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Chapter 2

Born waveform inversion via shot record
extension, variable projection, differential
semblance

[SEG 2015]



Chapter 2
Task: estimate Marmousi from homog. initial
guess
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Chapter 2

Bottom line: works, but slow

18 VP its × 50 CG iterations - way too much



Chapter 3

Flexibly Preconditioned Extended Least Squares
Migration in Shot Record Domain

Joint with Rami Nammour - in review @
Geophysics



Chapter 3

Task: use ΨDO scaling to precondition inner
problem
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ΨDO scaling - Nammour 09, uses Bao-S. 96

Estimate amplitude by 2 Hessian ops

Flexibly Preconditioned CG
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Bottom line: speedup by factor of 3-4

Much better inner solve with same effort



Chapter 4

Task: evaluate effect of FPCG/CG inner solve
on gradient accuracy



Chapter 4

Fast lens over flat reflector

Computed gradient at const background model



Chapter 4

Relative error in

J [m + hδm]− J [m − hδm]

2h

as approx to 〈∇J [m], δm〉
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Bottom line: not so hot

Why? Look to nature of tomo op



Chapter 4

J [m] = minr
1

2
‖F [m[r ]− d‖2 + α2‖Ar‖2

∇J [m] = DF [m](F [m]r − d , r)

fact: DF [m] is badly scaled (unbounded)
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Order of DF =

Order of F + 1

Convergent inner solve not sufficient for
convergent computed gradient



Convergent Gradients

Key ingredients:

I parametrix = asymptotic inverse

I robust optimization



Convergent Gradients

Computable parametrices exist -

I subsurface offset extn

I some source extns



Convergent Gradients

Example: subsurface offset acoustic Born
(Hou &S. Geophys. 15)

F [v ] = modeling op, velo v

F [v ]† = asympt inverse = Wm[v ]−1F [v ]TWd[v ]



Convergent Gradients

Weight ops Wm,Wd are filters - cheap, no
raytracing or PDE solves

Makes F almost unitary in weighted norms



Convergent Gradients

Modeled data d = F [v ]r



Convergent Gradients

Data residual F [v ]F [v ]†d



Convergent Gradients

means (roughly):

F [v ]†F [v ] = I + S [v ],

S[v] is smoothing (suppresses HF signal)
of order -1



Convergent Gradients

Ignoring regularization, α→ 0 limit is

min J [v ] =
1

2
‖Ar [v ]‖2 :

subj F [v ]†F [v ]r [v ] = F [v ]†d

some algebra (see paper in TRIP16)...



Convergent Gradients

and ignoring second LS problem,

∇J [v ] = DF [v ]∗(d ,A†Ar [v ])

trouble: r [v ]← rapprox



Convergent Gradients

F [v ]†F [v ]r [v ] = r [v ] + S [v ]r [v ] = F [v ]†d

so

r [v ] = F [v ]†d − S [v ]r [v ]



Convergent Gradients
order +1/-1:

∇J [v ] ≈ DF [v ]∗(d ,A†AF [v ]†d)

+DF [v ]∗(d ,A†AS [v ]rapprox)

First term: Jie’s appinv gradient; second term:
correction for inner inversion



Convergent Gradients

can compute S [v ] = I − F [v ]†F [v ]!

[grad error] ≤ [error in r]



Convergent Gradients

more huffing and puffing:

[Error in ∇J ] ≤ [K× error in normal eqn]

more trouble: no explicit control of K



Convergent Gradients

Heinkenschloss-Vicente 01: variant of
trust-region qN

step length control: short enough step is near
steepest descent so always works



Convergent Gradients

H-V01: converges with inexact grad, provided

[grad error] ≤ K× max(|approx grad|, step
bound)

our case: [error in normal eqn] ≤ max(...)



Convergent Gradients

Upshot: assure convergence via

I parametrix ⇒ control grad error

I couple grad error to step control



Conclusion
Inversion: practical ⇒ reliable, efficient

I Yin’s thesis: shot record LSM accel.,
clarified reliability issues with EFWI

I for separable EFWI: critical requirement is
computable parametrix

I couple accuracy and step control
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