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Born waveform inversion via shot record
extension, variable projection, differential

semblance

[SEG 2015]




Chapter 2

Task: estimate Marmousi from homog. initial
guess
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Figure 2.2: Marmousi example: Target background model (a) target reflectivity
model (b)
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Figure 2.3: Marmousi example

: Born shot record with index 41.
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Figure 2.11: Marmousi example: Inverted reflectivity model at true background
model (a); initial background model (b); background model with 18 steps of VPE
method (c) and 18 steps of VP method (d) by solving equation 2.9.
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Figure 2.12: Marmousi example: Common image gathers at true background model
(a); initial background model (b); background model with 18 steps of VPE method
(c) by solving equation2.9.
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Offset = 1920m
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Figure 2.13: Marmousi example: Trace comaprsion of real data (red), predicted
data by VPE (gree) and VP (blue) methods for far (top) and near (bottom) offsets.
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Bottom line: works, but slow

18 VP its x 50 CG iterations - way too much
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Flexibly Preconditioned Extended Least Squares
Migration in Shot Record Domain

Joint with Rami Nammour - in review O
Geophysics
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Task: use VDO scaling to precondition inner
problem
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WUDO scaling - Nammour 09, uses Bao-S. 96
Estimate amplitude by 2 Hessian ops

Flexibly Preconditioned CG
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Figure 3.15: Marmousi example: convergence curves of numerical methods, (a)
normalized data misfit and (b) normalized gradient length.
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Figure 3.16: Marmousi example: inverted model perturbation cube after 20 Hessian
applications using FPCG (a) and using CG with windowing (b).
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Figure 3.20: Marmousi example: data residual, same shot record as in Figure 3.14b,
after 20 Hessian applications using FPCG (a), and using CG with windowing (b).
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Bottom line: speedup by factor of 3-4

Much better inner solve with same effort
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Task: evaluate effect of FPCG/CG inner solve

on gradient accuracy
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Fast lens over flat reflector

Computed gradient at const background model
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Relative error in
J[m + hdm] — J[m — hdm]
2h

as approx to (VJ[m], dm)
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Numerical methods

dml
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h

0.1

0.05

0.025

0.1

0.05

0.025

FPCG

0.1108

0.0525

0.0643

0.1715

0.0814

0.1346

CG with I7

0.1131

0.1147

0.1105

0.0467

0.0579

0.0633

CG with windowing

0.9890

1.0088

1.0673

1.3502

1.1384

0.6748

Table 4.1: Gradient test at constant background model m = (2km/s)? for different

dm and different numerical methods with 20 applications of LSM Hessian
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Bottom line: not so hot

Why? Look to nature of tomo op
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J[m] = mi"r%HF[m[f] —d|* + o Ar|
VJ[m] = DF[m|(F[m]r —d,r)

fact: DF[m] is badly scaled (unbounded)
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Figure 4.3: Model dm + r;, (a) and spectrum of model 74 (b) with & = 30.
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Figure 4.27: Output of DF[m][dm,ém + r;,] with k = 30, m = (2km/s)? and dm
shown in Figure 4.10b with bandpass filtered source wavelet (a) and source wavelet
integrated over time twice (b).
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Figure 4.5: Model om + r, (a) and spectrum of model 7, (b) with & = 70.
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Figure 4.28: Output of DF[m][dm,ém + 73] with k = 70, m = (2km/s)? and ém
shown in Figure 4.10b with bandpass filtered source wavelet (a) and source wavelet
integrated over time twice (b).
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Figure 4.30: Quotient of Ly norms of DF[m][dm,ry] and F[m]ry, when using (a)
bandpass filtered source wavelet (Figure 4.1b) and (b) twice integral of bandpass
filtered source wavelet (Figure 4.8).
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Order of DF =
Order of F + 1

Convergent inner solve not sufficient for
convergent computed gradient




Convergent Gradients

Key ingredients:

» parametrix = asymptotic inverse
» robust optimization



Convergent Gradients

Computable parametrices exist -

» subsurface offset extn
» some source extns



Convergent Gradients

Example: subsurface offset acoustic Born
(Hou &S. Geophys. 15)

F|[v] = modeling op, velo v

Flv]" = asympt inverse = W, [v] 1F[v]" Wy|v]

D
RICE



Convergent Gradients

Weight ops W,,, Wy are filters - cheap, no
raytracing or PDE solves

Makes F almost unitary in weighted norms
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Convergent Gradients
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Convergent Gradients
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Convergent Gradients

means (roughly):
Flv]'F[v] = I + S[v],

S[v] is smoothing (suppresses HF signal)
of order -1



Convergent Gradients
lgnoring regularization, o — 0 limit is
1
min J[v]| = §||Ar[v]|\2 ;

subj F[v]'F[v]r[v] = F[v]'d
some algebra (see paper in TRIP16)...
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Convergent Gradients

and ignoring second LS problem,
VJ[v] = DF[v]*(d, A'Ar[v])

trouble: rv] <= rapprox



Convergent Gradients

Fv]'F[v]r[v] = r[v] + S[v]r[v] = F[v]'d

r[v] = F[v]'d — S[v]r[v]



Convergent Gradients
order +1/-1:

VJlv] ~ DF[v]'(d, ATAF[v]'d)
+DF[v]*(d, ATAS|v] Fapprox)

First term: Jie's appinv gradient; second term:
correction for inner inversion



Convergent Gradients

can compute S[v] = I — F[v]F[v]!

[grad error] < [error in 1]



Convergent Gradients

more huffing and puffing:
[Error in VJ] < [KX error in normal eqn]

more trouble: no explicit control of K



Convergent Gradients

Heinkenschloss-Vicente 01: variant of
trust-region qN

step length control: short enough step is near
steepest descent so always works




Convergent Gradients

H-VO01: converges with inexact grad, provided

[grad error] < K'x max(|approx grad|, step
bound)

our case: [error in normal eqn] < max(...)




Convergent Gradients

Upshot: assure convergence via

» parametrix = control grad error
» couple grad error to step control



Conclusion

Inversion: practical = reliable, efficient

» Yin's thesis: shot record LSM accel.,
clarified reliability issues with EFWI

» for separable EFWI: critical requirement is
computable parametrix

» couple accuracy and step control
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