dkxdkzdkhe

i(xkx+zkz+hkh)δ̂v̄(kx, kz, kh)

×
(∂αr∂xr

∂αs
∂xs

)−1

a2
r a

2
s

cosθr
vr

cosθs
vs

 (xr(x,z,h,kx/kz, kh/kz),xs(x,z,h,kx/kz, kh/kz),x,z,h)

× i
kz
Q−1(x,z,h,kx/kz, kh/kz). (B-1)

To evaluate the right-hand side of equation B-1, we employ relations HS-B6,
HS-B7:

a2
r

cosθr
vr

(
∂αr
∂xr

)−1

=
1

8π2 = a2
s

cosθs
vs

(
∂αs
∂xs

)−1

. (B-2)

Substitution of these identities in B-1 leads directly to equation 16, hence to the
asymptotic inverse formulat 3 as described in the theory section.
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Subsurface offset extended wave-equation migration
velocity analysis with angle filtering

Lei Fu and William W. Symes

ABSTRACT
Migration velocity analysis (MVA) based on subsurface offset extended im-
age provides a way to update the velocity model by measuring the focusing
of the extended migrated image. The focusing property is introduced by a
horizontal subsurface shift in the imaging condition, which expresses consis-
tency between data and velocity model and can be understood as non-local
stress-strain relations in acoustic case. In principle, in a correct velocity, the
image should focus at zero subsurface shift; in a wrong velocity, the reflector is
imaged as a curve in the extended image, which represents the inconsistency
between data and the wrong velocity model. Aiming to recover the correct ve-
locity model by focusing the extended image, differential semblance function
penalizes energy in the extended image at non-zero shift. However, under
prototypical conditions of acquisition geometry, the existence of artefacts is
very likely to deviate the velocity update from its path to the correct velocity.
The cause of those artefacts can be studied by means of asymptotic analysis
and numerical examples. Here, in order to mitigate those artefacts, a taper
in scattering angle domain depending on acquisition geometry and imaging
point is introduced. The application of the proposed new method is demon-
strated by 2D synthetic examples, which shows migration velocity analysis
becomes more robust.

INTRODUCTION

Migration velocity analysis is an image-domain approach to build velocity model
by exploiting the redundancy in seismic data. In MVA, the data redundancy is
exploited with Common Image Gathers (CIG) by measuring coherency across im-
ages obtained for different data offsets. Fundamentally, the physical origin of the
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data redundancy is redundant illumination of reflectors by different scattering
angles.

One approach to build the CIG is to introduce a subsurface spatial shift. Several
application of velocity analysis based on focusing of subsurface extended images
have been published, accompanied by the observation of artifacts. Artefacts in
extended images are likely to destruct the global convergence property of MVA,
leading velocity updates to a wrong direction. Several approaches were proposed
to tackle the problem in data domain (Mulder, 2014; Lameloise et al., 2015). By
analyzing the origin of those artefacts, this paper proposes a simple but effective
approach that directly deals with the artefacts in scattering angle domain.

Proposed by Lailly (1983, 1984), it is an attractive approach to solve the linearized
seismic inversion by least-squares minimization of the misfit between observed
and modeled data. However, due to its highly nonlinear nature, the objective
function of typical least-squares functions appears to possess many ‘local min-
ima’ far from its global minimum. Here, the global minimum represents the cor-
rect physical model that generates the data, while the local minima occurs at the
wrong velocity model generating the data similar to the observed one in least-
squares sense. After an early example of this obstacle showed by Gauthier et al.
(1986), a number of researchers have tried different approaches in an effort to
overcome this local minima obstacle. It has been known that FWI succeeds only
when wavelength in data and accuracy of initial model combine to predict lowest
frequency data to correctly to within half a wavelength. (Cao et al., 1990; Crase
et al., 1990; Bunks et al., 1995; Plessix et al., 1999; Shin and Min, 2006). How-
ever, neither a” good” initial model nor low-frequency for FWI could be difficult
to obtain in the real world (Plessix et al., 2010).

On the other hand, migration velocity analysis possesses global convergence prop-
erty by exploiting the redundancy in the seismic data. One type of extension
makes use of the surface offset or scattering angle as an additional dimension to
describe the redundancy in the data, which leads to a surface offset extended mod-
eling (Symes and Kern, 1994; Chauris and Noble, 2001; Mulder and ten Kroode,
2002). Based on the flattening gather principle in conventional stacking velocity
analysis or normal moveout (NMO) in seismic processing, the flatness of event in
a shot gather or angle gather indicates the correctness of velocity above the event.
By adding the surface offset to the model as another degree of freedom, we allow
the model to depend on the offset between sources and receivers. However, the
surface-oriented extended modeling only works in regions that the lateral hetero-
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geneity is not too great. In kinematically complex areas, energy may propagate
along multiple paths between source and receiver pairs, so kinematic artifacts
strongly violate the consistency or kinematic compatibility between data and ve-
locity model (Nolan and Symes, 1997; Stolk and Symes, 2004).

One alternative is introducing a space shift in the subsurface (Claerbout, 1971;
Biondi and Shan, 2002; Biondi and Symes, 2004), rather than on the surface,
which leads to the second type of extension: the subsurface offset extension. The
principle of MVA is that the kinematic error of the velocity model is measured
by an extension parameter (e.g., surface offset, subsurface offset, incidence angle,
time shift). For CIG with subsurface offset, the velocity error is compensated by
a spatial shift between incident point and reflection point in the subsurface. The
subsurface offset extended modeling is originated in Claerbout’s “survey sinking”
concept. This study implements subsurface offset extension, which is known to
be less subject to kinematic artifacts than the surface offset approach. Kinematic
artifacts are absent in subsurface image volumes, even in the presence of consider-
able multipathing, under the sole restriction that rays carrying significant energy
do not turn horizontal (Stolk and De Hoop, 2006). Based on theoretical work by
Stolk and De Hoop (2001), Shen et al. (2003b) suggested a practical calculation for
an update direction designed to focus the subsurface offset image volume at zero
offset. Shen and Symes (2008) implemented the differential semblance velocity
analysis based on the subsurface offset extending concept. The subsurface off-
sets extended full waveform inversion is successfully applied by Sun and Symes
(2012); Biondi and Almomin (2012); Almomin et al. (2012); Fu and Symes (2015).

Several application of velocity analysis based on focusing of subsurface extended
images have been published, accompanied by the observation of artifacts. Arte-
facts in extended images are likely to lead velocity updates toward a wrong di-
rection. In practice, tapering is the common tool to eliminate migration artefacts
due to limitation of acquisition geometry. However, the artefacts in subsurface ex-
tended image are different from those observed in conventional migration. Shen
(2004) showed some exemplary calculations to identify the relevant ray fields with
subsurface space shift. Mulder (2014) gave the formulas to calculate the ampli-
tude in the space-shift extended model for 2D and 3D by stationary phase approx-
imation, provided that the true and trial velocities are constant. Their work shows
that the artefacts in subsurface extended image is not only caused by acquisition
limitation, more importantly, by peak amplitude from large offset. Almomin et al.
(2014) preconditioned the image in angle domain based on amplitude versus an-
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gle (AVA) behavior in the acoustic two-way wave-equation. Lameloise et al. (2015)
proposed an explicit weight in the CIG derivation. We introduce a taper in scat-
tering angle domain, which depends on acquisition geometry and imaging point.

This paper is organized as follow: we first explain the theory of subsurface offset
extended image based on linearized acoustic modelling (Born or single-scattering
approximation); we then introduce the new method filter in scattering angle do-
main; we end with numerical examples, demonstrating that the proposed new
approach can significantly improve the quality of velocity updates.

THEORY

Migration Velocity Analysis

Full waveform inversion is known to suffer “cycle skipping” problem, when wave-
length in data and accuracy of initial model combine to predict lowest frequency
data to correctly to within half a wavelength. On the other hand, even without low
frequency data or “good” initial model, migration velocity analysis is able to re-
cover the background velocity by measuring certain property of migrated images
(stackpower, flatness, space-shift, time shift).

Proposed by Symes and Carazzone (1991), Differential Semblance Optimization
(DSO) approach exploits the model consistency for different subsets of data, pro-
viding an automatic tool to update velocity model. In this study, we focus on
subsurface spatial shift, which is known to be less subject to kinematic artifacts
than other surface offset approaches. When velocity is correct, in ideal case, the
energy should focus at h = 0; when there is error in velocity model, a reflector is
imaged as a curve. The subsurface shift, denoted by h, is restricted to be horizon-
tal, based on the assumption that the rays carrying significant energy do not turn
horizontal (Stolk and De Hoop, 2006).

The objective function measures the unfocused energy in the subsurface extended
image caused by velocity errors. A simple objective function capturing this con-
cept is

J =
1
2
‖A(h)P (θ)W (z)I(x,z,h)‖2 (1)

Here, operator A(h) is an annihilator, which penalizes spread-out energy at non-
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zero subsurface offset. Many choices of annihilator A have the required relation
to the physical model. Amongst the earliest suggested was multiplication by h:
A(h) = h (Stolk and De Hoop, 2001; Shen et al., 2003a), which we also use here.
P (θ) is a taper depending on reflection angle θ. The depth weighting W (z) = (z −
zmin)p is used to compensate the illumination due to the energy decay from depth.
The objective function can be minimized only when the velocity is kinematically
correct. I(x,z,h) = FT [v]d is a version of prestack depth migrated image with
subsurface offset shift in imaging condition.

The gradient of the objective function J with respect to velocity v may be ex-
pressed as:

∇vJ[v] = SDF[v]T
(
d,W T P TA2PWFT [v]d

)
(2)

DF[v]T is the so-called tomographic or WEMVA operator. As F[v] is the lineariza-
tion, that is, derivative of the basic acoustic modeling operator, DF̄[v] is actually
its second derivative. The adjointDF̄[v]T is computable by a variant of the adjoint
state method (Gauthier et al., 1986; Plessix, 2006) used to compute F[v]T (Symes
and Santosa, 1988; Kern and Symes, 1994). S is a smoothing operator, or low-pass
filter, designed to keep the scales of v and r̄ separated after updates using the Hes-
sian. In our work we used for S a negative power of the spatial Laplace operator.
FT [v]d

Next, the migration wil be reviewed in the setting of the Born approximation of
the constant-density acoustics. We will study the problem explicitly in 2D case,
but note that much of the discussion carries over without modification to 3D.

In time domain, the linearized (“Born”) 2D constant-density acoustics modeling
with subsurface shift is governed by wave equation 1 and 4. The reference pres-
sure field p(x,z, t;xs) solves the acoustic wave equation(

∂2

∂t2
− v2∇2

)
p(x,z, t;xs) = w(t)δ(x − xs, z − zs),

p = 0, t << 0 (3)

The reference pressure field is represented by p(x,z, t;xs), a function of position
x,z, xs and time t. The right-hand side is a simple source representation, which
is composed of wavelet time function w(t) and a delta function δ(x − xs, z − zs)
centered at source position xs, zs.

The perturbational pressure field δp(x,z, t;xs) solves the linearized acoustic wave



152 Fu & Symes

equation(
∂2

∂t2
− v2∇2

)
δp(x,z, t;xs) =

∫
dhr(x − h,z,h)∇2p(x − 2h,z, t;xs),

δp = 0, t << 0 (4)

The reflectivity r here is defined as the perturbation of squared velocity: r = 2vδv.
The extended Born acoustic model used here introduces a horizontal subsurface
offset axis, denoted h, and allows the reflectivity to depend on it: r(x,z,h). Since
r is (up to a scale factor) the perturbation in the compliance, the extended re-
flectivity can be understood as a non-local perturbation in the acoustic constitu-
tive relation. Note that only the reflectivity depends on the additional coordi-
nate h - the velocity is non-extended, or physical. When the velocity v is correct,
r(x − h,z,h) = r(x,z)δ(h), then equation 4 reduces to ordinary linearized acoustic
wave equation.

The extended Born forward modeling operator F is defined in terms of δp by

(F[v]r) (xr ,xs, t) = δp(xr , zr , t;xs)

=
∫
dx

∫
dz

∫
dh

∫
dτ w(τ)∇2G(x − h,z,τ ;xs)r(x,z,h)G(x+ h,z, t − τ ;xr)

(5)

where G is the Green’s function. F produces predicted primary (single scattering)
data traces for the model (v,r). Note that we have used a notational convention
suggesting that the action of F on r is linear, rather than writing F[v,r]. The data
is the sampled pressure field δp measured at receiver positions {(xr , zr)} for source
positions {(xs, zs)} at time t. Source and receiver depths are idealized as the same
for all traces, so ignored in the notation for the data traces.

The dynamics expressed in equation 4 are closely related to Claerbout’s survey-
sinking image construction (Claerbout, 1985): (x,z) are the coordinates of the
sunken receiver, (x − 2h,z) those of the sunken source (where the source wave-
field p is evaluated), so the sunken midpoint is (x−h,z) and the space shift h plays
the role of half-offset, as one would expect.

The migrated image I(x,z,h) can be expressed as the adjoint of the Born forward
modeling operator with subsurface shift

I(x,z,h) = (F[v]∗δp) (x,z,h)

=
∫
xs

∫
xr

∫
dt

∫
dτ w(τ)∇2G(x − h,z,τ ;xs)G(x+ h,z, t − τ ;xr)δp(xr , t;xs)

(6)
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Asymptotic Analysis

In the context of constant velocity, the maximum subsurface offset H can be for-
mulated as a function of the maximum surface offset L and the ratio of the migra-
tion velocity and true velocity (Shen, 2004; Mulder, 2014).

In the context of constant velocity, Shen (2004)’ showed the curves in the subsur-
face extended image is an envelope of relevant ray fields of different source and
receiver pairs. Let’s consider a constant velocity model v0 with a horizontal re-
flector located at depth z0. Sources and receivers are placed on the surface (z = 0)
and symmetric with respect to the z-axis within range [−Lmax,Lmax].

When migration velocity v is correct v = v0, for a source and receiver pair (xs =
−L,xr = L), the travel time t is calculated as

t0 = 2

√
L2 + z2

0

v0
(7)

When migration is wrong v! = v0, according to Claerbout’s survey-sinking concept
(Claerbout, 1985), the coordinates of the sunken source and receiver are (x − h,z)
and (x+ h,z) respectively. The travel time is

t = 2

√
(L− h)2 + z2

v
(8)

The kinematics of the extended image consists of the set of points that the travel
time in migration equals to the physical travel time (t0 = t). The image I(x,z,h) is
the envelop of a family of curves E parameterized by surface half offset L as

E(z,h; l) = (L− h)2 + z2 − ρ2(L2 + z0) = 0 (9)

where ρ = v/v0 is the ratio between migration velocity and true velocity. The
envelop is determined by the contact condition:

∂E(z,h;L)
∂L

= 0 (10)

From equation 10, the surface offset L and subsurface offset h has a simple rela-
tion:

h = L(1− ρ2) (11)
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Eliminate L by solving equation 13 and 9 we get

h2

(ρ2 − 1)z2
0

+
z2

ρ2z2
0

= 1 (12)

When the migration velocity is faster than the true velocity (ρ > 1), the curve is an
eclipse centered at (h = 0, z = 0); when migration velocity is slower than the true
velocity (ρ < 1), the curve becomes hyperbola.

Note that the relation h = L(1−ρ2) in equation 13 is only valid within the range de-
fined by equation 12. As a result, the maximum subsurface offset hmax is defined
as

when ρ > 1,hmax =min(z0

√
ρ2 − 1,Lmax(ρ

2 − 1))

when ρ < 1,hmax = Lmax(1− ρ2)
(13)

In most cases, the maximum subsurface offset hmax is determined by the maxi-
mum surface offset Lmax. However, in the faster velocity case (ρ > 1), then h < 0.

When the imaging depth is shallow or the surface offset is large, hmax = z0

√
ρ2 − 1,

so the corresponding maximum surface offset is

Lmax =
hmax
ρ2 − 1

=
z0

√
ρ2 − 1

ρ2 − 1

=
z0√
ρ2 − 1

(14)

Mulder (2014) demonstrated that in 2D the amplitude increase with subsurface
offset h and gave the formulas to calculate the amplitude in the space-shift ex-
tended model for 2D and 3D by stationary phase approximation. The amplitude
along curve in 2D is

A2D =
ρ5

128z0z

√
2πv9

0r
5

|ρ2 − 1|
(15)

where r =

√
z2

0 +
h2

ρ2 − 1
. Their work showed that the artefacts in subsurface ex-

tended image were not only caused by acquisition limitation, more importantly,
by peak amplitude from large offset.
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The subsurface offset image can also be transform in angle domain by Radon
transform (Sava and Fomel, 2003). For correct velocity case, the scatter angle
θ can be simply calculated as

tanθ =
L
z0

(16)

The taper function P (θ) can be formulated as

P (θ) = cos
(
θ
θmax

π
2

)
(17)

where the maximum angle θmax is calculated as θmax =
Lmax
z0

.

For wrong velocity, the angle is

tanθ =
L− h
z

(18)

EXAMPLES

The objective of this section is to demonstrate the feasibility of the proposed ap-
proach to eliminated the artefacts by filtering in angle domain. All simulations
were performed using a 2D constant-density acoustics, time domain, finite differ-
ence method (second order in time, eighth order in space).

We used the method of steepest descent with quadratic backtrack line search to
search for the minimum of the objective function. The gradient of the objec-
tive function was computed by using equation 9. We performed a line-search
method to determine the optimal step length. The line search evaluated the ob-
jective function for different background velocity models, which were generated
by adding multiplication of different step length and search direction to current
model. The optimal step length is estimated by assuming the objective function
is quadratic.
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Single reflector model

The purpose of this experiment is to investigate the behavior of extended image
with different levels of velocity errors thus help us understand the origin of the
artefacts.

The background velocity model measures 6.0×2.0kmwith 25m cell size uniformly
distributed in each dimension. The true background velocity v is constant (v =
2.5 km/s). In the reflectivity model, there is a horizontal velocity perturbation at
depth of 1.0 km. 121 sources (0−6.0 km) and 241 receivers (0−6.0 km) are placed
on the surface. Note that the background velocity model v(x,z) is non-extended,
while the extended perturbation model r̄(x,z,h) has nonzero value only at h = 0m.

Figure 1, 2, and 3 show that the artifacts always exist regardless of migration ve-
locity. Although the shape of the artifacts varies with different migration velocity,
one common feature is that artifacts are associated with large angles. This feature
is the result of acquisition limitation combined with peak amplitude from large
incidence angle. After applying the taper, the artifacts are greatly suppressed.

Overthrust model

The example is modified from the SEG/EAGE 3D overthrust model (Aminzadeh
et al., 1997). In the reflectivity model, horizontal layers are distorted by several
thrust (reverse) faults (shown in Figure 21a). The background velocity increases
with depth (Figure 2a). The velocity is higher in the center, where the anticline
structure sits. The basic information is listed in Table 2.

Parameter Measurements
Source wavelet bandpass 5− 20Hz
Source position xs x : −2−10km every 80m, z = 0m
Receiver position xr x : −2−10km every 20m, z = 0m
Record time t = 3 s
Grid size dx = dh = dz = 20m, dt = 2ms
Initial velocity v = 1.5 km/s

Table 1: Thrust model

Figure 3a shows the initial background velocity is constant (1.5 : km/s) and far
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Figure 1: True velocity. (a) Original migrated image; (b) Migrated image with angle taper.
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Figure 2: Slower velocity case, migration velocity is 10% slower than true velocity. (a) Original migrated image; (b)
Migrated image with angle taper.
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Figure 3: Faster velocity case, migration velocity is 10% fast than true velocity. (a) Original migrated image; (b) Migrated
image with angle taper.
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Figure 4: (a) True background velocity model; (b) Reflectivity model.
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away from the correct one, so the geological structures can barely be observed
from the extended image (Figure 5b). In the subsurface offset gather, the down-
ward curves indict slow velocity.

Figure 5: (a) Initial background velocity; (b) Extended reflectivity

The inverted velocity model from 20 iterations and the corresponding extended
image are shown in Figure 4a and Figure 6b. The anticline and reverse fault struc-
tures can be clearly observed. Furthermore, even the reflector beneath the anti-
cline is imaged correctly. The velocity errors are mostly at the edges and bottoms,
which is a result of imperfect illumination. The subsurface gathers are mostly
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focused towards h = 0 after inversion.

The gathers are much more focused towards h = 0 after inversion (see Figure 7a
and 7b). For comparison, the CIG without angle taper after inversion is shown in
7c. With the help of our angle filter, these artifacts are eliminated effectively.

Marmousi model

The basic information is listed in Table 2. The true velocity and reflectivity model
are shown in Figure 8.

Parameter Measurements
Source wavelet bandpass 5− 20Hz
Source position xs x : −2 − 11.2 km every 80m, z =

0m
Receiver position xr x : −2 − 11.2 km every 40m, z =

0m
Record time t = 3.6 s
Grid size dx = dh = dz = 20m, dt = 2ms
Initial velocity v = 1.5 km/s

Table 2: Marmousi model

Figure 9a shows the initial background velocity is constant (1.5 : km/s) and far
away from the correct one, so the geological structures can barely be observed
from the extended image

Figure 10a and 10b are the inverted velocity model after 60 iterations and the
corresponding migrated extended image. After inversion, the gathers are much
more focused towards h = 0(Figure 11).

CONCLUSION

As a result of the peak amplitude from the large incidence angles, the subsur-
face offset images contain many artifacts, which introduce biases in the objective
function and its gradient. Aiming to remove those artifacts, we propose an angle
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Figure 6: Inversion results after 20 iterations. (a) Background velocity; (b) Extended image; (c) Extended image without
angle taper.
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Figure 7: (a) Subsurface offset gathers every 1 km using initial background velocity; (b) Subsurface offset gathers using
inverted background velocity; (c) Subsurface offset gathers using inverted background velocity without angle taper.
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Figure 8: (a) True background velocity model; (b) Reflectivity model.
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Figure 9: (a) Initial background velocity; (b) Extended reflectivity
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Figure 10: (a) Inverted background velocity after 86 iterations; (b) Extended reflectivity
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Figure 11: (a) Subsurface offset gathers at x = 2,3,4,5,6 km using initial background velocity; (b) Subsurface offset gathers
using inverted background velocity
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taper, which depends on acquisition geometry and imaging point. 2D synthetic
examples show migration velocity analysis becomes more robust with application
of the proposed new method.
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A discrepancy based penalty method for extended
waveform inversion

Lei Fu and William W. Symes

ABSTRACT
Extended waveform inversion globalizes the convergence of seismic wave-
form inversion by adding non-physical degrees of freedom to the model, thus
permitting it to fit the data well throughout the inversion process. These extra
degrees of freedom must be curtailed at the solution, for example by penaliz-
ing them as part of an optimization formulation. For separable (partly linear)
models, a natural objective function combines a mean square data residual
and a quadratic regularization term penalizing the non-physical (linear) de-
grees of freedom. The linear variables are eliminated in an inner optimiza-
tion step, leaving a function of the outer (nonlinear) variables to be opti-
mized. This variable projection method is convenient for computation, but
requires that the penalty weight be increased as the estimated model tends to
the (physical) solution. We describe an algorithm based on discrepancy, that
is, maintaining the data residual at the inner optimum within a prescribed
range, to control the penalty weight during the outer optimization. We il-
lustrate this algorithm in the context of constant density acoustic waveform
inversion, by recovering background model and perturbation fitting bandlim-
ited waveform data in the Born approximation.

INTRODUCTION

Seismic full waveform inversion is able to yield high-resolution images of sub-
surface structure by iteratively minimizing the difference between predicted data
and observed data (Virieux and Operto, 2009; Vigh et al., 2010, 2013). How-
ever, the success of full waveform inversion (FWI) depends on an initial model
of the earth sufficiently accurate to predict times of data event arrivals to within

173
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a half wavelength for frequencies with adequate S/N. These attributes are avail-
able for some surveys but not for others (Plessix et al., 2010). Without them, data
fit is poor from the outset, with event times in error by more than a wavelength
(“cycle-skipped”), and the model estimate tends to stagnate far from kinematic
accuracy.

Extended waveform inversion enlarges the model with non-physical degrees of
freedom, in such a way that data fit may be achieved (hence cycle-skip avoided)
throughout the inversion, even with grossly inaccurate initial model (Symes, 1986;
Symes and Carazzone, 1991; Symes, 2008). Since the additional degrees of free-
dom are non-physical, they must be suppressed if the extended model is to con-
verge to a solution of the full waveform inversion problem, which must neces-
sarily be described only by the parameters of the chosen wave physics. Thus
an optimization formulation of extended waveform inversion must aim to drive
a measure of model extension (non-physicality) p to zero as the iteration pro-
gresses, while simultaneously minimizing a measure of data misfit e. A common
approach, followed here, is to combine e and p into a single objective function
of the (extended) model, Jα = e + αp, and to minimize Jα. Choice of the penalty
weight α is critical in determining the behaviour of such an algorithm: if α is too
large, extended models are forced to be essentially physical (not extended), and
Jα takes on the characteristics of a typical FWI objective. If on the other hand α is
too small, then convergence can be very slow.

The main contribution of this paper is to describe an approach to dynamic con-
trol of the penalty parameter α based on discrepancy, that is, on the size of the data
misfit e. Maintaining the size of the data residual in a prescribed range through-
out the model updating process bounds the error in the final predicted data, and
increases α so that p decreases and the final predicted model is close to physical,
thus to a solution of the FWI problem with data residual in the prescribed range.
Use of a target range, rather than target value, allows several iterations of a stan-
dard nonlinear optimization algorithm to be taken with constant α. The iteration
continues through α updates by warm-starting the next sequence of iterates (Fu
and Symes, 2016).

Since many extended models minimize the data misfit e, the form of the objec-
tive Jα = e + αp can be viewed as additive regularization of the data-fit e by the
penalty term αp, a very well-known approach to the solution of inverse and ill-
posed problems (Engl et al., 1996). However our approach to selection of α dif-
fers fundamentally from well established methods such as the L-curve method
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(Hansen, 1992), generalized cross-validation (Wahba, 1977), and Morozov’s dis-
crepancy principle (Morozov, 1984; Engl et al., 1996). The role of p in these works
is to control the otherwise overwhelming influence of data noise on the minimizer
of Jα: α should be chosen so that the minimizer is close to an assumed noise-free
solution. For example, Morozov’s discrepancy principle (Morozov, 1984; Engl
et al., 1996) is a realization of this idea: roughly speaking, it chooses an optimal
value of α so that the value of p at the minimizer of Jα should be as small as possi-
ble subject to a bound on e expressing data variance. This concept appears many
times in the geophysical literature in various guises (Jackson, 1972). Ajo-Franklin
et al. (2007), Sen and Roy (2003); Roy (2002, 2005) discuss various methods for
choosing regularization parameters in geophysical inverse problems, Morozov’s
discrepancy principle amongst them, and note that data variance is often difficult
to estimate a priori in geophysical inverse problems.

In contrast, extended inversion should achieve p = 0 (or close to it), signifying a
physical minimizer (solution of the FWI problem). This value of p is not an indi-
rect expression of unknown data variance, but rather a requirement of the physics
chosen to represent the wave phenomena under study. The algorithm explained
here uses Jα for many values of α, rather than a single, optimal value of α, to
attain this objective. Data noise level or variance plays a role in our algorithm:
an assumed value is used to set the admissible range for the data discrepancy e,
thereby eliminating any danger of cycle-skipping. It is actually possible to use the
requirement that p→ 0 to extend this algorithm to estimate data noise level, as we
shall argue in the discussion section. For the purposes of this paper, we suggest
a simple and practical estimate of data noise level, from which we derive the tar-
get range for e, as the misfit level attained by a “reasonable” computational effort for
the problem with α = 0 and a more or less arbitrary initial model estimate. Here
“reasonable” means roughly the effort which we intend to devote to each iteration
(objective or gradient evaluation). The net result is that the final, near-physical
solution estimate fits the data as well as the initial estimate did, at roughly the
same cost.

We note that dynamic control of penalty parameters is not a new idea - see for
instance Roy (2002, 2005). However the underlying principle of our algorithm,
based on driving the penalty term p to zero at the solution, does not seem to have
been used before.

We use the constant density acoustic extended Born model as the framework for
our examples of discrepancy-based inversion. This extended model shares a natu-
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ral Cartesian product structure with many other extended models (Symes, 2008):
its model vector has two components, inner and outer. The inner or dynamic
component is responsible for initiating propagating waves: for the acoustic Born
model, this is the velocity perturbation or reflectivity. The outer or kinematic
component governs the propagation of waves; in our example, it is the veloc-
ity macromodel. The data prediction operator is linear in the inner or dynamic
component. Since the objective summands e and p are quadratic in our exam-
ples, minimization over the inner variables is a quadratic optimization problem.
The variable projection method (Golub and Pereyra, 2003) takes advantage of this
feature to create a reduced objective, the optimum value of Jα over the inner vari-
ables, which is a function of the outer variables only, and whose global optimum
occurs precisely at the outer component of the global optimum of Jα. Beyond
convenience, use of the reduced objective is actually essential for computational
efficiency, see Kern and Symes (1994) and Huang and Symes (2015) for instance.

Other examples of separable extended scattering models are either Born approx-
imations to more complicated scattering physics, or modifications of the energy
source mechanism that violate the modeled data acquisition scheme. For recent
examples of the first type, see Biondi and Almomin (2014); Weibull and Arntsen
(2013); Lameloise et al. (2015a), also Symes (2008) for a review of older work.
Plessix (2000), Luo and Sava (2011), Warner and Guasch (2014), and van Leeuwen
and Herrmann (2013) describe various examples of the second type of “source”
extension, Note that the concept of “model extension”, as we describe it, is re-
ally a very old idea, implicit in the practice of seismic velocity analysis from its
inception.

The remainder of the paper begins with a theory section describing the separable
model structure, the variable projection algorithm, the discrepancy principle, and
our variable-α algorithm, in abstract form. The following section first explains
the concrete form taken by the algorithm components for the constant density
acoustic Born model and its subsurface offset extension. We then describe the
application of this version of the algorithm to an example based on the SEG-EAGE
overthrust model. We mention various unresolved issues and possible extensions
in the penultimate section, and end by reiterating the conclusions of this study.
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THEORY

This section is organized as follow: first, we introduce the separable inverse prob-
lem and variable projection method; then we investigate the role that weight α
plays in objective function; we show how to interpret discrepancy principle as a
parameter choice rule to keep residual in an acceptable range.

Separable inverse problems

In this section, we present an abstract formulation of the key ideas mentioned in
the introduction. We will give the various components concrete form appropriate
for acoustic seismic modeling at the beginning of the next section.

In this formulation, a model is a pair consisting of an outer parameter m and an
inner parameter x. The forward (data simulation, modeling) operator F is linear
in x and (possibly) nonlinear in m, as reflected in our notation for its evaluation:

m,x 7→ F[m]x (1)

The value F[m]x is a vector in the space of data.

The objective has the form described in the introduction, that is, a linear combina-
tion of a data error or misfit term e and a penalty term p, the latter applying only
to the inner variables. We will assume that the model and data spaces are Hilbert
spaces, with inner products 〈·, ·〉 and norm ‖ · ‖. We will use the same notation
for inner and outer model and data spaces, distinguishing the (possibly different)
norms by context. The data error and model penalty are both norms-squared:

e[m,x] =
1
2
‖F[m]x − d‖2 (2)

p[m,x] =
1
2
‖Ax‖2 (3)

and the objective is their weighted sum (the factor of 1/2 is for later computational
convenience):

Jα[m,x] = e[m,x] +αp[m,x] (4)

In concrete instances, the regularization operator A measures the extent of non-
physicality of the inner parameter x. Physical inner parameter vectors lie in its
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null space. As explained in the introduction, the object of the optimization is
to remove the non-physical extended degrees of freedom from the model while
maintaining data fit. Reducing p as defined in equation 6 will move the model
towards the null space of A, which is exactly the physical subspace of the inner
parameter vector.

The weight α controls the amount of penalty applied for model extension. When
α → 0, the objective function expresses little constraint on model extension and
allows good data fit. When α→∞, minimization of Jα forces the extended model
to be close to physical one, so that the optimization approximates non-extended
or physical inversion.

Variable projection method

As mentioned in the introduction, the separable nature of this least-squares in-
verse problems invites use of the variable projection method, a nested optimiza-
tion approach. First, in the inner loop, the objective function is optimized over
linear parameter x with the nonlinear parameter m fixed. The gradient of the
objective function Jα[m,x] with respect to x is

∇xJα[m,x] = F[m]T (F[m]x − d) +αATAx (5)

where T denotes transpose. A stationary point of equation 4 satisfies the normal
equation

(F[m]T F[m] +αATA)x = F[m]T d. (6)

We presume that this system is positive definite for all values of α ≥ 0, and in
particular that F[m]T F[m] is also positive definite. In principle, this condition is
almost never satisfied, and it is necessary that the forward map be regularized.
In practice, we ignore this ill-conditioning of aperture- and bandwidth limited
forward maps, and simply treat the normal operator as if it were positive definite.
The system 6 thus has a unique solution that can be approximated via an iterative
method such as conjugate gradient (CG) iteration. Since m and α determine the
operator on the LHS of equation 6, its solution becomes a function x[m,α] of these
quantities.

We minimize the reduced objective Jα[m,x[m,α]] over m via a gradient based
method such as steepest descent, LBFGS or Gauss-Newton iteration (Nocedal and
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Wright, 1999). The gradient of the reduced objective function Jα[m,x[m,α]] with
respect to m is

∇mJα[m,x[m,α]] = (DF[m]T (F[m]x[m,α]− d))x[m,α] (7)

(Golub and Pereyra, 1973). The notation DF signifies the derivative of F. Since F
is an operator-valued function ofm, its directional derivative atm in the direction
δm, denotedDF[m]δm, is an operator of the same type. We have used the notation
DF[m]T to denote one of the possible meanings of “transpose” for this operator-
valued function: in terms of the inner products 〈·, ·〉 in the various model and data
spaces,

〈(DF[m]T d)x,δm〉 = 〈d, (DF[m]δm)x〉 (8)

for any data vector d, outer parameter perturbation δm, and inner parameter vec-
tor x.

The Discrepancy Principle

As described in the introduction, the discrepancy principle (in one of its guises)
involves setting an acceptable range of data misfit [X−,X+], and adjusting the
penalty weight α so that e[m,x[m,α]] lies in this range. The principle so stated
applies to the inner optimization over x: since updatingm changes the inner prob-
lem, the appropriate condition for such separable problems is that e stays in the
range [X−,X+] as m is updated. In this subsection, we examine the dependence of
e on α with a view to understanding how to reset α when m changes.

Accordingly, regardm as fixed and suppress it from the notation for the remainder
of this subsection, and introduce the abbreviations

e(α) = e[m,x[m,α]] (9)
p(α) = p[m,x[m,α]] (10)

Differentiating equation 6 with respect to α leads to the relation

(FT F +αATA)
dx
dα

= −ATAx (11)
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whence

de
dα

= 〈 dx
dα
,FT (Fx − d)〉

= −α〈 dx
dα
,ATAx〉

= α〈ATAx, (FT F +αATA)−1ATAx〉
≥ 0 (12)

Note that the inequality in equaion 12 is strict if p > 0 hence ATAx , 0, since the
normal operator is assumed to be positive definite. The derivative of p(α) with
respect to α is

dp

dα
= −〈ATAx, (FT F +αATA)−1ATAx〉

≤ 0 (13)

similarly a strict inequality if p > 0.

Equation 12 together with equation 13 show that increasing α implies increasing
e while decreasing p, and

〈ATAx, (FT F +αATA)−1ATAx〉
=〈(ATA)1/2x, [(ATA)−1/2FT F(ATA)−1/2 +αI]−1(ATA)1/2x〉

≤ 1
α
〈ATAx,x〉 =

2
α
p (14)

In view of equation 12,
de
dα
≤ 2p. (15)

with this inequality also being strict if p > 0.

Suppose the current weight is αc and denote a candidate for an updated weight
by α+. Then from inequality 15,

e(α+)− e(αc) ≤
∫ α+

αc

2pdα (16)

If α+ ≥ αc, then in view of inequality 13, the above is

≤ 2p(αc)(α+ −αc) (17)
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Let us suppose that e(αc) < X+. Then setting

α+ = αc +
X+ − e(αc)

2p(αc)
(18)

implies via inequality 17 that

e(α+)− e(αc) ≤ X+ − e(αc) (19)

Assuming that p(α+) > 0, hence p(α) > 0 for αc ≤ α ≤ α+, we conclude that if α+ is
given by the rule 18, then

e(αc) < e(α+) ≤ X+ (20)

That is, unless p(α+) = 0 (in which case a physical solution of the inverse problem
has been reached), e(α+) is larger than e(αc) but in any case does not exceed X+.
The rule 18 therefore provides a feasible updated α consistent with the upper
bound in the discrepancy principle.

Practical application of the discrepancy principle

As mentioned in the introduction, the discrepancy principle requires that a range
of data noise (in our notation, one-half data noise squared) [X−,X+] be given. We
base our algorithm on a data error estimate X, and set X− = γ−X,X+ = γ+X, where
γ− < 1 < γ+ are positive constants at the disposal of the user: typical values might
be γ− = (0.7)2,γ+ = (1.2)2 (we use these values in the experiment reported below).

The choice of data error estimate X remains. Two approaches to this choice are
(i) treat it as hypothetical, with all subsequent results being contingent on it, and
choose initial model (m,x[m,0]) for α = 0 so that X = e(0) = e[m,x[m,0]]; (ii) if the
normal equation 6 is solved approximately by an iterative method (we used conju-
gate gradient iteration (CG)), choose a number of iterations to be used throughout
and choose x[m,0] as an approximate solution of equation 6 computed by the cho-
sen number of iterations, and X = e(0) = e[m,x[m,0]]. We used the second method
in the experiments described in the next section. Of course, the second approach
is really a variant of the first, with indirect rather than direct choice of the hy-
pothetical noise level X. Either approach make sense only for inverse problems
of the character described in this paper, in which the unconstrained (α = 0) data
misfit may be made arbitrarily small by choice of the linear parameter x, for any
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choice of the nonlinear parameter m. Note the implication for X: in principle,
e(0) = 0! Therefore a non-zero X must be selected, which embodies the actual
(and initially unknown) data error e for p = 0, and a corresponding linear param-
eter x for which e(0) = e[m,x]. The second approach outlined above does this in
a “natural” way. However, the arbitrariness of the choice cannot be avoided. The
progress of the algorithm and its end result clearly depend on X. We will address
this dependence and its implications in the discussion section.

With either approach to choice ofX, the algorithm proceeds as follows (a flowchart
is shown in Figure 1):

0. Choose initialm, set α = 0, compute x[m,0] by (approximate) solution of the
linear least squares problem 6, X = e[m,x[m,0]], X± = γ±X.

1. While (not done),

1.1 While e[m,x[m,α]] ∈ [X−,X+], update m by means of a continuous opti-
mization algorithm, using the gradient as given in equation 9; for each
update of m, a solution of equation 6 is required to re-compute x[m,α].

1.2 If e[m,x[m,α]] > X+, exit

1.3 if e[m,x[m,α]] < X−,

1.3.1 Compute α+ by equation 18, solve equation 6 to compute x[m,α+].

1.3.2 While e+ = e[m,x[m,α+]] < [X−,X+],
1.3.2.1 If e+ < X−, set α+← α+ ∗ 2
1.3.2.2 If e+ > X+, set α+← α+/1.5

1.3.2.3 In either case, solve equation 6 to compute x[m,α+], calculate
e+ = e[m,x[m,α+]]

1.3.3 Set α← α+

The secant update of α (equation 18, step 1.3.1 above) might seem unnecessar-
ily elaborate, in comparison to the simple bisection loop (steps 1.3.2.1, 1.3.2.2).
However equation 18 gives a sensible update when α = 0, and thus makes the
algorithm self-starting. Moreover, our experience is that the bisection loop is sel-
dom invoked, as the secant update is usually successful. Since each alpha update
requires a solution of the normal equation 6, this is a good thing.
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Figure 1: A flowchart for our implementation of our proposed algorithm.
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EXAMPLES

In this section we illustrate the performance of the discrepancy-based algorithm
by solving a velocity estimation problem modeled on reflection seismology. We
use the subsurface offset extension of the 2D Born (linearized) constant density
acoustic model. The forward modeling operator F in our case is the subsurface
extended Born modeling operator. For a detailed description of this model, its
origins, and its properties, see Symes (2008). In this separable model, the acous-
tic wave velocity field v is the nonlinear parameter (denoted m in the discussion
above), and the reflectivity r (proportional to the perturbation of v) is the linear
parameter (x in the abstract discussion). The quantities appear as coefficients in
the wave equations satisfied by the pressure field u and its perturbation δu:(

∂2

∂t2
− v(x,z)2∇2

)
u(t,x,z;xs) = w(t)δ(x − xs)δ(z − zs),

u = 0, t << 0 (21)

(
∂2

∂t2
− v(x,z)2∇2

)
δu(t,x,z;xs) =

∫ H

−H
dhr(x,z,h)∇2u(t,x+ 2h,z;xs),

δu = 0, t << 0 (22)

Note that the velocity v depends on the spatial coordinates x,z, whereas the re-
flectivity r depends on another coordinate h, representing subsurface (half-)offset.
The physical meaning of this dependence is that action-at-a-distance is permitted
in this model: to first order in perturbation theory, strain at one space-time po-
sition (x − 2h,z) is allowed to cause stress instantaneously at a different position
at the same depth (x,z). The introduction of spatial shift compensates velocity
errors, which permits data to be fit well for arbitrary v. Thus this model has the
feature required by our construction of the discrepancy-based algorithm.

The right-hand side of equation 1 represents an isotropic point radiator located at
x = xs, z = zs with time dependence w(t).

The forward map F[v]r is defined by

F[v]r(xr , t;xs) = δu(xr , zr , t;xs) (23)

in which xr , zr range over the receiver positions of the modeled survey.
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We note that the Born forward map in equation 23 is the derivative of a nonlin-
ear forward map (Symes, 2008; Biondi and Almomin, 2014). The linearization
error, that is, the amount by which the linear prediction based on the derivative
differs from the actual perturbation of the nonlinear forward map, is smallest
when (a) the background velocity is transparent, that is, contains no reflectors,
and (b) the reflectivity is oscillatory on the wavelength scale. Thus the most ac-
curate Born approximation to a velocity field uses a spatial average to produce a
background model, and takes the difference between the average and the original
velocity fields as the reflectivity. This is the procedure we followed in creating the
Born model described below. It is in principle possible to formulate an extended
modeling approach based directly on the equations of acoustics, without the inter-
vening linearization used here (Symes, 2008; Biondi and Almomin, 2014). Such
an algorithm is beyond the scope of this paper.

If the reflectivity is concentrated or focused at h = 0, that is, r(x,z,h) = r0(x,z)δ(h),
then the perturbation wave equation 22 reduces to the ordinary perturbation
equation of linearized acoustics, and the model to the ordinary acoustic Born
model. The aim of the inverse problem is to fit data with an appropriate velocity
and a physical reflectivity. Thus an appropriate choice of annihilator is

Ar(x,z,h) = hr(x,z,h). (24)

Since hδ(h) = 0, the null space of the operatorA defined by equation 24 is precisely
the collection of r having a factor of δ(h). This choice of A penalizes energy in
the non-physical dimension (h , 0) and has been used in many prior works on
subsurface offset extended waveform inversion (Shen et al., 2003; Symes, 2008;
Shen and Symes, 2008; Biondi and Almomin, 2012; Weibull and Arntsen, 2013;
Lameloise et al., 2015b).

In numerical implementation of the wave equations 1 and 22, we use a centered
finite difference method of order 2 in time and 8 in space (Alford et al., 1974; Kelly
et al., 1976). To compute the transpose operator FT , we use an extended-model
version of the adjoint state method (Plessix, 2006). The derivative transpose DFT ,
defined in equation 8, is an essential ingredient in the gradient calculation 9. We
use a modified version of the adjoint method to compute its value (Symes and San-
tosa, 1988; Kern and Symes, 1994). We note thatDFT goes under the name “tomo-
graphic operator” in the literature on wave equation migration velocity analysis
(Biondi and Sava, 2004).

The example is modified from the SEG/EAGE 3D overthrust model (Aminzadeh
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et al., 1997). We added a 400mwater layer to the top, and padded it by a sufficient
number of cells to eliminate boundary reflections from the measured data traces
(at positions xr , zr). We smoothed the model to create a transparent background
or macro model, shown in Figure 2a. The difference between the original model
(with water layer and padding) and the background model constitutes the reflec-
tivity model, shown in Figure 7a. In the reflectivity model, horizontal layers are
distorted by several thrust (reverse) faults (shown in Figure 7a). The background
velocity increases with depth (Figure 2a). The smoothed velocity is higher in the
center, where the anticline structure sits. The basic dimensional information is
listed in Table 1.

Parameter Measurements
Source wavelet bandpass 5− 20Hz
Source position xs x : 1− 7 km every 40m, z = 40m
Receiver position xr x : 0− 8 km every 40m, z = 0m
Space and time x = 8 km, z = 2 km, t = 3 s
Grid size dx = dh = dz = 20m, dt = 2ms
Initial velocity v = 1.5 km/s
Max iter inner loop 20

Table 1: Parameters for overthrust model example

Figure 3a shows the initial background velocity is constant (1.5km/s) and far away
from the correct one, so the geological structures can barely be discerned from the
corresponding extended image (Figure 3b). In the subsurface offset gather, the
downward curves indicate slow velocity.

First, given initial velocity, set weight α = 0, solving the normal equation by
20 iterations of CG gives the data residual term e(0) = 2.81e − 2, which approx-
imately equals 5.7% of relative data residual. Based on the value of e(0), the
upper and lower bound of accept range are estimated by formula X− = 0.72e(0)
and X+ = 1.22e(0). Then the updated weight α1 = 1.1e − 6 is estimated by equa-
tion 18. After 1 velocity update, the data residual drops below the lower bound
X−, so we updated weight α = 4.1e − 6 again. The residual is still smaller than
X−. According to update algorithm, the value of α was doubled three time, which
gives data residual in acceptable range. After 3 more velocity updates with weight
α = 3.2e−5, data residual became smaller than X−. Recalculating α and doubling
its value made the data residual back to the acceptable range. After 9 more ve-
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Figure 2: (a) Target background velocity model; (b) Target reflectivity model.
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Figure 3: (a) Initial background velocity; (b) Extended reflectivity
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locity updates, the data residual dropped below the lower bound, the updated
weight α = 2.4e − 4 provides data residual in acceptable range.

The inverted background velocity model from 20 iterations and the extended re-
flectivity are shown in Figure 4a and Figure 4b. The anticline and reverse fault
structures can be clearly observed. Furthermore, even the reflector beneath the
anticline is positioned correctly (at about x = 4 km,z = 2 km). The velocity error is
mostly at the edges, which is a result of imperfect illumination.

The subsurface offset gathers are much more focused towards h = 0 after inversion
(Figure 5). With the inverted background velocity, the geological structures are
imaged with much higher resolution at 0-offset section of the reflectivity model
(Figure 6). Extending the reflectivity model permits good data fit throughout the
inversion process (Figure 7 and 8). Note that the data misfit before and after
inversion is measured with different penalty weight α. In other words, good data
fit is obtained by models with different amount of extension. Note that in order
to improve the computational efficiency, the adequate subsurface offset range was
estimated adaptively by measuring data fit throughout the inversion process (Fu
and Symes, 2015, 2017).

We increase the penalty weight α at iteration number 1, 4 and 13, which signifi-
cantly accelerates the convergence rate as shown by Figure 9. At the same time,
according to discrepancy principle, the data residual stays in an acceptable range
(see Figure 10).

The data misfits plotted in the figures shown so far are extended residuals, that
is, computed with the extended reflectivity model. As these are non-physical,
and still have some residual energy in h , 0 as shown in Figure 5b, it is natural
to wonder if the plots represent a fair assessment of the quality of the inverted
velocity (Figure 4a). To give a more rigorous evaluation, we have used both the
initial velocity (Figure 3a) and the inverted velocity in Least Squares Migration,
which amounts to solving the ptoblem 6 with the constraint that the reflectivity
be physical, that is,

r(x,z,h) = r0(x,z)δ(h) (25)

We used 20 Conjugate Gradient iterations to approximate these minimizations, as
we have in other instances of the problem 6. The resulting predicted data appear
as Figures 11a, 11b, and the data residuals as Figures 12a, 12b, all plotted on the
same grey scale. While the residual is clearly not as small as that attained by the
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Figure 4: (a) Inverted background velocity; (b) Extended reflectivity
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Figure 5: (a) Subsurface offset gathers at x = 2,3,4,5,6 km using initial background velocity; (b) Subsurface offset gathers
using inverted background velocity
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Figure 6: (a) Zero offset section with the reflectivity model using initial background velocity. (b) Zero offset section with
the reflectivity model using inverted background velocity.



Discrepancy Penalty Method 193

Figure 7: Data gather for a shot at the center of the model (a) Observed data. (b) Predicted data with initial background
velocity model. (c) predicted data with inverted background velocity model.



194 Fu & Symes

Figure 8: Comparison of data residual (a) with initial background velocity model and (b) with inverted background velocity
model

extended model (Figure 8b), the improvement of Figure 12b over 12a is obvious.

The magnitude of the residual presented in Figure 12b suggests that the model 4a
is sufficiently accurate that no cycle-skipping occurs. To better assess the phase
accuracy of this model, we present in Figures 14a 14b, and 14c the traces of the
target data (in black) vs. the corresponding predicted traces from the reflectivity
estimated by Least Squares Migration with the initial velocity model, in red (Fig-
ure 11a). This model is severely cycle-skipped. The evidence of cycle-skip that
turns up in the Least Squares Migration residual traces is not mispositioning of
events - these are time traces, and the migration and modeling are consistent, if
wrong. Instead, it is the gross mismatch of amplitudes, due to destructive cancel-
lation in the stack that forms the reflectivity, from which the traces are simulated.

Similarly, we show in Figures 15a 15b, and 15c the traces of the target data (in
black) vs. the corresponding predicted traces from the reflectivity estimated by
Least Squares Migration with the inverted velocity model, in red (Figure 11b). The
amplitudes are comparable now, and indeed the traces are very close, except for
some mild amplitude discrepancies in a few places (for example, the 4 km trace
at about 2.5 s). These are likely the result of residual kinematic inaccuracy of the
inverted model 4a - as noted above, there is some evidence that the inversion is
still progressing. However it seems likely that the phases are now similar enough
that the inverted model could serve as an initial model for (the Born version of)
a successful Full Waveform Inversion. The potential use of extended waveform
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inversion to produce initial models for Full Waveform Inversion may be a worth-
while subject for further research.

We have also plotted Least Squares Migration images (physical reflectivities r0),
the input to the modeling that produces the data just described, as Figures 13a
and 13b. Comparison with Figure 7a suggests that while not perfect, the physi-
cal (Least Squares Migration) reflector positions and strengths resulting from the
inverted velocity are great improvements over those resulting from the initial ve-
locity. The slope of the line plotted in Figure 9 suggests that the iteration is not
finished, and that further improvements could be expected with more iterations.
Note again that the Least Squares Migration outputs did not figure at all in the
velocity inversion: Least Squares Migration is used here only as a quality control.

Figure 11: Least Squares Migration predicted data for same shot as shown in Figure 7a. Note that these are non-extended
inversions, and not by-products of the inversion algorithm discussed in the text. Produced with 20 Conjugate Gradient
iterations. (a) Using initial velocity model (Figure 3a). (b) Using inverted velocity model (Figure 4a).

It is also natural to wonder to what extent the model extension used in the al-
gorithm presented here was really necessary to obtain a reasonable velocity in-
version for this example. To explore this question, we conducted an analogous
experiment, similar in almost all respects, but without the subsurface offset ex-
tension. That is, we restricted the reflectivity r to be physical, that is, obey condi-
tion 25, and used the variable projection method to estimate both v and r0 (Note
that the Least Squares Migration exercise reported in the previous paragraph also
constrained r by the condition 25, but did not itself update v, relying instead on
the inversion algorithm based on subsurface offset extension to do that). The sec-
ond term in the definition 4 of Jα is irrelevant, as r satisfying equation 25 also
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Figure 12: Least squares Migration data residuals for same shot as shown in Figure 7a. Note that these are non-extended
inversions, and not by-products of the inversion algorithm discussed in the text. Produced with 20 Conjugate Gradient
iterations. (a) Using initial velocity model (Figure 3a). (b) Using inverted velocity model (Figure 4a).

satisfy Ar(x,z,h) = r0(x,z)(hδ(h)) = 0. Thus the objective function for this experi-
ment is J0, which can be considered as the Born version of the usual FWI objective
(Tarantola, 1984; Virieux and Operto, 2009). Huang and Symes (2015) term this
algorithm “Born Waveform Inversion”.

We used the same optimization algorithm, steepest descent with backtracking line
search, applied to the reduced objective function of v produced by the variable
projection method. To carry out the reduction, we approximated the solution of
the normal equation 6 with 20 iterations of Conjugate Gradient iteration, exactly
as was the case for the extended inversion. We used the same number (20) of outer
iterations (v updates) as well, and the same initial model (Figure 3a). Of course
there were no α updates, as α plays no role in the non-extended penalty function,
since p = 0. That is, the same amount of computational effort was expended in
this non-extended inversion as in the extended inversion.

The result however is not nearly as satisfying. The inverted velocity (Figure 16a)
shows little evidence of the large-scale structure of the target velocity, and the
inverted reflectivity (Figure 16b) none of the smaller scale structure. In fact,
as noted in the discussion of the extended inversion, the initial model is so far
from the target that its predicted traveltimes for deeper reflectors are many wave-
lengths in error. This example is shows that Born waveform inversion is just as
susceptible to cycle-skipping as is conventional FWI, based on the nonlinear for-
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Figure 13: Least Squares Migration images corresponding to Figures 11a, 11b.
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Figure 14: Traces at positions 2 km, 4 km, and 6 km from the shot gather shown in Figure 7a (black), plotted against
the same traces from the predicted gather (Figure 11a) using the initial velocity model and the Least Squares Migration
reflectivity estimate (Figure 13a) (red).
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Figure 15: Traces at positions 2 km, 4 km, and 6 km from the shot gather shown in Figure 7a (black), plotted against the
same traces from the predicted gather (Figure 11b) using the inverted velocity model (Figure 4a) and the Least Squares
Migration reflectivity estimate (Figure 13b) (red).
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ward map.

DISCUSSION

The example presented in the last section suggests that adjusting α according to
the discrepancy-based algorithm significantly improves the convergence of ex-
tended waveform inversion. To shed a little more light on the reasons for this be-
haviour, we present a plot of the reduced objective Jα[m,x[m,α]], for models m on
the line segment m = (1 + σ )m0, −0.5 ≤ σ ≤ 0.5, in which m0 is the target model of
the previous example (Figure 2a). In defining Jα, we use the data of that example
as well. The parameter σ is plotted on the horizontal axis of Figure 17, the corre-
sponding value of Jα on the vertical axis, for three choices of α. At least restricted
to this one-dimensional model space, the behaviour of Jα is as we have suggested:
for small α, the objective has only one stationary point, at the global minimum, so
convergence would take place from any initial guess, but become rather slow near
the minimum. For larger α, the minimum is more highly resolved, but reaching
it via descent requires a more accurate initial estimate. Therefore starting with
small α and increasing it as the model is updated should lead to rapid conver-
gence and a highly resolved final model estimate, insensitive to choice of initial
model. Our discrepancy based algorithm provides a key ingredient in this proce-
dure, not obvious from plots like Figure 17, namely a precise recipe for increasing
α to keep the model estimate in the domain of attraction of the global minimizer.

As pointed out earlier, the secant update formula 18 makes the discrepancy-based
adjustment self-starting. As the derivation shows, it produces a value of α that
generates a lower value of the error term e than the target value. However, our
experience suggests that it is often accurate enough to use without modification.
Note that its derivation is based on the assumption that the inner component
(x[m,α] in the notation introduced earlier) is a solution of the normal equation 6.
However, we have used an iterative method (conjugate gradient iteration) and a
modest number of iterations to approximate the solution of equation 6. Therefore
the computed α update is contaminated by an error, the magnitude of which we
have not estimated. This uncontrolled inaccuracy may not affect the eventual
update of α, however. The bisection loop (steps 1.3.2.1, 1.3.2.2 in the algorithm
listing) acts to ensure a proper update satisfying the discrepancy bounds, much
as bisection is used in many rootfinding algorithms to ensure convergence. Also,
experience suggests that modest accuracy in estimating the inner component is
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Figure 16: Results of non-extended inversion, as described in the text, using the same algorithms and computational effort
as the extended inversion: (a) Inverted background velocity; (b) inverted reflectivity
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sufficient to generate a useful α update via equation 18.

We should point out that the variable projection gradient formula (equation 9)
also relies on the solution of the system 6, and therefore is polluted by residual
error from iterative approximate solution. The algorithm presented here does not
control this error, potentially a serious impediment to convergence. In the exam-
ple discussed in the last section, the gradient error appeared to be small enough
to permit a useful approximation solution of the variable projection problem.

The actual error level in the data, an estimate for which is denoted by X in the
description of our algorithm, plays a central role: it must be small enough that
the iterates avoid cycle-skipping, but not so small as to impose impossible fit de-
mands given the method used to solve the inner problem in the variable projec-
tion method. We have used an ad hoc procedure to pick a value of X, namely the
data fit error e attained by the iterative solution of the inner problem for the ini-
tial outer variable (velocity, in the example), with α = 0 and the same parameters
(maximum number of iterations, tolerance for the error in satisfying equation 6)
to be used in subsequent iterations. Note that our example was an “inverse crime”:
the same computational method was used to compute the data as was used to fit
it, so in fact the data error level was zero, and the X obtained by our procedure in
this instance was an overestimate.

This observation raises the obvious question: is it possible to correct an initially
incorrect estimate for the data error level X? A modification of the algorithm
presented here may answer this question in the affirmative. In principle, it is
either possible to drive p→ 0 and converge to a limit model, with the data misfit e
remaining in the range [X−,X+] defined in the description of the algorithm above,
or it is not. In the former case, by definition the limit model is physical and solves
the FWI problem, with error somewhere in the given range. Otherwise, either
eventually e > X+, or e < X−. In the former case, the error estimate X is too small,
in the latter, too large. The enhanced algorithm would then increase, respectively
decrease, X by a factor > 1, and restart.

This description leaves out many details that would be necessary in the formula-
tion of a practical algorithm. For example, the condition p→ 0 must be replaced
by p < ε for a tolerance ε, which must be chosen somehow. The completion of our
sketch into a working algorithm is a subject for further research.

The computational cost of the discrepancy-based algorithm, as described here, is
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certainly an impediment to its use in practice: we used 20 outer and 20 inner
iterations still requiring 400 modeling/migration pairs to solve a relatively tame
synthetic 2D problem. Several modifications promise considerable acceleration
of this algorithm, through reduction of both outer and inner iteration counts and
smaller computational cost per iteration. Many local optimization methods se-
riously outperform steepest descent, and should lead to more rapid convergence
of the outer optimization. The standard text by Nocedal and Wright (1999) ex-
plains why, and describes several of these methods in detail. To accelerate the
inner iteration (solution of the normal equation 6), we have used a crude pre-
conditioner, namely multiplication of the reflectivity by z2. Much more effective
preconditioners have been been explored in the last few years, see for example
(Hou and Symes, 2016). Finally, we have used a simple trick to reduce the length
of the active portion of the subsurface offset (h) axis, and thereby a major con-
tributor to the computational cost. This trick is also based on discrepancy: we
reduce the maximum |h| whenever it is possible without affecting the discrepancy
(e) seriously. In another work (Fu and Symes, 2015, 2017), we have shown how
to combine control of maximum |h| with low-to-high frequency continuation to
reduce the cost of extended waveform inversion by one to two orders of magni-
tude. All of these cost reduction methods, and more, will be essential in moving
towards a practical algorithm.

CONCLUSION

We have introduced a discrepancy-based method for control of a penalty parame-
ter in regularized inverse problems, for which the regularization term vanishes at
physically correct solutions. We applied this method to extended waveform inver-
sion based on the Born approximation of constant density acoustic modeling. The
discrepancy-based method systematically increases the penalty weight through-
out the inversion process, driving the model towards physical consistency while
maintaining data fit within a specified range. Our example suggests that proper
choice of the data fit range allows our algorithm to converge to a kinematically
accurate model yielding reasonable image fidelity. Model extension is essential,
to maintain good data fit and thereby avoid cycle-skipping: the initial model in
this example produces severely cycle-skipped data, so that an analogous inver-
sion algorithm without extension stagnates at a grossly incorrect model estimate.
Dynamic penalty parameter control based on discrepancy dramatically enhances
the efficiency of extended inversion: convergence is much faster than is the case
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Figure 17: Scan test: objective function with different values of α. Velocity error varies from −50% to +50%.
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with fixed penalty parameter.
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An adaptive multiscale algorithm for efficient
extended waveform inversion

Lei Fu and William W. Symes

ABSTRACT
Subsurface offset extended full waveform inversion may converge to kine-
matically accurate velocity models without the low-frequency data accuracy
required for standard data-domain full waveform inversion. However, this ro-
bust alternative approach to waveform inversion suffers from very high com-
putational cost, resulting from its use of nonlocal wave physics: the computa-
tion of strain from stress involves an integral over the subsurface offset axis,
which must be performed at every space-time grid point. We show here that
a combination of data-fit driven offset limits, grid coarsening, and low-pass
data filtering can reduce the cost of extended inversion by one to two orders
of magnitude.

INTRODUCTION

Full waveform inversion (FWI) - that is, model driven least squares data fitting
- has shown remarkable ability to identify subsurface structure with the maxi-
mum resolution attainable from seismic data (Vigh et al., 2010, 2013). However
lack of data energy at low frequencies relative to other scales may cause iterative
gradient-based algorithms to stagnate at uninformative model estimates (Gau-
thier et al., 1986; Plessix et al., 2010): at such estimates, small changes in model
fail to yield substantially better data fit. Amongst the remedies suggested for this
malady are various model extensions, which add parameters to the model to pro-
vide an avenue for improved data fit, and suppress these additional parameters as
the inversion progresses via a penalty term incorporated into the extended FWI
objective function (Symes, 2008). One of these model extensions allows non-local
stress-strain relations - in the acoustic case, by adding dependence on a fictitious
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subsurface offset axis to the bulk modulus. It has been shown that this subsur-
face offset extension makes data fit attainable by local optimization, at least in
some cases (Stolk et al., 2009; Symes, 2014). A number of studies have suggested
that the subsurface offset extension may be used as the basis for successful ap-
proaches to full waveform inversion, convergent over a much larger region of
model space than is standard least-squares FWI (Shen et al., 2003, 2005; Shen and
Symes, 2008; Albertin et al., 2006; Symes, 2008; Fei and Williamson, 2010; Vyas
and Tang, 2010; Biondi and Almomin, 2012; Shen, 2012; Weibull and Arntsen,
2013; Shan and Wang, 2013; Biondi and Almomin, 2014; Liu et al., 2014; Symes,
2014; ten Kroode, 2014; Lameloise et al., 2015; Fu and Symes, 2015). Much of
this work uses linearization (Born approximation) to simplify the formulation of
extended inversion, as do we in the work reported below. Linearized extended
waveform inversion is closely related to wave equation based migration velocity
analysis (Symes, 2008).

A major drawback of the subsurface offset extension is the computational burden
of the non-local constitutive law: in terms of time-stepping algorithms, it calls for
a full matrix multiplication over at least one spatial axis at every time step (Mul-
der, 2014). The purpose of this paper is to propose a straightforward strategy
to reduce the cost of this class of algorithm, combining frequency continuation
and grid coarsening and reduction of the subsurface offset axis with control of
the penalty parameter in a Variable Projection formulation (Golub and Pereyra,
1973, 2003; van Leeuwen and Mulder, 2009; Rickett, 2012; Li et al., 2013). Our
algorithm relies on two simple observations: (1) improved kinematic accuracy
of data-fitting extended models results in improved focus, that is, moves the ex-
tended model closer to a non-extended or physical model concentrated at zero
subsurface offset, and (2) low-pass filtered data has enough kinematic content to
drive velocity improvement, so long as the filtered data spans an octave or more.
We show that the extent of the active interval on the subsurface offset axis may be
shortened, subject to a data fit criterion, as the inversion improves the kinematic
accuracy of the model, in concert with refinement of the grid, in such a way that
the number of offset grid points is non-increasing. That is, the cost premium of
subsurface offset inversion iterates over ordinary FWI iterates remains constant
or decreases, even as the resolution of the model increases. From another point
of view, the adaptive concept introduced in this paper provides a way that nat-
urally brings extended model back to physical model by progressively reducing
the subsurface offset range throughout inversion. In our 2D examples, the cost
of this adaptive multiscale extended inversion is a few percent of the cost of the
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same sequence of iterations applied to a globally adequate fixed offset range and
grid. The cost reduction in 3D would be even more dramatic.

This paper is organized as follows: we first explain the theory of subsurface off-
set extended waveform inversion based on linearized acoustic modelling (Born
or single-scattering approximation). We describe three adaptative parameter ad-
justments, of maximum subsurface offset, variable projection penalty parameter,
and computational grid, and show how to combine them to dramatically enhance
computational efficiency. We end with two 2D numerical examples, demonstrat-
ing that this adaptive multiscale modification can reduce the computational cost
of subsurface offset extended waveform inversion by an order of magnitude or
more.

THEORY

While the algorithm to be explained here applies to many models and can be
posed abstractly, we choose to explain it in the context of a particular model of
wave propagation, linearized constant density acoustics, and inverse problems
posed in terms of this model.

Acoustic Born modeling

An abstract setting for seismic waveform inversion problem consists of: the model
space M, which is a set of physical model of the subsurface structure; the data
space D, which denotes a set of the seismic data; the forward map F, which con-
nects the two spaces M and D (F :M→D).

We base our study on linearized (“Born”) 2D constant-density acoustics: M con-
sists of pairs (v,r) of (background) velocity field v(x,z) and reflectivity field r(x,z).
The reflectivity is the perturbation of squared velocity: r = 2vδv. D consists
of primaries-only (single-scattering) seismic traces d(xr ,xs, t) for source positions
{(xs, zs)} and receiver positions {(xr , zr)}. Source and receiver depths are idealized
as the same for all traces, so ignored in the notation for the data traces. The pres-
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sure field p(x,z, t;xs) solves the acoustic wave equation(
∂2

∂t2
− v2∇2

)
p(x,z, t;xs) = w(t)δ(x − xs, z − zs),

p = 0, t << 0 (1)

The right-hand side is a simple source representation, an isotropic point radiator
with time dependence (pulse) w(t) located at (x,z) = (xs, zs). The perturbational
pressure field δp(x,z, t;xs) solves the linearized acoustic wave equation

(
∂2

∂t2
− v2∇2

)
δp(x,z, t;xs) = r(x,z)∇2p(x,z, t;xs),

δp = 0, t << 0 (2)

F is defined in terms of δp by

F[v]r(x,z) = δp(xr , zr , t;xs). (3)

F produces predicted primary (single scattering) data traces for the model (v,r).
Note that we have used a notational convention suggesting that the action of F on
r is linear, rather than writing F[v,r]: when v is fixed, the action of F on r (after
discretization) could be represented by a matrix multiplication.

Extended acoustic Born modeling

Waveform inversion asks that the model be adjusted so that the predicted data
traces approximate observed data traces, in the mean square sense. As mentioned
in the introduction, this is a very hard optimization problem. For the acoustic
Born problem just described, a satisfactory solution is obtained by gradient de-
scent methods only if the velocity v predicts the times of significant arrivals to
within a half-wavelength (Gauthier et al., 1986; Virieux and Operto, 2009). Ex-
tended modeling seeks to create an easier optimization problem by enlarging the
model space. Extended waveform inversion involves the additional ingredients

• an extended model space M̄;
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• an extension operator χ: M→ M̄;

• an extended modeling operator F̄: M̄→D; and

• an annihilator operator A : M̄→ M̄.

The operator F̄ is an extension of F in the sense that F̄[E[m]] = F[m]. The annihi-
lator identifies the “physical” space χM as its null space: Am̄ = 0 if and only if
m̄ = χm for a physical model m ∈M.

The extended Born acoustic model used here introduces a horizontal subsurface
offset axis, denoted h, and allows the reflectivity to depend on it: r̄(x,z,h). Since
r is (up to a scale factor) the perturbation in the compliance, one can think of
the extended reflectivity as representing a non-local perturbation in the acoustic
constitutive relation (we are indebted to Scott Morton for this observation). The
extended pressure perturbation δp̄(x,z, t;xs) solves a modification of the linearized
wave equation 2,

(
∂2

∂t2
− v2∇2

)
δp̄(x,z, t;xs) =

∫ H

−H
dh r̄(x − h,z,h)∇2p(x − 2h,z, t;xs),

δp = 0, t << 0 (4)

The extended model space for horizontal subsurface offset consists of pairs M̄ =
{(v(x,z), r̄(x,z,h))}. Note that only the reflectivity depends on the additional co-
ordinate h - the velocity is non-extended, or physical. The extension operator is
χr(x,z,h) = r(x,z)δ(h). Note that if r̄ = χr, then equation 4 reduces to equation 2.

The extended Born forward modeling operator is defined by

F̄[v]r̄(x,z,h) = δp̄(xr , zr , t;xs). (5)

Because of the previous remark, this operator has the extension property: F̄[v]χr =
F[v]r. Note also that we have continued to use the convention that the predicted
data is the value of a v-dependent linear operator acting on a reflectivity field.

Many choices of annihilator A have the required relation to the physical model
subspace χM. Amongst the earliest suggested was multiplication by h: Ar(x,z,h) =
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hr(x,z,h) (Stolk and De Hoop, 2001; Shen et al., 2003), which we also use here.

The dynamics expressed in equation 4 are closely related to Claerbout’s survey-
sinking image construction (Claerbout, 1985): (x,z) are the coordinates of the
sunken receiver, (x − 2h,z) those of the sunken source (where the source wave-
field p is evaluated), so the sunken midpoint is (x−h,z) and the space shift h plays
the role of half-offset, as one would expect.

Note that the integration over h on the right-hand side of equation (4) translates
into a full matrix multiply in a finite difference discretization, and must be per-
formed at every time step. The cost of this integration can easily overwhelm cost
of ordinary time-stepping (Mulder, 2014). In 2D, this additional integral in di-
mension of h increases the computational cost by a factor of Nh, number of grid

points in h, Nh =
2H
dh

, in which dh is the grid size in h. Note that in 3D, an-

other space shift dimension is needed, making the subsurface offset extension
even more expensive.

Extended Waveform Inversion

In the extended model, the data d(xr ,xs, t) and the model (v(x,z), r(x,z,h)) depend
on the same number of parameters, so you might guess that there would be a
1-1 relation between the two, at least to some extent. Stolk and De Hoop (2001);
Stolk et al. (2009) offer theoretical verification for this guess. We will also show by
numerical example that for any “reasonable” data d and velocity model v, there
exists an reflectivity r̄ for which F̄[v]r̄ ≈ d, provided that the subsurface offset limitH
is large enough. This observation is in sharp contrast to the case for non-extended
modeling: as noted above, v must predict arrival times within a half-wavelength
in order that there exist a non-extended reflectivity for which F[v]r ≈ d.

Extended waveform inversion couples a measure of data misfit (usually mean-
square) to a measure of model non-physicality, and drives both measures towards
zero. A simple objective function capturing this concept is

J[v, r̄,α] =
1
2
‖F̄[v]r̄ − d‖2 +

α
2
‖Ar̄‖2 (6)

The penalty weight α controls the balance between penalties on data misfit and
model extension: when α→ 0, the model has little constraint on energy distribu-
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tion in the extended dimension h, and can always achieve good data fit. as noted
above; when α → ∞, Ar̄ must → 0, so r̄ must approximate a physical reflectiv-
ity. For model-consistent (noise-free) data, the global minimum is J = 0. Close
to the global minimizer, so both summands are close to zero, data is fit, and r̄ is
approximately physical.

Variable Projection Method

The objective J[v, r̄,α] is very ill-conditioned, that is, its gradient tends to change
very rapidly in response to small model changes, making minimization by gradi-
ent based method very difficult (Kern and Symes, 1994; Huang and Symes, 2015).
However, the subproblem of estimating r̄ by minimizing J[v, r̄,α], given d and v,
is both quadratic and relatively well-conditioned. Define r̄[v,α] to be an approxi-
mate minimizer of J[v, r̄,α], that is, a solution of the normal equation

(F̄[v]T F̄[v] +αATA)r̄ = F̄[v]T d. (7)

The normal equation is equivalent to vanishing of the r̄-gradient of J[v, r̄,α]. Since
the J is positive semidefinite quadratic in r̄, that is sufficient to guarantee that
r̄[v,α] is an approximate minimizer.

Having chosen the optimal r̄[v,α], substitute it into J to obtain an objective func-
tion in v alone:

J̃[v,α] = J[v, r̄[v,α],α]. (8)

A minimizer of J̃ is also the v-component of a minimizer of J . This is the variable
projection principle, introduced by Golub and Pereyra (1973, 2003). Moreover, J̃
has a reasonably well-conditioned Hessian and can be minimized effectively with
Newton-related techniques, unlike J (Kern and Symes, 1994; Huang and Symes,
2015). Its gradient may be expressed as

∇v J̃[v,α] = S(DF̄[v])T
(
r̄[v,α], F̄[v]r̄[v,α]− d

)
(9)

(DF̄[v])T is the so-called tomographic or WEMVA operator. As F̄[v] is actually the
linearization, that is, derivative of the basic acoustic modeling operator, DF̄[v] is
actually its second derivative. The adjoint DF̄[v]T is computable by a variant of
the adjoint state method (Gauthier et al., 1986; Plessix, 2006) used to compute
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F[v]T (Symes and Santosa, 1988; Kern and Symes, 1994). S is a smoothing op-
erator, or low-pass filter, designed to keep the scales of v and r̄ separated after
updates using the Hessian. In our work we used for S a negative power of the
spatial Laplace operator.

Adaptive Subsurface Offset

As explained above, the additional dimension h adds a significant computational
cost, so determining the maximum subsurface offset H becomes a crucial prob-
lem. Shen (2004) showed some exemplary calculations to identify the relevant
ray fields with subsurface space shift, but that does not address the distribution
of energy in the space-shift extended model. Mulder (2014) gave formulas to cal-
culate the amplitude in the space-shift extended model for 2D and 3D by station-
ary phase approximation, provided that the model and migration velocities are
constant. In that case, a good estimate for the maximum subsurface offset may be
expressed in terms of the maximum surface offset L and the ratio ρ = v/vtrue of
migration velocity to model velocity, as H = L(1 − ρ2). However, in general there
is no simple direct rule to calculate an appropriate value of H .

Nonetheless, the generic relation between migration (or inversion) velocity accu-
racy and maximum subsurface offset holds more generally, in a qualitative sense.
When the migration velocity model is inaccurate, long offset is needed for good
data fit; when the velocity model becomes closer to the correct one after updates,
the observed data can be predicted by extended reflectivity model with shorter
offset. This relation will be illustrated below, and follows for example from the
theoretical analysis by Stolk et al. (2009).

A simple method to estimate appropriate values of H takes advantage of this ob-
servation. To explain this method, note that the solution r̄[v,α] of the normal
equation 7 depends on H , through the right-hand side of the extended linearized
wave equation 4. To track this dependence, add it to the notation, and rename the
solution r̄[v,α,H]. Similarly, addH to the argument lists of J , J̃ , and introduce the
abbreviations e and p for the data misfit and penalty summands in the definition
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of J̃ :

J̃[v,α,H] = e[v,α,H] +αp[v,α,H],

e[v,α,H] =
1
2
‖F̄[v]r̄[v,α,H]− d‖2,

p[v,α,H] =
1
2
‖Ar̄[v,α,H]‖2. (10)

Our approach uses the zero-weight residual e(v,0,H), and estimates the corre-
sponding residual for offset range [−H/2,H/2] by computing

eH/2 =
1
2
‖F̄[v]ΠH,H/2r[v,0,H]− d‖2 (11)

in which ΠH,H/2r̄ denotes the restriction operator that sets r̄ = 0 for |h| > H/2.

Note that e[v,0,H] depends on r̄[v,0,H] and therefore requires the (approximate)
solution of the normal equation 7 with zero penalty weight by iteration. However,
once e[v,0,H] is computed, eH/2 simply re-uses r̄[v,0,H] so requires just a forward
modeling step. Therefore eH/2 represents minimal added expense over e[v,0,H].

Algorithm 1 adapts H to keep the data fit error e with zero penalty below a pre-
scribed bound: according to the data fit property of extended modeling, men-
tioned above, for any (reasonable) v and tolerance E, a corresponding r̄ exists
for which e < E, provided that H is large enough. At the beginning of the v up-
date cycle, nothing is known about the proper value of H , so increasing it may
be necessary. However, as the velocity improves, H should decrease monotoni-
cally; increase ofH is necessary only at the beginning of the velocity update cycle.
The data fit must be calibrated: we choose an arbitrary relative value X, intended
to be eventually a nominal upper bound on actual data noise. We also choose a
fudge factor µ > 1, the detection level for reducing H , since eH/2 is not precisely

the same as e[v,α,H/2]. In the following, we will use E =
1
2
X2‖d‖2 as the relative

error measure appropriate for comparison with e(...).

Adaptive Penalty Weight

The penalty parameter α is essential in driving the extended waveform inversion
towards a solution of the (non-extended) waveform inversion problem. Since p
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Algorithm 1 H Update

Require: X > 0,µ > 1,E =
1
2
X2‖d‖2

H+ =H
if initialize then

while e[v,0,H+] > E do
H+← 2H+

end while
else

while eH+/2 < µE do
H+←H+/2

end while
end ifreturn H+

should vanish at a physical solution, one would expect that α should increase
as the inversion proceeds. Fu and Symes (2016) show how to systematically in-
crease α to accelerate the convergence of iterative solution for problems with the
properties of extended Born waveform inversion. For completeness, we repeat the
algorithm of Fu and Symes (2016) as Algorithm 2.

Typical values for the parameters appearing in Algorithm 2 might be γ− = (0.7)2,γ+ =
(1.2)2,β− = 0.667,β+ = 2.0 (we use these values in the experiments reported be-
low).

Note that the update formula used above, and the corrections that follow are guar-
anteed to yield α for which γ−E ≤ e[v,α,H] ≤ γ+E. This range condition is a ver-
sion of the Discrepancy Principle, as explained in (Fu and Symes, 2016). Unlike
normal applications of this principle, the algorithm 2 is designed to increase α
systematically.

Adaptive Variable Projection Algorithm

Optimization of J̃[v,α,H] may be accomplished by any of the commonly used
continuous optimization methods, described for instance by Nocedal and Wright
(1999). However, updating α and/or H actually changes the objective function,
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Algorithm 2 α Update

Require: X > 0,E =
1
2
X2‖d‖2,0 < γ− < 1 < γ+,0 < β− < 1 < 1/β− < β+

if initialize then
α = 0

end if
α+ = α
if e[v,α+,H] < γ−E then

α+← α+ +
γ+E − e[v,α+,H]

2p[v,α+,H]
while e[v,α+,H] < [γ−E,γ+E] do

if e[v,α+,H] < γ−E then
α+← β+α+

end if
if e[v,α+,H] > γ+E then

α+← β−α+
end if
end while

end ifreturn α+
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so an algorithm that includes such updates is outside the scope of standard opti-
mization theory.

We do not attempt to create a conceptual framework for such “multi-function
optimization” here. We merely note that many algorithms include provision for
a so-called “warm start”. That is, various parameter values, including solution
estimates, may be carried over from one iteration to the next, and a change of
objective function may be simply ignored in some cases. For example, a descent
algorithm globalized by line search may use the final step length from the previ-
ous iteration as the initial step length for the current one. This carry-over can be
retained even if the objective function changes between iterates. Other auxiliary
information may be better discarded: for example, the low-rank inverse Hessian
approximation built up in some quasi-Newton methods may lose so much accu-
racy in a change of objectives that it should be recomputed ab initio. In view of
such possibilities, α andH updates must be visible to the optimization algorithm.

A general approach to this issue remains to be worked out. In our experiments, we
have used a very simple continuous optimization algorithm, steepest descent with
line search globalization, and defined warm start in the obvious way. Assuming
that the notion of warm start is properly chosen, a suitable algorithm structure
incorporating the α and H adaptations is given in display 3.

Algorithm 3 Adaptive Variable Projection Method

Require: choose initial velocity v, α, H , parameters for algorithms 1, 2, continu-
ous optimzation step OPTSTEP, improvement tolerance ε.
repeat

execute algorithm 1 to compute H+
execute algorithm 2 to compute α+
execute OPTSTEP with warm start to compute v+; compute relative im-

provement δ = (J̃[v,α,H]− J̃[v+,α+,H+])/ J̃[v,α,H]
v← v+,α← α+,H ←H+

until δ < ε

Adaptive Grid

The previous two subsections explained adaptations that pertain, in principle, to
the continuum extended waveform inversion problem. This subsection addresses
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the discrete level, after gridding. The idea is simple, and familiar from the FWI
literature: use lower frequency (less resolved) information to when the model is
further from kinematic data fidelity, and increase the frequency content as the
inversion progresses. In the context of extended waveform inversion, the reason
is not to enhance the tendency to converge - use of the model extension and ap-
propriate penalty largely decouples frequency content from convergence (Symes,
2008, 2014). Instead the point is purely to reduce the computational cost of a
majority of the iterations.

Algorithm 4 Adaptive Multiscale Variable Projection Method

Require: Determine data passband [fmin, fmax], initial discretization parameters
dt0, dx0, dz0, dh0 suitable for accurate simulation at fmax
n = floor log2(fmax/fmin)
for k = 0, ...,n do

dt← 2n−kdt0
dx← 2n−kdx0
dz← 2n−kdz0
dh← 2n−kdh0
apply bandpass filter [fmin, fmin + 2−n+k(fmax − fmin)] to data, source pulse,

resample
execute algorithm 3 with discretization parameters dt, dx, dz, dh

end for

So long as algorithm 3 improves kinematic fidelity enough that the initial H is at
least halved by each execution, the number of h grid points, Nh, will never exceed
its initial value. Under this condition, which we have observed in examples, the
cost ratio of extended to non-extended inversion steps stays constant or decreases
as the iterations of algorithm 4 proceed.

Cost

It is straightforward to analyze the cost of algorithm 4 occurs when the numbers
of iterations involved in algorithm 3 are the same for all refinement steps. The
cost of each iteration is approximately proportional to number of grid points in
space, subsurface offset, and time. The cost of a carrying out n steps of Algorithm
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4 is

a =
n∑
k=0

sk ∗C ∗Nh,k ∗ (Nt,k)3 (12)

in which sk is the number of velocity updates at grid level k, Nt,k is the number of
time steps for modeling at grid level k, Nh,k is the number of active grid points on
the offset axis, and C is a garbage collection factor that contains the ratio of time
to spatial grid sizes, the number of floating point operations per velocity update,
and the average cost (in time or cycles) per floating point operation. Similarly, the
cost of a non-adaptive algorithm, using the finest grid and largest offset axis with
Nh = 2nNh,n gridpoints, is

c = (
n∑
k=0

sk) ∗C ∗Nh ∗N 3
t,0 (13)

with the same fudge factor C..

Assume that at each grid refinement step of the loop in algorithm 4, the offset
range has been halved at least once, then as noted above Nh,k ≤Nh,0 for k = 0, ...,n.
Since Nt,k = 2k−nNt,0, the cost ratio is

r = a/c = 2−n(
n∑
k=0

sk ∗ 8k−n)/(
n∑
k=0

sk) (14)

This ratio is easy to evaluate under the assumption that the same number of ve-
locity updates occur at each scale. Then the ratio becomes

= 2−n/n(1− 8−n)/(1− 8−1) ≈ 2−n/n (15)

For n = 1 (2 data octaves), r ≈ 1/2, for n = 2 (3 octaves), r ≈ 1/8, and for n = 3 (4
octaves), r ≈ 1/24.

It should be noted however that, in our experience, the assumption of uniform
iterations over grid refinements is unrealistic: in both examples to be presented
in the next section, the bulk of the iterations occurred at coarser grid scales, which
substantially decreases the cost of the adaptive algorithm, as will be noted below.
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EXAMPLES

In this section, we illustrate the performance of the proposed adaptive multi-
scale approaches by solving a velocity estimation problem modeled on reflection
seismology. The simulations are performed using a 2D constant-density acous-
tics, time domain, finite difference method (second order in time, eighth order in
space).

We use the method of steepest descent with quadratic backtrack line search to
search for the minimum of the objective function. The gradient of the objective
function is computed by using equation 9. We perform a line-search method to
determine the optimal step length. The line search evaluated the objective func-
tion for different background velocity models, which were generated by adding
multiplication of different step length and search direction to current model. The
optimal step length is estimated by assuming the objective function is quadratic.

Throughout this section, we refer to the solution of the normal equation 7 with
α = 0 as Extended Least Squares Reverse Time Migration, or ELSRTM. This cal-
culation is carried out at every velocity update, as part of the H update substep
(Algorithm 1. We will display the reflectivity (image) volumes that result from
ELSRTM, as they indicated clearly the degree of focus towards h = 0, that is, kine-
matic correctness of the velocity, attained by our algorithm.

Increased computational cost

In order to illustrate the relation between computational cost and subsurface off-
set extension, we perform a simple numerical experiment. Grid dimension for
velocity is 1000×1000, the extended reflectivity grid 1000×1000×Nh . Note that
the computing time is normalized by the time of the non-extended case. The rela-
tive computing time is a linear function of number of grid pointsNh in subsurface
offset axis (see Figure 1). Since the solution of the normal equaiton consists of it-
eration over extended Born modeling and RTM, longer subsurface offset directly
increases the cost of each iteration.
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Figure 1: The relative computing time of extended modeling and RTM as a function of number of grid points Nh in
subsurface offset axis. The reflectivity grid size is 1000× 1000×Nh.
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Single reflector model

The purpose of this experiment is to investigate the behavior of extended reflec-
tivity model in subsurface offset axis with different levels of velocity errors. This
experiment illustrates one of the main observations underlying our adaptive al-
gorithm (and extended waveform inversion): that the extent of the subset offset
axis necessary for accurate data fit increases with velocity error.

The background velocity model measures 3.0 km× 2.4 km with 20m cell size uni-
formly distributed in each dimension. The true background velocity v is constant
(v = 3.0 km/s). Shown in Figure 2a, in the extended reflectivity model, there is a
horizontal velocity perturbation at depth of 1.6 km. 61 sources (0.3 km to 2.7 km)
and 151 receivers (0 km to 3.0 km) are placed on the surface. Note that the back-
ground velocity model v(x,z) is non-extended, while the extended perturbation
model r̄(x,z,h) has nonzero value only at h = 0m. The observed data of shot 31 is
depicted in Figure 2b.

Figure 2: (a) Extended reflectivity r̄ at h = 0m; (b) data of shot 31 at the center

The ELSRTM image with correct velocity after 20 CG iterations is shown in Fig-
ure 3a. The energy is focused at zero subsurface offset. The image with wrong
velocity is depicted in Figure 3b. In the vertical slices at x = 1500m, the reflector
is imaged as an upward curve, symmetrical in h direction. Compared with the
correct velocity case, the energy is scattered along h axis. As the velocity error
decreases, the energy tends to focus toward the center h = 0 (shown in Figure 4a -
Figure 4f).

In order to fit the observed data well, the extended reflectivity model must have
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Figure 3: Inverted extended reflectivity r̄ after 20 iterations of CG. (a) correct background velocity (v = vtrue) (b) wrong
background velocity (v = 1.3vtrue)

Figure 4: Inverted extended reflectivity r̄ in z − h plane after 20 iterations of CG. (a) v = 0.9vtrue , (b) 0.8vtrue , (c) 0.7vtrue ,
(d) 1.1vtrue , (e) 1.2vtrue , (f) 1.3vtrue
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adequate subsurface extension (see Figure 5a and 5b). On the other hand, the
required amount of subsurface extension decreases with the error of the velocity
model, which suggests that as the velocity model updates toward the correct one
in inversion, shorter subsurface offset is needed (see Figure 6).
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Figure 5: Relationship between the maximum subsurface offset H and the data residual ∆dH . The background velocity is
30 % slower than the true velocity (v = 0.7vtrue). (a) ELSRTM image r̄ after 20 iterations of CG, (b) H vs relative ∆dH

Lens model

In this example, the reflectivity model contains numbers of horizontal layers with
various thickness (shown in Figure 7a). The background velocity model contains
a Gaussian low-velocity anomaly sitting on constant velocity (v = 3.0 km/s). Ac-
quisition and model geometry parameters are listed in table 1.

The data is generated with a 3 − 30 Hz bandpass filter, or approximately three
octaves. Accordingly, n = 2 and the the observed data and the source function
are filtered by three bandpass filters (3 − 7.5Hz, 3 − 15Hz, and 3 − 30Hz). Cor-
respondingly, the spatial decomposition is implemented in three steps with grid
size 50m, 25m and 12.5m. The grid size in each stage is determined to fulfill the

rule
vmin
fmax

> 5dx to avoid numerical dispersion. The spatial grid size is same in all

dimensions (dx = dz = dh). The time step intervals (dt = 8ms,4ms,2ms) in each

stage are chosen to fulfill Courant-Friedrichs-Lewy (CFL) condition (
vdt

√
dx2 + dz2

<
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Figure 6: After 20 iterations of CG, the relative data misfit is plotted as a function of maximum subsurface offset H .
Different colors represents different levels of velocity error.

1) in 2D.

In this example, we executed the α update step in Algorithm 3 only once, for the
first velocity update at the coarsest grid level, and left α constant thereafter.

For this example, we choose a target relative misfit level of X = 0.1.

Stage 1. We start with grid size 50m, frequency band 3 − 7.5Hz, and the time
step interval 8ms. The initial background velocity is constant (3.0 km/s). Assume
the relative velocity error is 10%, then |1 − ρ2| ≈ 0.2. Based on equation H =
L(1 − ρ2), the homogeneous medium estimates mentioned in the last section, the
initial offset range is estimated as (H ≈ 6 × 0.2 = 1.2 km). On the other hand,
dh = 50m, according to the relation H = 2i ∗ dh, we choose i = 4, so we start with
subsurface offset range H = 800m. The data misfit satisfies the tolerance level
X = 0.1 (10%) of original data after 10 iterations of CG. Meanwhile, reflectivity
model with only half extension H = 400m fails to fit the data to its satisfactory
level µX = 12% even after 20 iterations (whereas with the full offset range the
iteration achieves 5% misfit in 20 iterations), so the offset range H = 800 m is
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Figure 7: (a) Extended velocity perturbation δv̄ at h = 0m (b) background velocity
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Parameter Measurements
Source wavelet bandpass 3− 30Hz
Source position xs x : 0− 6 km every 50m, z = 0m
Receiver position xr x : 0− 6 km every 50m, z = 0m
Space and time x = 6 km, z = 2.2 km, t = 2.4 s
Grid size dx = dh = dz = 12.5m, dt = 2ms
Initial velocity v = 3.0 km/s
Maximum iterations inner loop 20

Table 1: Lens model

Figure 8: (a) Data of shot 61 at the center (3− 30Hz) (b) bandpass low-frequency data (3− 7.5Hz)

an optimal choice for the initial velocity model. With low frequency data, only
several thick layers are visible in the inverted image (see Figure 9a). Due to the
existence of the low velocity anomaly, the reflectors beneath it has been imaged to
deeper positions. The gather is barely focused in h direction.

Here, we have run 20 iterations of CG, far more iterations than necessary, but
only because we would like to emphasize that the data misfit would not decrease
further to the tolerance level even with more iterations, when the subsurface offset
is inadequate. We will stop iterating, when the data misfit satisfies the tolerance
level in the following test.
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Figure 9: Step1: use initial velocity, spatial grid size dh = dx = dz = 50m, bandpass filter f : 3− 7.5Hz, time step interval
dt = 8ms (a) ELSRTM result of 20 CG iterations, (b) Relative data residual with different offset ranges.

With the inverted r̄ shown in Figure 9a and corresponding data residual F̄[v]r̄−d,
we update the background velocity model by computing the gradient according
to equation 9. In Figure 10a, the velocity model after first update already reveals
the correct location of the top of the anomaly. With the first updated velocity, the
linearized inverse problem (equation 7) is solved again. In Figure 10b, the reflec-
tor is shifted upward to shallower position and more focused in h direction. As
the velocity model becomes closer to the correct one, the energy is more focused
toward h = 0m, which suggests that shorter subsurface offset range is needed.
As a result, even half of the subsurface offset range (400m) is sufficient to predict
the observed data well with data misfit less than 12%, shown in Figure 10c. After
second velocity update, since half offset range H = 200m is not able to provide
good data fit, H = 400m is still the optimal choice (see Figure 11c). In the next 3
velocity updates (iteration 3, 4, and 5), we are able to reduce the extended offset
range by half (see Figure 12, 13, and 14). After the 6th velocity update, reflectiv-
ity model even without extension is able to predict the observed data within the
tolerance level. And the velocity update satisfies the convergence condition as the
9th step shown in previous algorithm, so higher frequency and finer grid can be
used, leading the algorithm to the second stage.

Stage 2. The source wavelet and observed data are filtered by lowpass filter (3 −
15 Hz). At the same time, the spatial grid size and the time step interval are
reduced by a factor of 2. With the help of the updated velocity model (see Figure
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Figure 10: (a) The 1st velocity update; (b) The ELSRTM image by using 1st updated velocity; (c) The relative data residual
with different offset ranges.
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Figure 11: (a) The 2nd velocity update; (b) The ELSRTM image by using 2nd updated velocity; (c) The relative data residual
with different offset ranges.
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Figure 12: (a) The 3rd velocity update; (b) The ELSRTM image by using 3rd updated velocity; (c) The relative data residual
with different offset ranges.
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Figure 13: (a) The 4th velocity update; (b) The ELSRTM image by using 4th updated velocity; (c) The relative data residual
with different offset ranges.
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Figure 14: (a) The 5th velocity update; (b) The ELSRTM image by using 5th updated velocity; (c) The relative data residual
with different offset ranges.
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Figure 15: (a) The 6th velocity update; (b) The ELSRTM image by using 6th updated velocity; (c) The relative data residual
with different offset ranges.
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Figure 16: (a) The 9th velocity update; (b) The ELSRTM image by using 9th updated velocity; (c) The relative data residual.
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17a) after 2 iterations, higher frequency content, finer spatial grid and time step,
the ELSRTM image shows more structural details after 7 CG iterations (shown in
Figure 17b). The data residual is shown in Figure 17c.
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Figure 17: Stage 2 (a) The 2nd velocity update; (b) The ELSRTM image (c) The relative data residual.

Stage 3. The original source wavelet and observed data are used. At the same
time, the spatial grid size 12.5m and the time step interval 2ms is used. After
one velocity update (Figure 18a), the reflectivity is inverted and illustrated in Fig-
ure 18b. With the help of the updated velocity model, higher frequency content,
finer spatial grid and time step, the background velocity and layered structure
are successfully recovered.

For comparison, the inversion results without model extension are shown in Fig-
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Figure 18: Stage 3 (a) The inverted background velocity model; (b) The ELSRTM image (c) The relative data residual.
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ure 19a, 19b without multiscale and Figure 20a, 20b with multiscale approach.
Here, without extended dimension h, the objective function is defined with a dif-

ferent model space (M, not M̄) and only contains the data misfit term
1
2
‖F̄[v]r −

d‖2. For both cases, we use the same optimization algorithm, steepest descent
with quadratic backtrack line search. Both experiments are performed by using
same number of velocity iterations at each refinement stages as the extended case.
And the reflectivity model is estimated by 20 iterations of CG, which equals 20
modeling/migration pairs. As a result, the total numbers of modeling/migration
pairs in these two non-extended experiments are same as the previous extended
example. In both cases, the inversion fails to correctly recover the accurate back-
ground velocity. The layers beneath the low velocity anomaly are imaged at the
wrong depth.

Overthrust model

This example is modified from the SEG/EAGE 3D overthrust model (Aminzadeh
et al., 1997). In the reflectivity model, horizontal layers are distorted by several
thrust (reverse) faults. The background velocity increases with depth. The veloc-
ity is higher in the center, where the anticline structure sits. The basic information
is listed in table 2.

Parameter Measurements
Source wavelet bandpass 5− 20Hz
Source position xs x : 1− 7 km every 40m, z = 0m
Receiver position xr x : 0− 8 km every 40m, z = 0m
Space and time x = 8 km, z = 2 km, t = 3 s
Grid size dx = dh = dz = 20m, dt = 2ms
Initial velocity v = 1.5 km/s
Maximum iterations inner loop 20

Table 2: Thrust model

In this example, bandpass source wavelet (5− 20Hz) is used, thus n = 2 (octaves)
of data are available. The inversion is divided into two refinement stages. The
observed data and the source function are filtered by two bandpass filters (5 −
10Hz and 5 − 20Hz. Correspondingly, the space decomposition is implemented
with grid size 40m and 20m, while the time step intervals are 4ms and 2ms.
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Figure 19: (a) Inverted background velocity model without model extension and multiscale approach (b) Reflectivity
model; (c) Relative data residual.
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Figure 20: (a) Inverted background velocity model by using multiscale approach but without model extension; (b) Reflec-
tivity model; (c) Relative data residual.
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In this example, we used the full Algorithm 4, including the update for α, which
resulted in increases of α at four steps (α = 1.1×10−6,3.2×10−5,1.1×10−4,2.4×10−4

at iteration 1, 2, 4, 13). More details can be found Fu and Symes (2016). The target
relative misfit level for this experiment is once again 10%.

Stage 1. We use grid size 40m, frequency band 5 − 10Hz, and the time step in-
terval 4ms. The initial background velocity is constant (1.5 km/s). The optimal
subsurface offset range H = 1.6 km is determined by measuring the data misfit
during the initialization step in our proposed algorithm. Because the initial ve-
locity is far away from the correct one, the structures can be barely observed from
the ELSRTM image. In the subsurface offset gather, the downward curves indi-
cate slow velocity. After 1st velocity update, the energy becomes more focused
towards h = 0. Actually, only half of the extension (0.8 km) would provided good
data fit. With 2nd velocity update, layer structures are imaged closer to their cor-
rect positions. Although the energy is more focused in the gather, half subsurface
offset is not adequate to provide good data fit. However, as the background veloc-
ity continues to be updated, after 8th iteration, offset H = 0.4 km is long enough.
At iteration 15 and 23, we are able to reduce the offset range by half. As the con-
vergence condition is satisfied at iteration 26, the inversion proceeds to the second
stage.

Stage 2. The source wavelet and observed data are filtered by lowpass filter (5 −
20 Hz). At the same time, the spatial grid size and the time step interval are
decreased by a factor of 2. With the inverted background velocity model from
28th iteration, the extended reflectivity is shown in Figure 26a. The anticline and
reverse fault structures can be clearly observed. Furthermore, even the reflector
beneath the anticline is positioned correctly (at about x = 4 km,z = 2 km). The
true velocity model is mostly recovered. The velocity error is mostly at the edges,
which is a result of illumination. The energy is well focused in h direction.

DISCUSSION

A useful point of view on the range of subsurface offset H , kindly suggested by
an anonymous reviewer, relates subsurface offset to the angle domain (Sava and
Fomel, 2003): angle gathers are (essentially) Radon tranforms of subsurface off-
set gathers. It follows that the maximum offset H determines (non-aliased) angle
sampling, and vis-versa. When the velocity is nearly correct, the angle gathers are
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Figure 21: (a) Extended velocity perturbation δr̄ at h = 0m (b) The true background velocity
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Figure 22: (a)The initial background used in inversion; (b) The ELSRTM image by using initial background velocity; (c)
The relative data residual with different offset ranges.
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Figure 23: (a)The 1st updated background velocity; (b) The ELSRTM image by using 1st updated background velocity; (c)
The relative data residual with different offset ranges.
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Figure 24: (a) The 2nd updated background velocity; (b) The ELSRTM image by using 2nd updated background velocity;
(c) The relative data residual with different offset ranges.
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Figure 25: (a) The 8th updated background velocity; (b) The ELSRTM image by using 8th updated background velocity;
(c) The relative data residual with different offset ranges.
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Figure 26: Stage 2 (a) The ELSRTM image; (b) The inverted background velocity.
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nearliy flat, and can be reliably sampled with a coarse angle step, corresponding
to small H . For substantially incorrect velocity, the angle gathers are far from flat
in angle, implying the need for finer sampling for non-aliased representation, cor-
responding to larger maximumH . The angle-offset correspondence thus provides
an alternate view of the relation between velocity correctness and H .

In all the numerical examples, most of the computational effort is spent on solv-
ing the normal equation 7. As a result, the total number of modeling/migration
pairs is really the cost in these experiments. The total computational time for the
gaussian example is about 1% of the original problem by using finest gird and
full offset all along, if we assume the convergence rate are the same for both cases.
For the overthrust example, although there are only 2 stages, the offset range is
dramatically reduced at the first stage with adaptive approach, the cost is also
greatly reduced (approximately 2% of the original problem). Although there are
only 2 refinement stages, the subsurface offset is greatly reduced at the first few
iterations. Note that with more refinements and more iterations for both inner
loop and outer loop, the computational performance of the adaptive algorithm
will be further improved in comparison with the non-adaptive case. More veloc-
ity updates in early stages (coarse grids) will improve the computational efficiency
significantly.

As is clear from the discussion in the theory section, from the point of view of our
adaptive algorithm, the data misfit tolerance level X is somewhat arbitrary. In
our examples, we chose it based on the lowest data misfit achievable with a small
number of CG iterations to solve the ELSRTM problem (equation 7 with α = 0).
However, ideally this tolerance should approximate the least RMS error attainable
with a physical (non-extended) model. With one more level of adaptation, our al-
gorithm could attain this goal as well. Since driving the penalty term (p(v,α,H) in
the theory section) towards zero is equivalent to approaching the space of physi-
cal models, adjusting X so that α can become sufficiently large, or H sufficiently
small, will assure that X actually approximates the least attainable RMS error.
How to define “sufficiently”, and how to organize an efficient algorithm based on
these observations, remains a topic of research.

Note that the extended inversion example converges to a good kinematic solu-
tion, while non-extended FWI may not (see lens example) provided with the same
number of modeling/migration pairs. There are more ways to reduce the num-
ber of iterations. In solving the normal equation 7 by CG iteration, we have used
multiplication by “z2” as a preconditioner, to accelerate convergence. However,
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better methods are available (Hou and Symes, 2016) and could potentially fur-
ther reduce the cost of the inner iteration. Similarly, we used steepest descent
with quadratic backtrack line search as the optimization method for updating v.
More efficient gradient-based optimization methods can potentially be used to
further improve the convergence rate of the outer iteration.

Evidently, the major motivation for the modifications of extended inversion pre-
sented in this paper is to bring it closer to practicality for 3D applications. In
the Introduction, we reminded the reader that subsurface offset modeling and in-
version involves (at the discrete level) a full matrix multiply at each time step,
the cost of which can easily overwhelm the cost of ordinary time domain solution
of the wave equation. This additional cost has been a serious impediment to the
adoption, or even exploration, of 3D subsurface offset extended waveform inver-
sion. The techniques introduced in this paper certainly reduce this cost premium,
by orders of magnitude for frequency ranges and length scales typical of seismic
exploration. However a definitive assessment of practical feasibility awaits tests
with a 3D implementation.

Apart from cost, many other questions about 3D subsurface offset extended wave-
form inversion remain to be answered. For example, with a two-dimensional sub-
surface offset plane, should the active region be a square of side 2H , or a rectangle
with independently adapted sides, or some more complex region? In dealing with
highly refractive subsurface structures such as salt, gas chimneys, and the like,
will vertical offsets be needed to supplement the horizontal (Biondi and Shan,
2002) (the answer is almost certainly “yes”, and in 2D as well)? What is the impact
of the difference between inline and crossline sampling typical of WAZ streamer
surveys, and of the sparse sampling of nodes in OBS surveys? Is even 3 Hz low
enough frequency that the 5D extended model space is computationally tractable
at the necessary sample rates? All of these questions remain to be addressed in
future work.

CONCLUSION

The objective of this study is to address one of the central problem of subsurface
offset extended waveform inversion, its computational cost, which greatly hinders
any practical application of this promising new technique. Adaptive determina-
tion of a sufficient offset range to assure data fit, in concert with grid coarsen-
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ing, yields a significant improvement in computational efficiency. The adaptive
concept progressively reduces the subsurface offset range throughout inversion,
which can naturally bring extended model towards physical model. 2D synthetic
experiments with a version of this algorithm based on linearized (Born) constant
density acoustics suggests that cost reduction of one or two order of magnitude
is attainable, with recovery of both short- and long-scale features of the velocity
model.
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Scattering and dip angle decomposition based on
subsurface offset extended wave-equation migration

Raanan Dafni and William W. Symes

ABSTRACT
An angle-dependent reflection coefficient is recovered byseismic migration in
the angle domain. We have developed a postmigration technique for com-
puting scattering and dip angle common-image gathers (CIGs) from seismic
images, extended by the subsurface offset, based on wave-equation migration
methods. Our methodology suggests a system of Radon transform operators
by introducing local transform relations between the subsurface offset im-
age and the angle-domain components. In addition to the commonly used
decomposition of the scattering angle, the methodology associates the wave-
equation migration with dip-domain images as well. The same postmigra-
tion subsurface offset image is used to decompose scattering and dip angle
CIGs individually or to decompose a multiangle CIG by showing simultane-
ously both angles on the gathers axis. We show that the dip-angle response
of seismic reflections is a spot-like signature, focused at the specular dip of
the subsurface reflector. It differs from the well-studied smile-like response
usually associated with reflections in the dip domain. The contradiction is
clarified by the nature of the subsurface offset extension, and by emphasiz-
ing that the angles are decomposed from the subsurface offset image after the
imaging condition, without directly involving the propagating incident and
scattered wavefields. Several synthetic and field data tests proved the robust-
ness of our decomposition technique, by handling various subsurface models,
including seismic diffractions. It is our belief that dip-angle information, de-
composed by wave-equation migration, would have a great impact in making
the scattering-angle reflection coefficient more reliable and noise free, in ad-
dition to the acceleration of wave-equation inversion methods.

Note: This paper appeared in Geophysics, 81 (3), S119-S138 (2016). See TRIP 2016
Annual Report web page for doi and link:
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http://www.trip.caam.rice.edu/reports/2014/trip2016 report.html
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Kinematic artifacts in the subsurface-offset extended
image and their elimination by a dip-domain

specularity filter

Raanan Dafni and William W. Symes

ABSTRACT
Common-image gathers in the dip-angle domain may be computed in rela-
tion to wave-equation migration methods, extended by the subsurface offset.
They involve the application of a postmigration local Radon transform on the
subsurface-offset extended image. In the dip-angle domain, seismic reflec-
tions are focused around the specular dip angle of reflection. This focusing
distinguishes them from any other event in the image space. We have incor-
porated the dip-angle information about the presence of specular reflections
into the computation of the conventional scattering-angle-dependent reflec-
tion coefficient. We have designed a specularity filter in the dip-angle domain
based on a local semblance formula that recognizes and passes events asso-
ciated with specular reflections, while suppressing other sorts of nonspecu-
lar signal. The filter is remarkably effective at eliminating either random or
coherent noises that contaminates the prestack image. In particular, our di-
pangle filter provides a method for the suppression of kinematic artifacts,
commonly generated by migration in the subsurfaceoffset domain. These ar-
tifacts are due to an abrupt truncation of the data acquisition geometry on
the recording surface.We have studied their appearance and devised an ap-
propriate formation mechanism in the subsurface-offset and scattering-angle
domains. The prominent presence of the kinematic artifacts in image gath-
ers usually impairs the quality of the postmigration analysis and decelerates
the convergence of wave-equation inversion techniques. We have determined
from testing on synthetic and field data that using the proposed dip-angle-
domain specularity filter efficiently eliminates the kinematic artifacts in the
delivered gathers. We expect involvement of the specularity filter to increase
the reliability and quality of the seismic processing chain and provide a faster
convergence of iterative methods for seismic inversion.
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Note: This paper appeared in Geophysics, 81 (6), S477-S495 (2016). See TRIP 2016
Annual Report web page for doi and link:

http://www.trip.caam.rice.edu/reports/2014/trip2016 report.html
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Simple AGC-free Preprocessing for Land Data

Raanan Dafni and William W. Symes, The Rice Inversion Project

ABSTRACT
A simple workflow using open source software (SU and Madagascar) pro-
duces reasonable stacked sections from field data collected at the National
Petroleum Reserve, Teapot Dome, Wyoming.

INTRODUCTION

The goal of this paper is to produce stacked sections of quality resembling that
of commercial processing without doing anything irreversible to the data, such
as ACG. The intent behind this goal is to extract a useful image of the subsurface
while maintaining the original amplitude and phase of the data throughout the
process, as an initial approximation to waveform inversion.

METHODS

We have used standard SU utiliities to implement our workflow. One exception
is the application of statics: rather than sustatic , we assigned the total static
correction from the trace headers (presumably supplied by the commercial pro-
cessing firm) to the delrt header word, and used sushift to apply the corre-
sponding shift. We took this approach because sustatic appears to apply a bulk
shift to the output, and moreover requires weathering velocity and datum speci-
fication which should not be necessary inputs to a simple time shift, for reasons
not explained in the self-doc.

Our efforts to reproduce the field tape results using sftah functions rather than
their SU equivalents have so far been unsuccessful.
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The specific results are explained in the captions, below.

To do: surface-consistent amplitude scaling and decon - these are inversion-compatible
steps.

RESULTS

Figure 1: Commercially preprocessed shot gathers from inline 141.


from rsf.proj import *
import os

# define su commands
CWPROOT         = os.getenv('CWPROOT')
CWPBIN          = os.path.join(CWPROOT,'bin')
suaz            = os.path.join(CWPBIN,'suazimuth')
surng           = os.path.join(CWPBIN,'surange')
suwind          = os.path.join(CWPBIN,'suwind')
sunmo           = os.path.join(CWPBIN,'sunmo')
sugain          = os.path.join(CWPBIN,'sugain')
sumute          = os.path.join(CWPBIN,'sumute')
sustack         = os.path.join(CWPBIN,'sustack')
susort          = os.path.join(CWPBIN,'susort')
sufilt          = os.path.join(CWPBIN,'sufilter')
suvelan         = os.path.join(CWPBIN,'suvelan')
surange         = os.path.join(CWPBIN,'surange')
sugethw         = os.path.join(CWPBIN,'sugethw')
suchw           = os.path.join(CWPBIN,'suchw')
sustatic        = os.path.join(CWPBIN,'sustatic')
supef           = os.path.join(CWPBIN,'supef')
sushift         = os.path.join(CWPBIN,'sushift')
segyread        = os.path.join(CWPBIN,'segyread')
segyclean       = os.path.join(CWPBIN,'segyclean')

RSFSRC          = os.getenv('RSFSRC')
DATADIR         = os.path.join(RSFSRC,'book/data/teapotdome/fetch/')

for i in ['npr3_gathers','npr3_field']:

    sgyname = i + '.sgy'
    suname  = i + '.su'
    range   = i + '_range.txt'
    hdrs    = i + '_hdrs.txt'
    rhdr    = i + '_hdr'
    rbin    = i + '_bin'

# iline,xline are loaded into header locations fldr,grnors
# these headers do not appear to be used by anyone else
    Flow([suname,rhdr,rbin],None,
         segyread + ' tape=' + DATADIR + sgyname +
	 ' hfile=' + rhdr + ' bfile=' + rbin +
	 ' remap=fldr,grnors byte=189l,193l | ' + segyclean,
         stdin=0)

    Flow(range, suname, surange)
 
    Flow(hdrs, suname,
         suwind + ' count=1000 | ' +
	 sugethw + ' key=fldr,grnors,cdp,offset,sx,sy')

# stack using the first velocity function in the vels subdir
tnmo='0,.617,.769,.913,1.027,1.196,1.767,3.010.00'
vnmo='9132.86,10764.47,10941.73,11235.75,11902.71,12580.03,14513.85,16982.86'
Flow('stack.su','npr3_gathers.su',
     sunmo + ' tnmo=' + tnmo + ' vnmo=' + vnmo + ' | ' + 
     sustack + ' key=cdp')

# for each stack, pull out inline 141 and crossline 121
Flow('stack_iline141.su','stack.su', 
      suwind + ' key=fldr min=141 max=141 | ' + 
      suwind + ' nt=1000')

Flow('stack_xline121.su','stack.su', 
      suwind + ' key=grnors min=121 max=121 | ' + 
      suwind + ' nt=1000')
      
# examine the same inline and crossline of the field data
Flow('iline141.su','npr3_gathers.su',
      suwind + ' key=fldr min=141 max=141 | ' +
      suwind + ' nt=1000 | ' +
      susort + ' sx gx')

Flow('xline121.su','npr3_gathers.su',
      susort + ' cdp | ' +
      suwind + ' key=grnors min=121 max=121 | ' + 
      suwind + ' nt=1000 | ' +
      susort + ' sx gx')

# nmo+stack of field data, t^2 gain, first velo function
Flow('fstack.su','npr3_field.su',
     susort + ' cdp | ' + sugain + ' tpow=2 | ' +
     sunmo + ' tnmo=' + tnmo + ' vnmo=' + vnmo + ' | ' + 
     sustack + ' key=cdp')

Flow('filine141.su','npr3_field.su',
      sugain + ' tpow=2 | ' +
      suwind + ' key=fldr min=141 max=141 | ' +
      suwind + ' nt=1000 | ' +
      susort + ' sx gx')

Flow('fxline121.su','npr3_field.su',
      sugain + ' tpow=2 | ' +
      suwind + ' key=grnors min=121 max=121 | ' + 
      suwind + ' nt=1000 | ' +
      susort + ' sy gy')

Flow('fstack_iline141.su','fstack.su', 
      suwind + ' key=fldr min=141 max=141 | ' + 
      suwind + ' nt=1000')

Flow('fstack_xline121.su','fstack.su', 
      suwind + ' key=grnors min=121 max=121 | ' + 
      suwind + ' nt=1000')

# nmo+stack of field data, t^2 gain, far offsets > 2000 ft, first
# velo function
Flow('fstackfo.su','npr3_field.su',
     susort + ' cdp | ' + sugain + ' tpow=2 | ' +
     suwind + ' key=offset min=2000 max=30000 | ' +
     sunmo + ' tnmo=' + tnmo + ' vnmo=' + vnmo + ' | ' + 
     sustack + ' key=cdp')

Flow('ffoiline141.su','npr3_field.su',
      sugain + ' tpow=2 | ' +
      suwind + ' key=offset min=2000 max=30000 | ' +	
      suwind + ' key=fldr min=141 max=141 | ' +
      suwind + ' nt=1000 | ' +
      susort + ' sx gx')

Flow('ffoxline121.su','npr3_field.su',
      sugain + ' tpow=2 | ' +
      suwind + ' key=offset min=2000 max=30000 | ' +
      suwind + ' key=grnors min=121 max=121 | ' + 
      suwind + ' nt=1000 | ' +
      susort + ' sx gx')
      
Flow('fstackfo_iline141.su','fstackfo.su', 
      suwind + ' key=fldr min=141 max=141 | ' + 
      suwind + ' nt=1000')

Flow('fstackfo_xline121.su','fstackfo.su', 
      suwind + ' key=grnors min=121 max=121 | ' +
      suwind + ' nt=1000')

# nmo+stack of field data, t^2 gain, far offsets > 2000 ft, first
# velo function, statics from trace headers applied via sushift
# with plus sign - for elev statics at least, datum = 6500 ft is >
# actual s & g elevations, so times should be later
Flow('fstackfoep.su','npr3_field.su',
     susort + ' cdp | ' + sugain + ' tpow=2 | ' +
     suwind + ' key=offset min=2000 max=30000 | ' +
     suchw + ' key1=delrt key2=sstat key3=gstat b=1 c=1 | ' +
     sushift + ' tmin=0.0 tmax=2.0 | ' +
     sunmo + ' tnmo=' + tnmo + ' vnmo=' + vnmo + ' | ' + 
     sustack + ' key=cdp')

Flow('ffoepiline141.su','npr3_field.su',
      sugain + ' tpow=2 | ' +
      suwind + ' key=offset min=2000 max=30000 | ' +	
      suwind + ' key=fldr min=141 max=141 | ' +
      suchw + ' key1=delrt key2=sstat key3=gstat b=1 c=1 | ' +
      sushift + ' tmin=0.0 tmax=2.0 | ' +
      suwind + ' nt=1000 | ' +
      susort + ' sx gx')

Flow('ffoepxline121.su','npr3_field.su',
      sugain + ' tpow=2 | ' +
      suwind + ' key=offset min=2000 max=30000 | ' +
      suwind + ' key=grnors min=121 max=121 | ' + 
      suchw + ' key1=delrt key2=sstat key3=gstat b=1 c=1 | ' +
      sushift + ' tmin=0.0 tmax=2.0 | ' +
      suwind + ' nt=1000 | ' +
      susort + ' gx sx')

Flow('fstackfoep_iline141.su','fstackfoep.su', 
      suwind + ' key=fldr min=141 max=141 | ' + 
      suwind + ' nt=1000')

Flow('fstackfoep_xline121.su','fstackfoep.su', 
      suwind + ' key=grnors min=121 max=121 | ' +
      suwind + ' nt=1000')

# nmo+stack of field data, t^2 gain, far offsets > 2000 ft, 
# velo function corresponding to cdp rather than first in list,
# statics from trace headers applied via sushift
# with plus sign - for elev statics at least, datum = 6500 ft is >
# actual s & g elevations, so times should be later
btnmo='0.00,.391,.675,.873,1.056,1.273,1.653,3.010'
bvnmo='9204.11,10382.23,11085.81,11213.95,11578.66,12832.87,14283.88,17088.15' 
Flow('fbstackfoep.su','npr3_field.su',
     susort + ' cdp | ' + sugain + ' tpow=2 | ' +
     suwind + ' key=offset min=2000 max=30000 | ' +
     suchw + ' key1=delrt key2=sstat key3=gstat b=1 c=1 | ' +
     sushift + ' tmin=0.0 tmax=2.0 | ' +
     sunmo + ' tnmo=' + btnmo + ' vnmo=' + bvnmo + ' | ' +
     sustack + ' key=cdp')

Flow('fbstackfoep_iline141.su','fbstackfoep.su', 
      suwind + ' key=fldr min=141 max=141 | ' + 
      suwind + ' nt=1000')

Flow('fbstackfoep_xline121.su','fbstackfoep.su', 
      suwind + ' key=grnors min=121 max=121 | ' +
      suwind + ' nt=1000')


Result('stackiline141','stack_iline141.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey')

Result('stackxline121','stack_xline121.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey')

Flow('iline141wind.su','iline141.su',suwind + ' key=tracl min=1050 max=1340')

Result('iline141','iline141wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')

Flow('xline121wind.su','xline121.su',suwind + ' key=tracl min=1050 max=1340')

Result('xline121','xline121wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')

Result('fstackiline141','fstack_iline141.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

Result('fstackxline121','fstack_xline121.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

Flow('filine141wind.su','filine141.su',suwind + ' key=sx min=800800000 max=802000000')

Result('filine141','filine141wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')

Flow('fxline121wind.su','fxline121.su',suwind + ' key=tracl min=1050 max=1340')

Result('fxline121','fxline121wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')

Flow('ffoiline141wind.su','ffoiline141.su',suwind + ' key=sx min=800800000 max=802000000')

Result('ffoiline141','ffoiline141wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')

Flow('ffoxline121wind.su','ffoxline121.su',suwind + ' key=tracl min=1050 max=1340')

Result('ffoxline121','ffoxline121wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')


Result('fstackfoiline141','fstackfo_iline141.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

Result('fstackfoxline121','fstackfo_xline121.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

Flow('ffoepiline141wind.su','ffoepiline141.su',suwind + ' key=sx min=800800000 max=802000000')

Result('ffoepiline141','ffoepiline141wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')

Flow('ffoepxline121wind.su','ffoepxline121.su',suwind + ' key=tracl min=1050 max=1340')

Result('ffoepxline121','ffoepxline121wind.su', 'suread su=y endian=0 read=data | sfput label1=Time label2=Trace| sfgrey')

Result('fstackfoepiline141','fstackfoep_iline141.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

Result('fstackfoepxline121','fstackfoep_xline121.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

Result('fbstackfoepiline141','fbstackfoep_iline141.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

Result('fbstackfoepxline121','fbstackfoep_xline121.su', 'suread endian=0 read=data | put label1=Time label2=Trace | sfgrey clip=0.0005')

End()
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Figure 2: NMO-Stack of commercially preprocessed data using first velocity function in the file: (a) inline, (b) crossline.
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Figure 3: Shot gathers from raw data, inline 141. 80080 ft < sx < 80200 ft.
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Figure 4: NMO-Stack of raw field data, t2 scaling, otherwise no preprocessing: (a) inline, (b) crossline.
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Figure 5: Shot gathers from raw data, inline 141, after deletion of near offset traces. 80080 ft < sx < 80200 ft.
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Figure 6: NMO-Stack of raw field data, t2 scaling, far offsets only (> 2000 ft) : (a) inline, (b) crossline.
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Figure 7: Shot gathers from raw data, inline 141, after deletion of near offset traces, and application of statics. 80080 ft <
sx < 80200 ft.
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Figure 8: NMO-Stack of raw field data, t2 scaling, far offsets only (> 2000 ft), static corrections applied per trace headers
sstat, gstat: (a) inline, (b) crossline.
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Figure 9: NMO-Stack of raw field data, using NMO velocity function from CDP at junction of inline 141 and crossline
121. t2 scaling, far offsets only (> 2000 ft), static corrections applied per trace headers sstat, gstat. Note that
washed-out region in previous display near trace 100 in the crossline section is enhanced. (a) inline, (b) crossline.
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ABSTRACT
Optimization-based Migration Velocity Analysis (MVA) updates long wave-
length velocity information by minimizing an objective function that mea-
sures the violation of a semblance condition, applied to an image volume.
Differential Semblance Optimization (DSO) forms a smooth objective func-
tion both in velocity and data, regardless of the data frequency content. De-
pending on how the image volume is formed, however, the objective function
may not be minimized at a kinematically correct velocity, a phenomenon char-
acterized in the literature (somewhat inaccurately) as “gradient artifacts”. In
this paper, we will show that the root of this pathology is imperfect image
volume formation resulting from various forms of migration, and that the use
of linearized inversion (least squares migration) more or less eliminates it. We
demonstrate that an approximate inverse operator, little more expensive than
Reverse Time Migration (RTM), leads to recovery of a kinematically correct
velocity.

INTRODUCTION

Full waveform inversion (FWI) (Lailly, 1983; Tarantola, 1984; Virieux and Operto,
2009) is capable of recovering detailed models of the subsurface structure through
a waveform-based data-fitting procedure. However, it may stagnate at physically
meaningless solutions in the absence of a kinematically accurate starting model.
This is the notorious cycle skipping problem. Within the limitation to single scat-
tering, migration velocity analysis (MVA) (Yilmaz and Chambers, 1984; Yilmaz,
2001) complements FWI by extracting long scale velocity. Image domain MVA in-
volves construction of an extended image volume, which not only depends on the

Parts of this paper were presented at 2016 SEG annual meeting
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image point but also on an extra parameter (e.g surface offset, subsurface offset,
incidence angle, source wavelet). When velocity and data are kinematically com-
patible, this volume should have particularly simple structure (flat, focused,...).
Deviations from this semblance principle can be used to drive velocity updates,
either by direct measurement (eg. residual moveout picking, (Stork, 1992; La-
fond and Levander, 1993; Liu and Bleistein, 1995; Biondi and Sava, 2004)) or via
optimization of an objective function.

This paper focuses on a particular choice of optimization approach, namely dif-
ferential semblance optimization (DSO) in the subsurface offset domain (Symes,
2008). Implementations of this MVA approach have been based on double square
root migration (Shen et al., 2003), one-way shot record migration (Shen and Symes,
2008), Reverse Time Migration (RTM) (Shen, 2012; Weibull and Arntsen, 2013),
and various sorts of inversion (Biondi and Almomin, 2012; Liu et al., 2014; Lameloise
et al., 2015). Both numerical and theoretical evidence (Symes, 2014; ten Kroode,
2014) suggest that this approach should be effective in recovering velocity macro-
models under failure conditions for FWI. However other studies have suggested
that the method may produce poor velocity update directions, in particular that
the objective gradient may be contaminated with artifacts that prevent rapid con-
vergence to a correct velocity (Fei and Williamson, 2010; Vyas and Tang, 2010).

We show here that use of (linearized) inversion to create image volumes largely
eliminates the “gradient artifact” pathology, and describe a computationally effi-
cient method to achieve this goal. In fact, the “artifacts” actually are features of
the objective function definition, not of the gradients. This is not a new obser-
vation: Khoury et al. (2006) showed that subsurface offset DSO, using common
azimuth migration to construct the image volume, could produce erroneous ve-
locities returning lower objective function values than the “true” velocity. Liu
et al. (2014); Lameloise et al. (2015); Lameloise and Chauris (2016) confirm this
observation and show that use of inverted (rather than migrated) image volumes
tends to improve DSO velocity updates, essentially because the inverted image
volume is much better focused at the target velocity. Our innovation is to show
that good velocity updates may be achieved with image volumes obtained by an
approximation to linearized inversion, costing little more than RTM and involv-
ing no ray-theory computations (ten Kroode, 2012; Hou and Symes, 2015).

In this paper, we will compare two different imaging operators : the adjoint of the
extended Born modeling operator (RTM operator) and an approximate inverse
to the extended Born modeling operator. The adjoint operator essentially com-
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putes the so-called RTM (with space-shift imaging condition) operator. Hou and
Symes (2015) modify the adjoint operator into an approximate inverse operator
by applying model and data-domain weight operators. An alternative formula,
with same quality but substantially less implementation cost, is actually used in
this paper (ten Kroode, 2014; Hou and Symes, 2017). To distinguish it from the
other possibilities, we call MVA with the approximate inverse operator Inversion
Velocity Analysis (IVA).

In the following sections, we will first review the theory of MVA via DSO in the
subsurface offset domain; we then compare different imaging operators and their
possible influence on the DSO objective function; we end with numerical test on
2D Marmousi model and a field data, demonstrating that better imaging leads to
better velocities.

THEORY

In constant density medium, the 2D acoustic wave equation can be written in the
following form:

1
v2
∂2p

∂t2
−∇2p = f , (1)

where v is acoustic-wave velocity, p is pressure filed and f represents the acoustic
energy source. The forward modeling operator F maps the velocity model into
seismic data (sampled pressure field) such that

F [v] = p. (2)

The nonlinear nature of the relationship between velocity model v and seismic
data p makes it extremely difficult to recover velocity model v from the recorded
seismic data.

A standard way to simplify the nonlinear inverse problem above is built on the
(partial) linearization of nonlinear modeling operator F , that is, the Born (single
scattering) approximation. This linearization starts from the decomposition of
the acoustic-wave velocity v into a reference velocity v0 and a perturbation δv. To
first order in δv, we have

F [v] ≈ F [v0] +F[v0]δv, (3)
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in which F =
∂F
∂v

is the Born modeling operator. It depends nonlinearly on refer-

ence velocity v0 and linearly on the perturbation velocity δv.

Denoting p,p0,δp as the pressure filed corresponding to v,v0,δv, we can define
the first order derivative of the original wave equation:

∂2p0

∂t2
− v2

0∇
2p0 = f , (4)

∂2δp

∂t2
− v2

0∇
2δp = 2v0δv∇2p0. (5)

As the solution of the coupled system above, the Born modeling operator F[v0]
can be expressed as

(F[v0]δv)(xs,xr, t) =
∂2

∂t2

∫
dxdhdτG(xs,x, τ)

× 2δv(x)
v0(x)3 G(x,xr, t − τ).

(6)

Here δv is the model perturbation or reflectivity, v0 is the background velocity
model and G is the Green’s function. With Born approximation, the original non-
linear inverse problem can be recasted into a two-parameter Born inverse prob-
lem.

Born Inverse Problem

The so-called Born inverse problem is to fit reflection data d(xs,xr, t) by proper
choice of v0(x) and δv(x). As explained for example in Symes (2008), data fit is
impossible unless v0 is kinematically correct to within a half-wavelength error
in traveltime prediction. This is essentially due to the fact that we are trying
to solve an overdetermined problem: the dimension of the data is larger than the
dimension of the model (e.g. 3D model corresponds to 5D seismic data). This way,
data fit is only possible in the special case of correct velocity mentioned above. On
the other hand, if δv is extended to depend on extra parameter (subsurface offset,
reflection angle ...), that is, replaced by δv̄, then any model consistent data d can
be fit with essentially any v0 by proper choice of δv̄.
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With the extra parameter, it is possible to preserve all the data-domain informa-
tion in the extended model domain, thereby providing the ability to formulate the
Born inverse problem in extended image domain. As a matter of fact, the incon-
sistency or consistency between velocity model and seismic data are implicitly ex-
pressed in the extended image volume. When the velocity model is kinematically
correct, the extended reflectivity model δv̄ will display certain character (flat, fo-
cused...). This is often referred to as the semblance condition. In contrast, the
energy in the extended image volume will deviate from the semblance condition
with an incompatible velocity model. The Born inverse problem is thus essentially
a velocity analysis problem : find a velocity model v0 so that the corresponding
δv̄ can satisfy the semblance condition. It is often solved with a two-step process:

• Construct the extended image volume via various imaging algorithms

• Update the velocity model by reducing the deviation of the image volume
from semblance condition

In this paper, we focus on subsurface offset domain and investigate a certain type
of optimization - differential semblance optimization (DSO). Specifically, the re-
flectivity model δv(x) is replaced by δv̄(x,h) and used as input in an extended
Born modeling operator F̄,

(F̄[v0]δv̄)(xs,xr, t) =
∂2

∂t2

∫
dxdhdτG(xs,x− h,τ)

× 2δv̄(x,h)
v0(x)3 G(x + h,xr, t − τ).

(7)

Here, h is essentially half the distance between sunken source and sunken receiver
in Claerbout (1985)’s survey sinking imaging condition. The physical meaning of
this extension is that we now allow reflection at a distance. This is clearly non-
physical extension, which matches the model dimension with data dimension.
Data fit is thus achievable by violating the physical rule of wave propagation.
Correspondingly, we produce extended image volume I(x,h) depending not only
on the spatial coordinate but also the subsurface offset. As noted above, the sub-
surface offset gather implies the velocity information : focusness of the gather
corresponds to correctness of the velocity.

A simple synthetic example is shown in Figure 1. A 2.5 km/s constant velocity
model and a single reflector at 1.5 km depth are used to generate Born data with
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a bandpass wavelet. The corresponding imaging gathers with different velocity
models will exhibit different behaviors. The energy will focus at zero offset with
correct velocity as shown in Figure 1b and spread out when the velocity is incor-
rect as shown in Figure 1a and 1c.

Figure 1: Offset gather with (a) 10% slower velocity (2.25 km/s); (b) correct velocity (2.5 km/s); (c) 10% faster velocity
(2.75 km/s).

Imaging Operators

In the past, a variety of imaging operators have been investigated to construct the
extended image volume used in the process of velocity analysis. Among them,
RTM is known to be the superior imaging operator. Essentially, it computes the
adjoint of the extended Born modeling operator :

I(x,h) =
2

v0(x)3

∫
dxsdxrdtdτG(xs,x− h,τ)

×G(x + h,xr, t − τ)
∂2

∂t2
d(xs,xr, t),

(8)

where d is seismic reflection data.
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Hou and Symes (2014, 2015) modify the adjoint operator into an approximate
inverse to the extended Born modeling operator, by applying model and data do-
main weight operators. It has the form,

F̄† =W −1
modelF̄

TWdata. (9)

As a matter of fact, more than one formula (Hou and Symes, 2017) have been
proposed for the weight operators:

W −1
model = 4v5

0LP , Wdata = I4
t DzsDzr . (10)

W −1
model = −8v4DzQ, Wdata = I3

t DzsDzr . (11)

Here L =
√
∇2

(x,z)∇
2
(h,z), It is time integration, F̄T is the adjoint of extend Born mod-

eling operator and Dzs ,Dzr are the source and receiver depth derivatives, Dz is
depth derivative. Both P and Q are a Fourier-like operator and approximately
equal to 1 near h = 0, and will be neglected throughout this paper.

These weight operators, although in different form, can achieve similar accuracy.
In comparison, Formula 11 is less computationally demanding to implement than
formula 10, as no spatial transforms are involved in the former implementation.
As a result, formula 11 will be used to implement IVA throughout this paper.

DSO in subsurface offset domain

In the subsurface offset domain, the semblance condition is presented as focused
subsurface offset gather. As a result, the simplest choice for the DSO type objec-
tive function is

J[v] =
1
2
||hI(x,h)||2, (12)

in which I(x,h) is produced via the application of either adjoint Born modeling
(equation 8), or the approximate inverse F̄† (equation 9) to the data. Since the
image volume depends on v, so does J . Minimization of the objective function
above penalizes the energy outside zero offset panel and thus focuses the offset
gather, which implies correct velocity. This is the basic idea of DSO based velocity
analysis.



280 Hou & Symes

Behaviour of Objective Function

It has been widely believed, either implicitly or explicitly, that this type of method
does not depend on the data fitting. However, numerical experiment suggests the
opposite: the better we can fit the data, the closer imaging operator approximates
to the real inverse operator, the better this type of this method works.

To examine the effect of imaging operator choice on the objective function, we
first calculate and plot the objective function values along a line segment in ve-
locity model space. The model we use combines a constant background velocity
model (2.5 km/s) and single flat reflector at 2 km depth.The two different imag-
ing operators mentioned above are applied on the tapered Born data with a range
of velocities (from 2 km/s to 3 km/s) to compute the objective function (equation
12). A common variant of MVA objective function (combined with stacking power
term) is also investigated (Chauris and Noble, 2001; Shen and Symes, 2008). The
objective function values for different velocities are then plotted in Figure 2. All
three objective functions are smooth in velocity and unimodal. However, the ob-
jective function of MVA shifts toward the lower velocity (2400 m/s). This means
the minimization of the DSO objective function will lead to an erroneous veloc-
ity. Comparing to DSO term, stacking power term will definitely reaches global
minimum at correct velocity. It thus can be regarded as an ad-hoc solution to fix
the shift of global minimum. The combination of these two terms, however, is not
intuitive. It is notoriously difficult to select the appropriate parameter to balance
these two terms. That is to say, we seek to shift the global minimum to the correct
velocity without introducing local minimum. In comparison, the objective func-
tion using the approximate inverse operator reaches the overall minimum at the
correct velocity and better resolves the minimizer. This is because the objective
function with an approximate inverse operator, rather than the adjoint operator,
is inherently more correct.

The comparison above clearly indicates the so-called “gradient artifacts” problem
is not the problem of gradient but the problem of objective function. The objec-
tive function based on common imaging algorithm is not behaving as we expect.
The gradient is indeed the correct gradient of the wrong objective function. As
the imaging operator approaches a true inverse operator, the corresponding DSO
objective function should present better property.
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Figure 2: Normalized objective function : the red line represents MVA; the green line represents MVA + Stacking Power;
the blue line represents IVA. The velocity ranges from 2 km/s to 3km /s.

NUMERICAL EXAMPLES

In this section, two numerical examples are presented. The first is a synthetic
example with truncated Marmousi model (Versteeg and Grau, 1991). Both MVA
(the adjoint operator) and IVA (approximate inverse operator) are used to perform
the velocity analysis. The second is a field data example. We perform IVA only for
this example.

Synthetic Example

The comparison is first performed on a truncated Marmousi model (Versteeg and
Grau, 1991). The true model, shown in Figure 4a, is a smoothed version of the
original model, in order to be wary of low frequency noise in the RTM image. As
a matter of fact, the low frequency noise doesn’t affect the approximate inverse
operator thanks to the derivative operator in the model weight operators. The
synthetic data is generated with 2-8 finite difference modeling. The acquisition
geometry is a fixed spread of 151 sources and 301 receivers at 20 m depth. A (2.5-
5-20-25)-Hz bandpass wavelet with 2 ms time sample is used to generate 3 s Born
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data. Optimization is carried out with L-BFGS algorithm (Nocedal and Wright,
1999). We set the L-BFGS iteration to retain 15 prior search directions. We start
the optimization from a linearly increased 1D model (Figure 4b).
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Figure 3: Normalized convergence curves for three different imaging operators. The solid line is the convergence curve and
the dashed line is the objective function value at the correct velocity. The blue line represents MVA; the red line represents
IVA.

25 iterations L-BFGS are used to generate the results. Figure 3 displays the nor-
malized convergence curves for the optimization with different imaging opera-
tors. The convergence curve of MVA mangages to go beyond the objective func-
tion value at the correct velocity, indicating that the objective function doesn’t
reach the minimum at the correct velocity value.The approximate inverse version
gives the better objective function behavior in the sense that the objective function
at correct model is relatively smaller and more likely to be the global minimum.
Figure 4 shows a comparison of the true, initial, updated models with two dif-
ferent imaging operators. As can be seen in the comparison, same optimization
procedure with different imaging operators can produce quite different results.
All four models are then used as background model to apply approximate inverse
operator on the synthetic data (equation 9). Figure 5 compares the zero-offset im-
ages produced by the approximate inverse operator. The image associated with
MVA velocity is clearly going wrong direction. The result using approximate in-
verse operator is more correct: the location of the reflectors and the amplitude
are closer to the image with true velocity. Finally, six offset gathers are pulled
out from the middle of the image volume to compare in Figure 6, demonstrating
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approximate inverse operator produces a more focused image volume.

Figure 4: (a) True model; (b) Initial Model; 25 iteration L-BFGS result for (c) the adjoint operator; (d) the approximate
inverse operator.

Field Data Example

We further test our method on a field example. The data, known as Mobil AVO
Viking Graben Line 12, was initially released for a workshop on seismic inversion
methods held on the 64th SEG Internation Exposition and Annual meeting. The
data was first placed in publish domain in 1994 and then further published on
the internet in 2012.

The detailed information about the dataset can be found in Keys and Foster (1998).
The original dataset contain 1011 shots with a 25-m shot interval (11 shots are
missing). Each shot is recorded by 120 receivers with 25 m spacing and 262 m
minimum offset. The data was recorded for 6 s at a sampling rate of 4 ms. Here,
we truncate the data at 3 s and take 330 shots from 10 km to 15 km as our study
area. The study area also contains one well log.

The major noise present in this data set is multiple energy. The data used in
this paper has been applied a parabolic Radon transform demultiple process by
the distributor. However, there is still substantial multiple energy remaining.
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Figure 5: Zero-offset approximate inverse image associated with different velocity models shown in Figure 4.

Figure 6: Image gathers in the subsurface offset domain corresponding to the images in Figure 5.
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Following Mulder and ten Kroode (2002) and Li and Symes (2007), we apply a dip
filter on the NMO-corrected gathers to reject the event with downward moveout.
The key assumption here is that multiple reflections exhibit different moveouts
from primaries. Three CMP gathers before and after the dip filtering are shown
in Figure 7. Other preprocessing includes muting and a 5-10-30-40 bandpass
filtering.

We manually pick some CMP gathers to construct the 1D velocity estimates inde-
pendently, which are subsequently interpolated and smoothed. We then convert
this 2D velocity model into interval velocity in depth domain, as shown in Figure
8a. This process is done with the help of open source software Seismic Unix (Co-
hen and Stockwell, 2015). This model serves as the initial model for subsequent
IVA. The updated velocity, after 25 iterations IVA, is shown in Figure 8b. The ve-
locity update is not dramatic because NMO has already done a good job focusing
the gathers.

The zero-offset image, produced by the approximate inverse operator, is shown in
Figure 9a with well log synthetic overlaid. The generation of the well log synthetic
will be explained shortly. The image is clearly in good agreement with well log
synthetic. Figure 9b verifies the subsurface offset gather also concentrates at zero
offset.

In order to better validate the result, we compare it with the well log data. The
well is located around CMP 808 (11700 m). We first use sonic and density log
to calculate impedance and reflectivity. The reflectivity is then converted to time
domain based on the Vp log data. The image at the well location is also con-
verted into time domain using the IVA updated velocity model. A constant-phase
wavelet, with a constant time delay, is generated to match the amplitude spectrum
of the seismic image. The wavelet extraction uses CREWES Matlab toolbox (Mar-
grave, 2001). The time delay here is essential because there may be misalignment
between the well log and seismic image due to various reason. No squeeze and
stretch of the well log are applied in this comparison. We then convolve the re-
flectivity with the zero-phase wavelet to generate the synthetic seismogram. The
comparison in Figure 11 displays a good correlation between the synthetic seis-
mogram and seismic image. The synthetic seismogram is also converted back into
depth domain using the Vp log data and overlaid on the image (Figure 9a).
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Figure 7: (a) Original CMP gathers from Mobil AVO data; (b) CMP gathers after dip filtering.
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Figure 8: (a) NMO velocity; (b) IVA velocity after 25 iterations.
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Figure 9: (a) Zero-offset image; (b) Subsurface offset gather produced by the approximate inverse operator.
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Figure 10: Generated wavelet using CREWS Matlab Toolbox.
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Figure 11: Comparison between seismic and synthetic.
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CONCLUSIONS

We have compared velocity analysis via DSO with two different imaging operators
and analyzed their corresponding performance. The numerical examples show
that the closer that the imaging operator to inversion, the better the DSO velocity
estimate. An approximate inverse as in Hou and Symes (2015, 2017) adds no
additional cost but improves velocity estimation substantially.
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