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Motivation

accurate model estimation accurate estimation & representation
of seismic sources

⇐⇒

Estimation: joint model-source parameter estimation

Representation: multipole point-source (MPS)
preserve point-source representation
account for source radiation pattern
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Importance of Modeling Source Anisotropy:
Case Study [Minkoff & Symes, 1997]

plane-wave marine data from Gulf of Mexico

estimated:
P-wave background velocity
3 elastic parameter reflectivities
anisotropic source term (airgun array)

viscoelastic layered model, primary reflections:

d(t ,p) = f (t ,p)∗ r̃(t ,p)

t = time
p = slowness
d = data
f = source term
r̃ = reflectivity

anisotropic source model:

f (t ,p) =
N

∑
i=0

fi (t)Li (p) Li = i th Legendre polynomial
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Importance of Modeling Source Anisotropy:
Case Study [Minkoff & Symes, 1997]

Better data fit when inverting for anisotropic source:
fixed isotropic source (airgun model): 55% misfit
estimated isotropic source: 53% misfit
estimated anisotropic source: 29% misfit

∗ Better match with P-wave impedance well-logs and estimated
P-wave reflectivity.

∗ vP/vS reflectivity relation helped detect gas-sand target,
ONLY with estimated anisotropic source
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Multipole Point-Source (MPS) Approximation

Consider acoustic wave equation:(
∂ 2

∂ t2 −c2(x)∇
2
)

p(x, t) = f (x, t).

General source term f can be approximated via truncated MPS
series centered at some x∗, [Santosa & Symes, 2000]:

f (x, t)≈
N

∑
|s|=0

(−1)|s|fs(t)Ds
δ (x−x∗),

where s = [s1,s2,s3] is a multi-array index, and

Ds =

(
∂

∂x1

)s1
(

∂

∂x2

)s2
(

∂

∂x3

)s3

.
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Multipole Point-Source (MPS) Approximation

Number of terms in MPS series depends on
desired accuracy
size of source region relative to wavelengths of waves
generated
complexity of source radiation pattern

In most seismic applications, point-source representation is
justified

size of source region ∼ 10m
wavelengths ∼ 100m

My interest: use of MPS series to represent source terms,
modeling anisotropy/directivity of seismic sources.
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Multipole Point-Source (MPS) Representation

Acoustic equations (velocity-pressure form):

∂

∂ t
vi −

1
ρ

∂

∂xi
p = f [v ]i

∂

∂ t
p−κ

∂

∂xi
vi = f [p]

p(x, t) = pressure field

vi (x, t) = particle velocity field

ρ(x) = density

κ(x) = bulk modulus

Linear elasticity equations (velocity-stress form):

ρ
∂

∂ t
vi −

∂

∂xj
σij = f [v ]i

∂

∂ t
σij −Cijmn

∂

∂xn
vm = f [σ ]

ij

σij (x, t) = stress field

Cijmn(x) = Hooke’s tensor

source terms: f [p], f [v ]i , f [σ ]
ij
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Multipole Point-Source (MPS) Representation

Represent source terms as “linear combination” of MPS basis:

f [p](x, t)≈∑
n

fn(t)bn(x−x∗)

f [v ]i (x, t)≈∑
n

fn(t)bn
i (x−x∗)

f [σ ]
ij (x, t)≈∑

n
fn(t)bn

ij (x−x∗)

fn(t) - MPS coefficients
bn(x) - MPS basis, related to Dsδ (x)

∗ Impose constraints on source radiation pattern via choice of
MPS basis bn(x)

∗ Forward map will be linear w.r.t. MPS coefficients fn(t)
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MPS Numerical Considerations

Problem:
numerically solve PDEs with singular source terms

Ds
δ (x−x∗)

Interested in:
approximation of singular sources terms in FD methods,
uniform grids
preserving spatial convergence rate of FD methods
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MPS Numerical Considerations

Solution: approximate singularity with continuous function of
compact support, [Waldén, 1998], [Tornberg & Engquist, 2004], [Petersson &

Sjögreen, 2010]

Ds
δ (x)≈ δ

s
ε (x) ∈ C0([−ε,ε])

where δ s
ε satisfies certain properties (discrete moments)

dependent on
q - accuracy order of approximation
s - derivative order
ε - width of support

∗ Condition on width of support:

2ε ≥ (q + s)h
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MPS Numerical Considerations

Figure 1: δ s
ε (x −α) with s = 0, q = 4, α = h/3, ε = 4h.

Figure 2: δ s
ε (x −α) with s = 1, q = 3, α = h/3, ε = 4h. 13



IWave Implementation of MPS Representation

From MPS representation

f (x , t) = ∑
n

fn(t)bn(x −x∗)

f0(t)

f1(t)
...

To time traces at FD grid points

trace 0

trace 1

trace 2

trace 3
...
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Numerical Experiments
Goal: preserve spatial convergence rates of FD methods

Setup:
solved acoustic equations in velocity-pressure form
staggered grid FD solver (2-2 and 2-4)
homogenous medium; ρ = 1 kg/m3, c = 4 km/s
source term , with s = 0,1,

f [p](x, t) = f (t)
(

∂

∂x2

)s
δ (x−x∗)

8km4km

8km

4km

Figure 3: Homogeneous model. Figure 4: MPS coefficient f (t).
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Numerical Experiments

Convergence rate calculated approximately by

R(xr ) = log2

( ‖ph(xr , ·)−ph/2(xr , ·)‖
‖ph/2(xr , ·)−ph/4(xr , ·)‖

)
,

where norm ‖ · ‖ is chosen to be either ‖ · ‖2 or ‖ · ‖∞ defined by

‖p(xr , ·)‖2 :=
√

∆t ∑
k
|p(x, tk )|2,

‖p(xr , ·)‖∞ := max
k
|p(xr , tk )|.

h-refinement [m]:

2-2: 10, 20, 40

2-4: 20, 40, 80

∗ ∆t = 0.5ms, sufficiently small that spatial error dominates, i.e.,
approximate semi-discrete solution
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Numerical Results

Figure 5: Rates for 2-2 staggered grid scheme with δ (x−x∗) source
term and approximation δ 0

ε1
δ 0

ε2
with q = 2.
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Numerical Results

Figure 6: Rates for 2-4 staggered grid scheme with δ (x−x∗) source
term and approximation δ 0

ε1
δ 0

ε2
with q = 4.
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Numerical Results

Figure 7: Rates for 2-2 staggered grid scheme with ∂

∂x2
δ (x−x∗)

source term and approximation δ 0
ε1

δ 1
ε2

with q = 2.
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Numerical Results

Figure 8: Rates for 2-4 staggered grid scheme with ∂

∂x2
δ (x−x∗)

source term and approximation δ 0
ε1

δ 1
ε2

with q = 4.
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Numerical Results

Figure 9: Rates for 2-4 scheme with ∂

∂x2
δ (x−x∗) source term and

approximation δ 0
ε1

δ 1
ε2

with q = 2.
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Future Directions

Idea: modify domain norm of forward map w.r.t. source such that

‖input‖ ∼ ‖output‖

better bounded forward map

better condition on inverse problem for source

Consider f [p] for acoustics in velocity-pressure form:

f [p](x, t) = f (t)
(

∂

∂x2

)s

δ (x−x∗).

Resulting data (pressure field) will look like some derivative of MPS
coefficient f (t),

p(x, t)∼ f s+r .
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Future Directions

Figure 10: Data trace for source with s = 0.
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Future Directions

Figure 11: Data trace for source with s = 1.
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Future Directions

Figure 12: Data trace for source with s = 2. 25



Future Directions

Denote forward map F : M×F→D,

F (m, f)≡ F (m)f = d

M - model space; m - model parameters
F - source space; f - MPS coefficients
D - data space; d - data vector

Introduce weight W such that

‖W f‖F ∼ ‖F (m)f‖D.

E.g.,

W =

(
d
dt

)s+r
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Future Directions

MPS inversions:
better condition of source estimation from weighted inner
product (preconditioning in CG)
non-uniqueness of MPS representation of seismic sources
(null space of forward map)

MPS + model inversions:
acoustics→ elasticity
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Thank You
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