Fast extended waveform inversion using Morozov's discrepancy principle

Lei Fu
The Rice Inversion Project, Rice University

April 25, 2016

Extended waveform inversion (EWI)

Object function:

$$
J_{\alpha}[m, r]=\frac{1}{2}\|F[m] r-d\|^{2}+\frac{\alpha}{2}\|A r\|^{2}
$$

Role of α : controls amount of penalty applied for model extension.
$\alpha \rightarrow 0, \quad$ weak constraint on r, \quad good data fit
$\alpha \rightarrow \infty$, strong poor
m - nonlinear model $\quad r$ - linear extended model
α - weighting $\quad A$ - annihilator

Variable projection method

$$
J_{\alpha}[m, r]=\frac{1}{2}\|F[m] r-d\|^{2}+\frac{\alpha}{2}\|A r\|^{2}
$$

Classified as separable least-squares inverse problems, solved with variable projection method.
[Golub and Pereyra, 1973, Golub and Pereyra, 2003]

Nested optimization:

- inner loop, given m, find r optimizes $J_{\alpha}[m, r]$.
- outer loop, find m optimizes reduced objective function $J_{\alpha}[m, r[m]]$.

Inner loop, optimize J over r

$\nabla_{r} J_{\alpha}[m, r]=0 \Rightarrow$ normal equation:

$$
\left(F^{T} F+\alpha A^{T} A\right) r=F^{T} d
$$

Solved by linear iterative method, e.g., conjugate gradient (CG).

Solution depends on α

$$
r_{\alpha} \approx\left(F^{T} F+\alpha A^{T} A\right)^{-1} F^{T} d
$$

Outer loop, update m

Gradient of reduced objective function $J_{\alpha}\left[m, r_{\alpha}[m]\right]$ respect to m :

$$
\nabla_{m} J_{\alpha}[m, r[m]]=D F^{T}\left(r_{\alpha}, F[m] r_{\alpha}-d\right)
$$

$D F^{T}$ tomographic or WEMVA operator.
$D F$, bilinear operator, linear in $d m$ and r.

Weight α

Rewrite data misfit and penalty terms

$$
\begin{aligned}
e(\alpha) & =\frac{1}{2}\|F r(\alpha)-d\|^{2} \\
p(\alpha) & =\frac{1}{2}\|\operatorname{Ar}(\alpha)\|^{2}
\end{aligned}
$$

Differentiate e and p

$$
\begin{gathered}
2 p \geq \frac{d e}{d \alpha} \geq 0 \\
\frac{d p}{d \alpha} \leq 0
\end{gathered}
$$

Weight α

Basic bound:

$$
\frac{d e}{d \alpha} \leq 2 p
$$

Suppose current weight α_{c}, updated weight α_{+}

$$
\alpha_{+} \gtrsim \alpha_{c}+\frac{e\left(\alpha_{+}\right)-e\left(\alpha_{c}\right)}{2 p\left(\alpha_{c}\right)}
$$

Morozov's discrepancy principle

Target data misfit $X, X_{-}<X<X_{+}$.
Adjust α to keep $e(\alpha)$ between $\frac{1}{2} X_{-}^{2}$ and $\frac{1}{2} X_{+}^{2}$, i.e. "near" $\frac{1}{2} X^{2}$.

Application
Suppose $e\left(\alpha_{c}\right)<\frac{1}{2} X_{-}^{2}$, e.g. m is updated, adjust α to keep $e(\alpha) \in\left[\frac{1}{2} X_{-}^{2}, \frac{1}{2} X_{+}^{2}\right]$

$$
\alpha_{+}^{\mathrm{est}}=\alpha_{c}+\frac{\frac{1}{2} X_{+}^{2}-e\left(\alpha_{c}\right)}{2 p\left(\alpha_{c}\right)}
$$

Algorithm to update α

1. Initial m, calculate $e(\alpha=0)$ to estimate $X_{-}=0.8 * e(0)$ and $X_{+}=1.2 * e(0)$
$e(0) \neq 0$, determined by accuracy of solving normal equation
2. Update α

$$
\alpha_{+}^{\text {est }}=\alpha_{c}+\frac{\frac{1}{2} X_{+}^{2}-e\left(\alpha_{c}\right)}{2 p\left(\alpha_{c}\right)}
$$

3. If $e\left(\alpha_{+}^{\text {est }}\right)$ is not in an acceptable range,

$$
\begin{aligned}
& e\left(\alpha_{+}\right)<X_{-}, \alpha_{+} *=2 \\
& e\left(\alpha_{+}\right)>X+, \alpha_{+} /=1.5
\end{aligned}
$$

Overthrust model

2D constant density acoustic 2-8 order finite difference code
Subsurface offset extended Born approximation.
Adaptive multiscale method (2 refinement stages)

Parameter	Measurements
Source wavelet	bandpass $5-20 \mathrm{~Hz}$
Initial velocity	$v=1.5 \mathrm{~km} / \mathrm{s}$
Max iter inner loop	20
Source position $\mathbf{x}_{\mathbf{s}}$	$x: 1-7 \mathrm{~km}$ every $40 \mathrm{~m}, z=20 \mathrm{~m}$
Receiver position $\mathbf{x}_{\mathbf{r}}$	$x: 0-8 \mathrm{~km}$ every $40 \mathrm{~m}, z=0 \mathrm{~m}$
Space and time	$x=8 \mathrm{~km}, z=2 \mathrm{~km}, t=3 \mathrm{~s}$
Grid size	$d x=d h=d z=20 \mathrm{~m}, d t=2 \mathrm{~ms}$

r at $h=0 m$

True background velocity

Initial background velocity v_{0}

Image r_{0} with initial velocity v_{0}

Inverted background velocity v_{20}

Image r_{20}

Relative data misfit

Relative model misfit

Overthrust model, scan test

Figure : Scan test: objective function with different values of α. Background velocity error from -50% to $+50 \%$

Summary

1. Update rule for α, significantly improves convergence rate.

$$
\alpha_{+}^{\mathrm{est}}=\alpha_{c}+\frac{\frac{1}{2} X_{+}^{2}-e\left(\alpha_{c}\right)}{2 p\left(\alpha_{c}\right)}
$$

2. Morozov discrepancy principle: adjust α to keep

$$
e(\alpha) \in\left[\frac{1}{2} X_{-}^{2}, \frac{1}{2} X_{+}^{2}\right]
$$

Future work

Consider physics errors, explore with field data.

Use variable density acoustics.

Accelerate inner loop and outer loop (preconditioner, optimization methods)

Acknowledgments

The Rice Inversion Project (TRIP) sponsors
Rice University Research Computing Support Group (RCSG)
Texas Advanced Computing Center (TACC)
Madagascar, Seismic Unix

TRIP members

Golub, G., and V. Pereyra, 1973, The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate: SIAM Journal on Numerical Analysis, 10, 413-432.
囯 - 2003, Separable nonlinear least squares: the variable projection method and its applications: Inverse Problems, 19, R1-R26.

