Matched Source Waveform Inversion: Volume Extension

Guanghui Huang†, William W. Symes† and Rami Nammour‡

† TRIP, Department of Computational and Applied Mathematics
‡ TOTAL E & P USA

TRIP Annual Review Meeting
April 25, 2016
Outline

1. Overview of Source-based WI
2. MSWI: Volume Extension
3. Analysis of Transmission Problem
4. Numerical Examples
Outline

1. Overview of Source-based WI
2. MSWI: Volume Extension
3. Analysis of Transmission Problem
4. Numerical Examples
Overview of Source-based WI

Src-recev extension: $\bar{f} = \bar{f}(x_r, x_s, t) \in \mathbb{R}^3$ (or \mathbb{R}^5)

- Works for single arrival (traveltime tomography).
- Fail if multi-arrivals exist.
 1. Ambiguity when fitting data from different branches;
 2. Slope of traveltime is lost (single trace fit).
 3. $G(x_r, x_s, t) \ast f_{sr}(t) = d(x_r, x_s, t)$ is NOT solvable in L_2 sense.

Space-time extension: $\bar{f} = \bar{f}(x, x_s, t) \in \mathbb{R}^4$ (or \mathbb{R}^6)

- Solve the problem (1)-(2), but no guarantee for (3).
- Limitation to 3D Helmholtz eqn solver.
- Huge storage requirement of $\bar{f}(x, x_s, t) \in \mathbb{R}^6$ in 3D.

Any other choices of source extn that can solve all the problems (1)-(3) and w/o limitation like space-time extn?
Outline

1. Overview of Source-based WI
2. MSWI: Volume Extension
3. Analysis of Transmission Problem
4. Numerical Examples
Extended Modeling:

\[\tilde{f}(x; x_s): \text{extended model of } \delta(x - x_s) \]

Extended modeling operator \(\tilde{S} \tilde{f} = \tilde{u} \):

\[
\frac{1}{v^2} \frac{\partial^2 \tilde{u}}{\partial t^2} - \Delta \tilde{u} = \tilde{f}(x, x_s) \delta(t).
\]

Presume that the recorded data is deconvolved by wavelet \(f(t) \).

Annihilator:

\[A = |x - x_s|: \text{Penalize non-focusing energy around src position } x_s. \]
Matched Source Waveform Inversion

Extended waveform inversion:

\[
J_\alpha[v] = \frac{1}{2\alpha} \sum_{x_r,x_s} \int |\bar{S}[v] \bar{f} - d|^2 dt + \frac{1}{2} \sum_{x_s} \int |A \bar{f}|^2 dx
\]

s.t. \quad (\bar{S}^T \bar{S} + \alpha A^T A) \bar{f} = \bar{S}^T d.

Key feature: data fitting via \(\bar{f} \) \(\Rightarrow \) no cycle skipping problem!
Outline

1. Overview of Source-based WI
2. MSWI: Volume Extension
3. Analysis of Transmission Problem
4. Numerical Examples
Property of \tilde{S} and $\tilde{S}^T \tilde{S}$

Lemma (FIO)

Under some mild assumption of velocity and there is no grazing rays, the extended source forward modeling operator \tilde{S} is fourier integral operator.

Lemma (ΨDO)

The extended normal operator $\tilde{S}^T \tilde{S}$ is ΨDO of order -2, \hspace{1cm} \tilde{S}^T \tilde{S} \in OPS^{-2}$.

Furthermore, we have

$$\tilde{S}^T \tilde{S} \bar{f} = \frac{1}{(2\pi)^2} \int \frac{1}{|k|^2} \frac{e^{ik \cdot (y-x)}}{4\cos \alpha_r \nu_r} \bar{f}(y) dk dy$$
ΨDO Verification of $\bar{S}^T \bar{S}$

Figure: True velo, true source \bar{f}, and backpropagation field $\bar{S}^T \bar{S} \bar{f}$

Like the pair of migration and demigration operator!
Smooth Objective Functional

The direct consequence of these two lemmas yields the following important conclusion,

Theorem

>The volume based MSWI objective functional \(J_\alpha[v] \) is smooth function in velocity \(v \) independent of data spectrum.

Note that the objective function admits the bilinear form,

\[
J_\alpha[v] = \frac{1}{2\alpha} \left\langle (I - \bar{S}N_\alpha^{-1}\bar{S}^T)d, d \right\rangle
\]

Relation with Stereotomography

Theorem

The Hessian of MSWI function at the consistent data is equivalent to stereotomography,

\[\delta^2 J_\alpha[v^*] \approx C \| \frac{\partial}{\partial \theta_s} \delta \tau(x_r, x_s) \|^2 + O(\alpha). \]

where \(C \) is frequency independent constant.

NOTE:
\(\delta \tau(x_r, x_s) = 0 \) and \(\frac{\partial}{\partial x_r} \delta \tau(x_r, x_s) = 0 \) is satisfied automatically by backpropagation.

See H. Chauris etc. (2002) for similar discussions.
Outline

1. Overview of Source-based WI
2. MSWI: Volume Extension
3. Analysis of Transmission Problem
4. Numerical Examples
 - Transmission Configuration
 - Layer Salt Model
 - Marmousi Model
 - SEG/EAGE 2D Salt Model
 - SEAM Phase I Model
 - Slice of BP Model
Overview of Source-based WI

MSWI: Volume Extension

Analysis of Transmission Problem

Numerical Examples

- Transmission Configuration
 - Layer Salt Model
 - Marmousi Model
 - SEG/EAGE 2D Salt Model
 - SEAM Phase I Model
 - Slice of BP Model
Figure: Transmission configuration: true model and initial model
Data

Figure: Recorded data and simulated data with initial model at center shot $x_s = 1$ km
Inverted Velocity

Figure: Inverted velocity by FWI and volume-based MSWI with 9-20 Hz data
Overview of Source-based WI

MSWI: Volume Extension

Analysis of Transmission Problem

Numerical Examples

- Transmission Configuration
- Layer Salt Model
- Marmousi Model
- SEG/EAGE 2D Salt Model
- SEAM Phase I Model
- Slice of BP Model
Layer Salt Model

Figure: True model and constant initial model
Comparison of Results

![Inverted velocity by MSWI and FWI method with 6-12 Hz data](image_url)

Figure: Inverted velocity by MSWI and FWI method with 6-12 Hz data
Overview of Source-based WI

MSWI: Volume Extension

Analysis of Transmission Problem

Numerical Examples
- Transmission Configuration
- Layer Salt Model
- Marmousi Model
- SEG/EAGE 2D Salt Model
- SEAM Phase I Model
- Slice of BP Model
Marmousi

Figure: Marmousi model and 1D initial model
Figure: MSWI result (6-10 Hz data) and FWI result (4-8 Hz data)
Overview of Source-based WI

MSWI: Volume Extension

Analysis of Transmission Problem

Numerical Examples
- Transmission Configuration
- Layer Salt Model
- Marmousi Model
- SEG/EAGE 2D Salt Model
- SEAM Phase I Model
- Slice of BP Model
Figure: True model and 1D initial model
Inverted Results

Figure: MSWI result and FWI result (3-6 Hz data)
1. Overview of Source-based WI

2. MSWI: Volume Extension

3. Analysis of Transmission Problem

4. Numerical Examples
 - Transmission Configuration
 - Layer Salt Model
 - Marmousi Model
 - SEG/EAGE 2D Salt Model
 - SEAM Phase I Model
 - Slice of BP Model
Slice of SEAM Phase I Model

Figure: True model and 1D initial model
Inverted Result

Figure: MSWI result (3-6 Hz data) and FWI result (2-5 Hz data)
Overview of Source-based WI

MSWI: Volume Extension

Analysis of Transmission Problem

Numerical Examples
- Transmission Configuration
- Layer Salt Model
- Marmousi Model
- SEG/EAGE 2D Salt Model
- SEAM Phase I Model
- Slice of BP Model
Slice of BP Model

Figure: True model and 1D initial model
Inverted Results

Figure: MSWI result (3-8 Hz data) and FWI result (2-5 Hz data)
Conclusion

- Nonlinear extended waveform inversion can handle reflection/refraction wave.
- No cycle skipping problem and insensitive to the frequency content and initial model.
- Equivalent to traveltime tomography under high frequency for transmission wave.
- Potential application in salt body reconstruction.
- How does it work for reflection wave?
Acknowledgement

- Bertrand Duquet and Fuchun Gao
- Total E&P USA
- TRIP sponsors and members
- Rice University Research Computing Support Group (RCSG)
- All of audiences