Yin Huang's Thesis, and Computing Gradients

William Symes

Yin Huang

PhD student in TRIP: 2010.08 - 2016.02

Thesis: Born Waveform Inversion in Shot Coordinate Domain

Currently: Amazon, Seattle

Born waveform inversion via shot record extension, variable projection, differential semblance

[SEG 2015]

Task: estimate Marmousi from homog. initial

guess

Figure 2.2: Marmousi example: Target background model (a) target reflectivity model (b)

Figure 2.3: Marmousi example: Born shot record with index 41.

Figure 2.11: Marmousi example: Inverted reflectivity model at true background model (a); initial background model (b); background model with 18 steps of VPE method (c) and 18 steps of VP method (d) by solving equation 2.9.

Figure 2.12: Marmousi example: Common image gathers at true background model (a); initial background model (b); background model with 18 steps of VPE method (c) by solving equation 2.9.

Figure 2.13: Marmousi example: Trace comaprison of real data (red), predicted data by VPE (gree) and VP (blue) methods for far (top) and near (bottom) offsets.

Bottom line: works, but slow

18 VP its imes 50 CG iterations - way too much

Flexibly Preconditioned Extended Least Squares Migration in Shot Record Domain

Joint with Rami Nammour - in review @ *Geophysics*

Task: use Ψ DO scaling to precondition inner problem

ΨDO scaling - Nammour 09, uses Bao-S. 96

Estimate amplitude by 2 Hessian ops

Flexibly Preconditioned CG

Cha---- ?

Figure 3.15: Marmousi example: convergence curves of numerical methods, (a) normalized data misfit and (b) normalized gradient length.

RICE

Figure 3.16: Marmousi example: inverted model perturbation cube after 20 Hessian applications using FPCG (a) and using CG with windowing (b).

Figure 3.20: Marmousi example: data residual, same shot record as in Figure 3.14b, after 20 Hessian applications using FPCG (a), and using CG with windowing (b).

Bottom line: speedup by factor of 3-4

Much better inner solve with same effort

Task: evaluate effect of FPCG/CG inner solve on gradient accuracy

Fast lens over flat reflector

Computed gradient at const background model

Relative error in

$$\frac{J[m+h\delta m]-J[m-h\delta m]}{2h}$$
 as approx to $\langle \nabla J[m], \delta m \rangle$

Numerical methods	dm1			dm2		
h	0.1	0.05	0.025	0.1	0.05	0.025
FPCG	0.1108	0.0525	0.0643	0.1715	0.0814	0.1346
CG with I_t^2	0.1131	0.1147	0.1105	0.0467	0.0579	0.0633
CG with windowing	0.9890	1.0088	1.0673	1.3502	1.1384	0.6748

Table 4.1: Gradient test at constant background model $m = (2 \text{km/s})^2$ for different dm and different numerical methods with 20 applications of LSM Hessian

Bottom line: not so hot

Why? Look to nature of tomo op

$$J[m] = min_r \frac{1}{2} \|F[m[r] - d\|^2 + \alpha^2 \|Ar\|^2$$
$$\nabla J[m] = DF[m](F[m]r - d, r)$$

fact: *DF*[*m*] is badly scaled (unbounded)

Figure 4.3: Model $\delta m + r_k$ (a) and spectrum of model r_k (b) with k = 30.

Figure 4.27: Output of $DF[m][dm, \delta m + r_k]$ with k = 30, $m = (2 \text{km/s})^2$ and δm shown in Figure 4.10b with bandpass filtered source wavelet (a) and source wavelet integrated over time twice (b).

Figure 4.5: Model $\delta m + r_k$ (a) and spectrum of model r_k (b) with k = 70.

Figure 4.28: Output of $DF[m][dm, \delta m + r_k]$ with k = 70, $m = (2 \text{km/s})^2$ and δm shown in Figure 4.10b with bandpass filtered source wavelet (a) and source wavelet integrated over time twice (b).

Figure 4.30: Quotient of L_2 norms of $DF[m][dm, r_k]$ and $F[m]r_k$, when using (a) bandpass filtered source wavelet (Figure 4.1b) and (b) twice integral of bandpass filtered source wavelet (Figure 4.8).

Order of $\mathsf{DF} =$

${\rm Order} \ {\rm of} \ {\rm F} \, + \, 1$

Convergent inner solve not sufficient for convergent computed gradient

Key ingredients:

- parametrix = asymptotic inverse
- robust optimization

Computable parametrices exist -

- subsurface offset extn
- some source extns

Example: subsurface offset acoustic Born (Hou &S. *Geophys.* 15)

$$F[v] = modeling op, velo v$$

 $F[v]^{\dagger} = \text{asympt inverse} = W_{\mathrm{m}}[v]^{-1}F[v]^{T}W_{\mathrm{d}}[v]$

Weight ops $W_{\rm m}, W_{\rm d}$ are *filters* - cheap, no raytracing or PDE solves

Makes F almost unitary in weighted norms

means (roughly):

$F[\mathbf{v}]^{\dagger}F[\mathbf{v}] = I + S[\mathbf{v}],$

S[v] is *smoothing* (suppresses HF signal) of order -1

Ignoring regularization, $\alpha \rightarrow \mathbf{0}$ limit is

min
$$J[v] = \frac{1}{2} ||Ar[v]||^2$$
:

subj
$$F[v]^{\dagger}F[v]r[v] = F[v]^{\dagger}d$$

some algebra (see paper in TRIP16)...

and ignoring second LS problem,

$$abla J[v] = DF[v]^*(d, A^{\dagger}Ar[v])$$

trouble: $r[v] \leftarrow r_{approx}$

$F[v]^{\dagger}F[v]r[v] = r[v] + S[v]r[v] = F[v]^{\dagger}d$

SO

$r[v] = F[v]^{\dagger}d - S[v]r[v]$

order +1/-1:

 $abla J[v] pprox DF[v]^*(d, A^{\dagger}AF[v]^{\dagger}d)
onumber \ + DF[v]^*(d, A^{\dagger}AS[v]r_{approx})$

First term: Jie's appinv gradient; second term: correction for inner inversion

can compute $S[v] = I - F[v]^{\dagger}F[v]!$ [grad error] \leq [error in r]

more huffing and puffing:

$$[\mathsf{Error} \text{ in }
abla J] \leq [\mathsf{K} imes ext{ error} ext{ in normal eqn}]$$

more trouble: no explicit control of K

Heinkenschloss-Vicente 01: variant of *trust-region* qN

step length control: short enough step is near steepest descent so always works

H-V01: converges with inexact grad, provided

 $[grad error] \leq K \times max(|approx grad|, step bound)$

our case: [error in normal eqn] $\leq \max(...)$

Upshot: assure convergence via

- parametrix \Rightarrow control grad error
- couple grad error to step control

Conclusion

- Inversion: practical \Rightarrow reliable, efficient
 - Yin's thesis: shot record LSM accel., clarified reliability issues with EFWI
 - for separable EFWI: critical requirement is computable parametrix
 - couple accuracy and step control

Thanks to...

- our sponsors
- present and former TRIPpers
- many colleagues
- developers of SU, Madagascar
- ► TACC & RCSG

