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Approximate Inverse Operator
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(ten Kroode, 2012; Hou and Symes,2015)

Ø

Ø Derivation is based on High Frequency Approx.

Ø Implementation doesn’t involve any ray tracing

Ø Invert the data even when velocity is wrong
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Remarks
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Ø Normal Operator is order 0

• Not change the frequency components

• Weight Operators don’t change the order

Ø Weight Operators add no appreciable cost

• involves a 3D Fourier transform

Ø Recover the physical model by stacking

Ø Subsurface offset extension is the key

W
model

F̄T F̄



Is subsurface offset necessary?
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Ø It is important when velocity is wrong.
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Is subsurface offset necessary?
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Ø It is important when velocity is wrong.
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Is subsurface offset necessary?
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Ø What if velocity is kinematically correct?

ü Subsurface offset is no more necessary

? Will the approx. inverse operator still work
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Is subsurface offset necessary?
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Ø What if velocity is kinematically correct?

ü Subsurface offset is no more necessary

? Will the approx. inverse operator still work
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Is subsurface offset necessary?
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Ø What if velocity is kinematically correct?

ü Subsurface offset is no more necessary

? Will the approx. inverse operator still work
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Born inversion
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• 2-8 finite difference, 231 shots & 461 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 20m grid interval

Smooth Background Model



Born inversion
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Reflectivity Model



Born inversion
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Recovered Model



Born inversion
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Original Data



Born inversion
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Resimulated Data



Born inversion
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Single Trace Comparison

Original Data

Resimulated Data with nonextended Image

Resimulated Data with extended Image



LSM — Theory
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Least Squares Migration (LSM) seeks reflectivity 

model to minimize :

JLS =
1

2
||Fm� d||2

FTFm = FT d

Goal : Accelerate the convergence of LSM

It is equivalent to solve



LSM — Theory
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Convergence of an optimization problem

Ø Make the normal operator close to Identity

FTFm = FT d



LSM — CG vs. WCG
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FTFm = FT d F †Fm = F †d
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LSM — Numerical Example I
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Smooth Background Model

• 2-8 finite difference, 231 shots & 461 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 20m grid interval



LSM — Numerical Example I
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Reflectivity Model

• 2-8 finite difference, 231 shots & 461 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 20m grid interval



LSM — Convergence Curve
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LSM — Numerical Example I
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20 CG iteration result



LSM — Numerical Example I
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20 WCG iteration result



LSM — Numerical Example II
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Smooth Background Model

• 2-8 finite difference, 201 shots & 401 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 25m grid interval



LSM — Numerical Example II
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• 2-8 finite difference, 201 shots & 401 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 25m grid interval

Reflectivity Model



LSM — Convergence Curve
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LSM — Numerical Example II
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20 CG iteration result



LSM — Numerical Example II
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20 WCG iteration result



FWI — Theory
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Full Waveform Inversion (FWI) seeks velocity

model to minimize :

JLS =
1

2
||F [m]� d||2

Ø Nonlinear à Local Minimal (Cycle Skipping)

Ø Large Scale à Local Optimization Method

Ø Ill-posed à Slow Convergence Rate



FWI — Optimization
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Iterative Method : 

mk+1 = mk + ↵pk

Steepest Descent Method :
Ø Negative Gradient direction

Ø Easy, cheap and works 

But 

Ø Slow convergence 

Ø Gradient changes rapidly

Ø Only uses 1st order approximation

pk = �FT (F [mk]� d)



FWI — Optimization
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Iterative Method : 

mk+1 = mk + ↵pk

Newton’s Method
Ø Newton Update direction

Ø Use curvature information

Ø Fast convergence

But 

Ø Hessian hard to invert

Ø Expensive

pk = �H�1
k rmJ

Converge in one step if objective 
function is convex quadratic

(L.	Métivier et al.,2014)



FWI — Optimization
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Iterative Method : 

mk+1 = mk + ↵pk

Newton’s Method
Ø Newton Update direction

Ø Use curvature information

Ø Fast convergence

But 

Ø Hessian hard to invert

Ø Expensive

FTFpk +D2FT (pk,F [mk]� d) = �gk

Converge in one step if objective 
function is convex quadratic

(L.	Métivier et al.,2014)



FWI — Optimization
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Iterative Method : 

mk+1 = mk + ↵pk

Gauss-Newton Method

Ø Gauss-Newton Update direction

Ø ≈ Newton’s method near optimum

But 

Ø Still expensive

FTFpk = �gk

Converge in one step if objective 
function is convex quadratic

(I	Epanomeritakis et al.,2009)



FWI — Optimization
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Iterative Method : 

mk+1 = mk + ↵pk

Gauss-Newton Method

Ø Gauss-Newton Update direction

But 

Ø Still expensive

Ø Approximate with Born inversion

Converge in one step if objective 
function is convex quadratic

(I	Epanomeritakis et al.,2009)

pk = �F †(F [mk]� d)

pk = �(FTF )�1FT (F [mk]� d)



FWI — Numerical Example
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True Model

• 2-8 finite difference, 231 shots & 461 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 20m grid interval



FWI — Numerical Example
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Initial Model

• 2-8 finite difference, 231 shots & 461 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 20m grid interval



FWI — Numerical Example
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Gradient at first step

FT (F [m0]� d)



FWI — Numerical Example
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Preconditioned Gradient at first step

F †(F [m0]� d)



FWI — Numerical Example

38

40 iteration steepest descent result



FWI — Numerical Example
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1 iteration approximate Gauss-Newton result



FWI — Numerical Example
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40 iteration approximate Gauss-Newton result



FWI — Numerical Example
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40 iteration L-BFGS result



FWI — Convergence Curve
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Summary
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ØApproximate Born inversion works even without subsurface 

offset

ØAccelerate LSM with WCG by defining weighted norms

ØAccelerate FWI with approximate Gauss-Newton by

preconditioning the gradient
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