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accurate model estimation <= accurate estimation & representation
of seismic sources
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Estimation: joint model-source parameter estimation

Representation: multipole point-source (MPS)
m preserve point-source representation
m account for source radiation pattern



Importance of Modeling Source Anisotropy:

Case Study [Minkoff & Symes, 1997]

m plane-wave marine data from Gulf of Mexico

m estimated:
m P-wave background velocity
m 3 elastic parameter reflectivities
m anisotropic source term (airgun array)



Importance of Modeling Source Anisotropy:

Case Study [Minkoff & Symes, 1997]

m plane-wave marine data from Gulf of Mexico

m estimated:

m P-wave background velocity
m 3 elastic parameter reflectivities
m anisotropic source term (airgun array)

m viscoelastic layered model, primary reflections:

m f=time
m p = slowness
d(t7p):f(t7p)*?(tap) m d =data
m f = source term
m 7 = reflectivity
m anisotropic source model:

N
f(t,p) = :;) fi(t)Li(p) L; = i Legendre polynomial



Importance of Modeling Source Anisotropy:

Case Study [Minkoff & Symes, 1997]

Better data fit when inverting for anisotropic source:
m fixed isotropic source (airgun model): 55% misfit
m estimated isotropic source: 53% misfit
m estimated anisotropic source: 29% misfit



Importance of Modeling Source Anisotropy:

Case Study [Minkoff & Symes, 1997]

Better data fit when inverting for anisotropic source:
m fixed isotropic source (airgun model): 55% misfit
m estimated isotropic source: 53% misfit
m estimated anisotropic source: 29% misfit

x Better match with P-wave impedance well-logs and estimated
P-wave reflectivity.

x Vp/ Vg reflectivity relation helped detect gas-sand target,
ONLY with estimated anisotropic source



Multipole Point-Source (MPS) Approximation

Consider acoustic wave equation:

2
(aaz@ _ 02(x)V2) p(x, 1) = £(X, 1).

General source term f can be approximated via truncated MPS
series centered at some X*, [Santosa & Symes, 2000]:

(—1)°lf(t)D%5(x —x"),
0

M=z

f(x,t) ~

's|

where s = [s1, S, S3] is @ multi-array index, and

s d \% d \2/ 0 \=



Multipole Point-Source (MPS) Approximation

Number of terms in MPS series depends on
m desired accuracy

m size of source region relative to wavelengths of waves
generated

m complexity of source radiation pattern

In most seismic applications, point-source representation is
justified

m size of source region ~10m

m wavelengths ~ 100m

My interest: use of MPS series to represent source terms,
modeling anisotropy/directivity of seismic sources.



Multipole Point-Source (MPS) Representation

m Acoustic equations (velocity-pressure form):

P 19 m p(x,t) = pressure field
9, 19 _ -
ot pax i B v;(X,t) = particle velocity field
d 9h- Kiv ] m p(x) = density

=
at™  ox; m x(x) = bulk modulus

m Linear elasticity equations (velocity-stress form):

9, 9
Pat"™ ax;
8 0 m Cjmn(X) = Hooke’s tensor
571~ Cimn g vm =1}

o= 1" ;
=" m oji(X,t) = stress field

m source terms: f1°) f["],f,j["]



Multipole Point-Source (MPS) Representation

Represent source terms as “linear combination” of MPS basis:
fIPl(x, 1) an £)b"(x — x*)
M (x, 1) an HbP(x —x*)

an 1)bj(x —x*)

m fy(t) - MPS coefficients
m b"(x) - MPS basis, related to DS§(x)

* Impose constraints on source radiation pattern via choice of
MPS basis b"(x)
« Forward map will be linear w.r.t. MPS coefficients f,(f)
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MPS Numerical Considerations

Problem:
m numerically solve PDEs with singular source terms

DS5(x —x*)

Interested in:

m approximation of singular sources terms in FD methods,
uniform grids

m preserving spatial convergence rate of FD methods

11



MPS Numerical Considerations

Solution: approximate singularity with continuous function of
compact support, [waldén, 1998], [Tornberg & Engquist, 2004], [Petersson &
Sjogreen, 2010]

DS5(x) ~ 83 (x) € Co([—¢,¢€])

where §F satisfies certain properties (discrete moments)
dependent on

m g - accuracy order of approximation
m s - derivative order
m ¢ - width of support

x Condition on width of support:

2e > (g+s)h
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MPS Numerical Considerations
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Figure 1: 8§§(x—a) with s=0,g=4, a = h/3, e = 4h.
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Figure 2: §$(x—a)withs=1,9=3, a = h/3, e = 4h. 13



IWave Implementation of MPS Representation

From MPS representation

f(x,t) =) fa(t)b"(x — x*)

fo(t) ﬁ"‘v—

fl(t) gv;

To time traces at FD grid points

trace_0 -

trace.l o Al
trace_2 4#

trace 3
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Numerical Experiments

Goal: preserve spatial convergence rates of FD methods

Setup:
m solved acoustic equations in velocity-pressure form
m staggered grid FD solver (2-2 and 2-4)
m homogenous medium; p =1 kg/m®, c=4 km/s
m source term , with s=0,1,

Pl (x, t) = f(t) <aix2>55(x”(k)
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Figure 3: Homogeneous model. Figure 4: MPS coefficient f(t). 15



Numerical Experiments

Convergence rate calculated approximately by

lPa(Xr,-) = Pry2(Xr,-) >

Alxr) =log, <||ph/2(xr, )= Prya(xr,°)]

where norm || - || is chosen to be either || - ||2 or || - || defined by

1p(Xr; )2 ==, /AT;\P(X, i)l

1P(Xr )| := max | p(xr, t)].
h-refinement [m]:
m 2-2: 10, 20, 40
m 2-4: 20, 40, 80

x At = 0.5 ms, sufficiently small that spatial error dominates, i.e.,
approximate semi-discrete solution
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Numerical Results
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Figure 5: Rates for 2-2 staggered grid scheme with §(x— x*) source
term and approximation 62 8, with g = 2.
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Numerical Results
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Figure 6: Rates for 2-4 staggered grid scheme with §(x— x*) source
term and approximation 62 8, with g = 4.
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Numerical Results
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Figure 7: Rates for 2-2 staggered grid scheme with %Xzé(x— X*)
source term and approximation &2 &7, with g = 2.
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Numerical Results
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Figure 8: Rates for 2-4 staggered grid scheme with aT25(X_ X*)

source term and approximation 82 &7, with g = 4.
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Numerical Results
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Future Directions

Idea: modify domain norm of forward map w.r.t. source such that
[linput]| ~ [[output||

m better bounded forward map

m better condition on inverse problem for source

Consider fIPl for acoustics in velocity-pressure form:

9
8x2

f[Pl(x,t)_f(t)( >56(x—x*).

Resulting data (pressure field) will look like some derivative of MPS
coefficient f(t),
p(X,t) ~ S
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Future Directions
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Figure 10: Data trace for source with s =0.
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Future Directions
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Figure 11: Data trace for source with s =1.
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Future Directions
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Figure 12: Data trace for source with s = 2. 25



Future Directions

Denote forward map F: M x § — D,
F(m,f)= F(m)f=d

m 9t - model space; m - model parameters
m J - source space; f - MPS coefficients
m O - data space; d - data vector

Introduce weight W such that

[WH|5 ~ [[F(m)f]lo.

d S+r
W= (w)

E.g.,

26



Future Directions

MPS inversions:

m better condition of source estimation from weighted inner
product (preconditioning in CG)

m non-uniqueness of MPS representation of seismic sources
(null space of forward map)

MPS + model inversions:
m acoustics — elasticity

27



Thank You
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