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Overview

Extended model permits data fit throughout update process
(avoid cycle skip)

Problem

BUT extended model ⇒ computational cost ↑

Solution

Adaptive approach: reduce extension while maintain data fit
with velocity updates

Multiscale method: refine grids (coarse → fine), frequencies
(low → high)
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Extended modeling concept

In order to fit the data, thus avoiding cycle-skipping.

Extended Born operator F

F [v]r = d

v(x): background velocity

r(x,h): extended velocity perturbation, allows fit to d for any v

d: sampled pressure data at receivers
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Subsurface offset extension

Originated in Claerbout’s survey sinking concept [Symes, 2008;
Biondi and Almomin, 2012; Shen, 2012; Shan and Wang, 2013;
Weibull and Arntsen, 2013]

Subsurface offset: distance between subsurface scattering points

Physical meaning: action at a distance
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Subsurface offset extended linearized acoustic modeling

δu - scattered (perturbation) pressure field

(
∂2

∂t2
− v2(x)∇2

)
δu(t,x;xs) =

∫ H

−H
dhr(x,h)∇2u(t,x + 2h;xs)

RHS involves an integration over h, equivalent of a full matrix
multiply at every time step - can easily overwhelm cost of ordinary
time-stepping [Mulder, 2013]

v: P-wave velocity x: position
w(t): source function, t: time xs: source location
h: horizontal subsurface offset H: limit of h
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Extended full waveform inversion (EFWI)

Objective function:

J [v, r] =
1

2
‖F [v]r − d‖2 +

α

2
‖Ar‖2

A: annihilator (A = h).

α > 0, penalty for non-focus. Choose α → talk 14:45

Solved with variable projection method, Nested optimization:
[Golub and Pereyra, 1973, Golub and Pereyra, 2003]

I inner loop, given v, find r optimizes J [v, r].

I outer loop, find v optimizes reduced J [v, r[v]].
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Inner loop, optimize J over r

Gradient of Jα[v, r] with respect to r

∇rJα[v, r] = F [v]T (F [v]r − d) + αATAr

where T denotes transpose.

∇rJα[v, r] = 0⇒ normal equation:

(F TF + αATA)r = F Td

Extended least-squares reverse time migration (ELSRTM) solved
by linear iterative method, e.g., conjugate gradient (CG).
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Outer loop, update v

Gradient of reduced objective function Jα[v, r[v]] respect to v:

∇vJα[v, r[v]] = DF T (r, F [v]r − d)

DF T tomographic or WEMVA operator.

DF , bilinear operator, linear in dm and r.
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How to choose H?

Avoid cycle-skipping, fit data by using large enough H

(
∂2

∂t2
− v2(x)∇2

)
δu(t,x;xs) =

∫ H

−H
dhδr̄(x,h)∇2u(t,x+2h;xs)

Computational cost

Number of grid points in h, Nh =
2H

dh
Nh ↓ ⇐ dh ↑ , coarse grid

Nh ↓ ⇐ H ↓ , how to choose H?
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Computational cost
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Extended Born modeling

Extended RTM

Figure : Relative computing time as a function of number of grid points
Nh. The extended model r measures 1000× 1000 cells with different Nh.
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Single reflector example

2D constant density acoustic 2-8 order finite difference code

Parameter Measurements

Source Ricker wavelet fpeak = 15Hz
Source position xs x : 300− 2700m every 40m, z = 0m
Receiver position xr x : 0− 3000m every 20m, z = 0m
Subsurface offset h −1500m 6 h 6 1500m
Space and time x = 3000m, z = 2500m, t = 1.6 s
Grid size dx = dh = dz = 20m, dt = 2ms
Background velocity vtrue = 3.0 km/s
Max iter inner loop 20
α 0
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Single reflector example

(a) (b)

Figure : (a) Extended reflectivity r at h = 0m (b) data at shot 31 at the
center
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Single reflector example

(a) (b)

Figure : Inverted r (a) v = vtrue (b) v = 1.3vtrue
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Inverted r at x = 1.5 km for different v

(a) (b) (c)

(d) (e) (f)

Figure : (a) v = 0.9vtrue, (b) 0.8vtrue, (c) 0.7vtrue, (d) 1.1vtrue, (e)
1.2vtrue, (f) 1.3vtrue
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Relation between H and data misfit
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(b)

Figure : v = 0.7vtrue (a) inverted r̄ (b) H vs relative ∆dH
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Relationship between H and ∆dH at different v
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Adaptive multiscale method

Idea: set H adaptively using data fitting criterion

For any “reasonable” v, can fit data if H adequate;

If v is ”good”, H can be ”small” (physical model: H = 0)

Goal: control cost for large H

Decrease frequency, increase sample rates

v more accurate, r more focused, so smaller H is needed
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1. Initialization
Initial H, constant velocity case [Shen, 2004, Mulder, 2014]

H = L|1− v2

v2true
|

L - maximum surface offset

Number of refinement stages n

1

2n−1
fmax > fmin

Relative data misfit ∆dH = ‖F [v]r−d‖
‖d‖

Half offset misfit ∆dH/2, restrict h range [−H/2, H/2]: only
recompute F [v]r, NOT re-solve ELSRTM.

Data residual tolerance X, determined by accuracy of solving
ELSRTM, target value ∆dH ≤ X ≤ ∆dH/2
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Multiscale adaptive method

1. Initialization H, n, X

2. Filter d, w with (fmin − 1
2n−k fmax), k - current refinement stage,

(dx, dz, dh, dt)← 2n−k(dx, dz, dh, dt).

3. Solve ELSRTM to estimate r. Compute ∆dH and ∆dH/2.

4. If ∆dH ≤ X ≤ ∆dH/2, go to 7.

5. If ∆dH/2 < X, H ← H/2, go to 3.

6. If ∆dH > X, H ← 2H, go to 3.

7. Update v+: if |J [v+]− J [v]| < ε, then k ← k + 1, go to 2;
else, v ← v+, go to 3.
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Lens model

2D constant density acoustic 2-8 order finite difference code

Steepest descent with quadratic backtrack line search

Parameter Measurements

Source wavelet bandpass 3− 30Hz
Source position xs x : 0− 6 km every 50m, z = 0m
Receiver position xr x : 0− 6 km every 50m, z = 0m
Space and time x = 6 km, z = 2.2 km, t = 2.4 s
Grid size dx = dh = dz = 12.5m, dt = 2ms
Initial velocity v = 3.0 km/s
Maximum iter inner loop 20
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Extended reflectivity r

Lei Fu (Rice University) Multiscale adaptive in EWI April 25, 2016 22



True background velocity model v
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Shot 61

(a) (b)

Figure : (a) Data of shot 61 at the center (b) bandpass (3− 7.5Hz) data
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Initial background velocity model v0

Figure : Stage 1: dh = dx = dz = 50m, bandpass filter 3− 7.5Hz,
dt = 8ms
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Inverted r0 with initial v0

Assume v/vtrue = 85%, H = L|1− v2

v2true
| ≈ 800m
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1st update v1
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r1, H : 800 m→ 400 m

(c)
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v2
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r2

(e)
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v5
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r5
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Stage 2, v7

Figure : Stage 2: dh = dx = dz = 25m, bandpass filter 3− 15Hz,
dt = 4ms
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Stage 2, r7
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Stage 3, v8

Figure : Stage 2: dh = dx = dz = 12.5m, original d and w, dt = 2ms
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Stage 3, r8
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Summary

Lens model, cost ≈ 7% of finest gird and full offset

I Determine H adaptively using data fitting criterion

I Multiscale

Basic hypothesis: if H long enough, good data fit; adequate
H deceases with velocity error.

Future work

Choose α → my 2nd talk 14:45

Consider physics errors, variable density acoustics, field data

Acceleration: optimization methods, Preconditioner
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