Guanghui Huang

Education

- University of Chinese Academy of Sciences, Beijing, China Ph.D. in Computational Mathematics 09/2009 - 07/2014 Thesis: *Reverse time migration for inverse scattering problems* Thesis supervisor: Professor Zhiming Chen
- **Central South University**, Changsha, China B.S. in Information and Computing Science

09/2005 - 07/2009

Research Interests

- Source-based Extended Waveform Inversion
- Acoustic/Electromagetic/Elastic wave inverse scattering problem
- Phaseless data imaging and inversion

< 17 >

Matched Source Waveform Inversion: Space-time Extension

Guanghui Huang[†], William W. Symes[†] and Rami Nammour[‡]

 † TRIP, Department of Computational and Applied Mathematics ‡ TOTAL E & P USA

TRIP Annual Review Meeting April 25, 2016

MSWI: Space-time

Outline

- 2 Avoiding Cycle Skipping: Model Extension
- 3 MSWI: Space-time Extension
- 4 Numerical Examples

э

()

Outline

- 2 Avoiding Cycle Skipping: Model Extension
- 3 MSWI: Space-time Extension
- 4 Numerical Examples

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Seismic Inverse Problem

Acoustic wave eqn:

$$\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2} - \Delta u = \delta(\mathbf{x} - \mathbf{x}_s)f(t).$$

u = pressure field, v = velocity, f = input src function and $\mathbf{x}_s =$ src position.

Forward modeling operator:

$$S[v]f = u(\mathbf{x}, t; \mathbf{x}_s)|_{\mathbf{x} = \mathbf{x}_r}.$$

 $\mathbf{x}_r =$ receiver position.

Inverse Problem: Given $d(\mathbf{x}_r, t; \mathbf{x}_s)$, find v and f such that

$$S[v]f = d.$$

э

< 回 > < 三 > < 三 >

Full Waveform Inversion

• FWI via least square,

$$J_{\text{FWI}}[v, f] = \frac{1}{2} \sum_{\mathbf{x}_r, \mathbf{x}_s} \int |S[v]f(\mathbf{x}_r, t; \mathbf{x}_s) - d(\mathbf{x}_r, t; \mathbf{x}_s)|^2 dt.$$

- FWI obj is quadratic w.r.t *f*, but highly nonlinear and nonconvex in *v*.
- Sensitive to frequency band.
- Local minima: cycle skipping problem (bad init model & low frequency missing).

.∃ ▶ . ∢

Outline

1 Overview

2 Avoiding Cycle Skipping: Model Extension

- 3 MSWI: Space-time Extension
- 4 Numerical Examples

э

< 回 > < 三 > < 三 >

Summary of Source-Receiver Extension

FWI via src-recv extn (SEG 2015, G. Huang and W. Symes)

• For "bad" v, assign different src func $f(f_{sr}(t))$ for each src-recv pair (more d.o.f)

$$G(\mathbf{x}_r, \mathbf{x}_s, t) * f_{sr}(t) = d(\mathbf{x}_r, \mathbf{x}_s, t).$$

- Fit data easily (only single trace fitting) \Rightarrow no cycle skipping
- For true velocity, $f(t)^{-1} f_{sr} = \delta(t)$ focusing on t = 0.
- Minimizing non-focusing of f_{sr} multiplied by $A = tf(t)^{-1}$.

$$J_{\rm MS}[v] = \frac{1}{2} \sum_{\mathbf{x}_s, \mathbf{x}_r} \int |Af_{sr}|^2 dt.$$

See R. E. Plessix etc (2000), S. Luo and P. Sava (2011), L. Guasch and M. Warner (2014) for similar algorithm.

8 / 34

(日) (同) (三) (三)

Summary of Source-Receiver Extension

- Good for single arrival (equiv to traveltime tomography).
- Fail if strong multipathing exists.

Reasons for failure:

- Ambiguity when fitting data from different branches;
- Slope of traveltime is lost (single trace fit);
- $G(\mathbf{x}_r, \mathbf{x}_s, t) * f_{sr}(t) = d(\mathbf{x}_r, \mathbf{x}_s, t)$ is NOT solvable in L_2 sense.

・ 何 ト ・ ヨ ト ・ ヨ ト

Outline

1 Overview

- 2 Avoiding Cycle Skipping: Model Extension
- 3 MSWI: Space-time Extension
- 4 Numerical Examples

э

< 回 > < 三 > < 三 >

Motivation for New Extension

If we assume $G(\mathbf{x}_r,\mathbf{x}_s,t)*f_{sr}(t)=d(\mathbf{x}_r,\mathbf{x}_s,t)$ is solvable, it's equivalent to

$$G(\mathbf{x}_r, \mathbf{x}_s, t)^T G(\mathbf{x}_r, \mathbf{x}_s, t) * f_{sr}(t) = G(\mathbf{x}_r, \mathbf{x}_s, t)^T d(\mathbf{x}_r, \mathbf{x}_s, t)$$

NOTE:

- G(x_r, x_s, t)^Td(x_r, x_s, t): "backpropagation" field (time shift of the data) in data domain (R. E. Plessix etc., 2000).
- How about backpropagation in the imaging domain?
- Extend the domain of f_{sr} to the imaging domain (put "src" everywhere in the whole domain).

・ 同 ト ・ ヨ ト ・ ヨ ト

Extended Modeling & Annihilator

Extended Modeling:

 $\bar{f}(\mathbf{x},t;\mathbf{x}_s)$: extended model of $f(t)\delta(\mathbf{x}-\mathbf{x}_s)$

Extended modeling operator $\bar{S}\bar{f} = \bar{u}$:

$$\frac{1}{v^2}\frac{\partial^2 \bar{u}}{\partial t^2} - \Delta \bar{u} = \bar{f}(\mathbf{x}, t; \mathbf{x}_s).$$

Annihilator:

 $A = |\mathbf{x} - \mathbf{x}_s|$: Penalize non-focusing energy around src position \mathbf{x}_s .

Do not need source function f(t)!

э

・回・ ・ヨ・ ・ヨ・

Matched Source Waveform Inversion

Extended waveform inversion:

$$J_{\alpha}[v] = \frac{1}{2\alpha} \sum_{\mathbf{x}_r, \mathbf{x}_s} \int |\bar{S}[v]\bar{f} - d|^2 dt + \frac{1}{2} \sum_{\mathbf{x}, \mathbf{x}_s} \int |A\bar{f}|^2 dt$$

s.t. $(\bar{S}^T \bar{S} + \alpha A^T A) \bar{f} = \bar{S}^T d.$

Key feature: data fitting via $\bar{f} \Rightarrow$ no cycle skipping problem!

< ∃ > <

э

Why it works

Figure: (a) True model; Amplitude of the backpropagation field $(\bar{S}^T d)$ with (b) true velocity, (c) 10% low and (d) 10% high of true velocity

See Y. Zhang etc. (2008,2009) and R. Plessix etc (2010) for backpropagation-based waveform inversion.

Relation with WRI

Waveform Reconstruction Inversion (WRI, T. van Leeuwen and F. Herrmann (2013)):

$$J_{\text{WRI}}[v] = \min_{\bar{u}} \frac{1}{2} \sum_{\mathbf{x}, \mathbf{x}_s} \int \left[\left(\frac{1}{v^2} \frac{\partial^2 \bar{u}}{\partial t^2} - \Delta \bar{u} \right) - f(t) \delta(\mathbf{x} - \mathbf{x}_s) \right]^2 dt + \frac{1}{2\alpha} \sum_{\mathbf{x}_r, \mathbf{x}_s} \int \left(\bar{u}(\mathbf{x}, t; \mathbf{x}_s) \right|_{\mathbf{x} = \mathbf{x}_r} - d(\mathbf{x}_r, t; \mathbf{x}_s))^2 dt. = \min_{\bar{f}} \frac{1}{2} \sum_{\mathbf{x}, \mathbf{x}_s} \int |\bar{f} - f(t) \delta(\mathbf{x} - \mathbf{x}_s)|^2 dt + \frac{1}{2\alpha} \sum_{\mathbf{x}_r, \mathbf{x}_s} \int |\bar{S}\bar{f} - d|^2 dt.$$

Nonlinear annihilator: $A\bar{f} = \bar{f}(\mathbf{x}, t; \mathbf{x}_s) - f(t)\delta(\mathbf{x} - \mathbf{x}_s).$ Our source focusing annihilator: $A\bar{f} = |\mathbf{x} - \mathbf{x}_s|\bar{f}(\mathbf{x}, t; \mathbf{x}_s).$

Outline

Overview

2 Avoiding Cycle Skipping: Model Extension

3 MSWI: Space-time Extension

4 Numerical Examples

- Transmission Configuration
- Diving Wave Inversion
- Marmousi Model
- BP 2014 Benchmark Model

(日) (日) (日)

Numerical Implementation

Forward modeling:

- 9-point FD method in frequency domain;
- Target source: zero-phased bandpassed source.

Data acquisition:

- Receivers: fixed spread geometry on the whole surface;
- Source: lesser dense sampling than receivers.

Inversion:

- Subproblem: direct solver to guarantee the accuracy of gradient;
- Optimization method: LBFGS with backtracking line search;
- Avoid inverse crime: coarse mesh grid for inversion, fine mesh grid for recording data.

- 4 回 ト - 4 回 ト

1 Overview

2 Avoiding Cycle Skipping: Model Extension

3 MSWI: Space-time Extension

4 Numerical Examples

- Transmission Configuration
- Diving Wave Inversion
- Marmousi Model
- BP 2014 Benchmark Model

(日) (日) (日)

Gaussian Model: Multipathing

Figure: Transmission configuration: true model and initial model

-

э

Transmission Configuration Diving Wave Inversion Marmousi

Simulated Data

Figure: Recorded data and simulated data with initial model at center shot $x_s=1\ \rm km$

2

<ロ> <四> <四> <日> <日> <日</p>

Transmission Configuration Diving Wave Inversion Marmousi

Inverted Results

Figure: Inverted velocity by FWI and MSWI with (6, 10, 14, 18) Hz data

-

э

Overview

- 2 Avoiding Cycle Skipping: Model Extension
- 3 MSWI: Space-time Extension

4 Numerical Examples

- Transmission Configuration
- Diving Wave Inversion
- Marmousi Model
- BP 2014 Benchmark Model

(日) (日) (日)

Diving Wave

Figure: True model and ray tracing on model for shot $x_s = 0.5 \text{ km}$

æ

<ロ> <四> <四> <日> <日> <日</p>

Transmission Configuration Diving Wave Inversion Marmousi

Comparison of Results

Figure: Top: initial model; inverted model by FWI (middle) and MSWI (bottom) using (6,7,8,9,10) Hz data

3 N 3

A ►

Transmission Configuration Diving Wave Inversion Marmousi

Comparison of Results

Figure: Top: initial model; inverted model by FWI (middle) and MSWI (bottom) using (5,6,7,8,9,10) Hz data

3.0

P.

Overview

2 Avoiding Cycle Skipping: Model Extension

3 MSWI: Space-time Extension

4 Numerical Examples

- Transmission Configuration
- Diving Wave Inversion
- Marmousi Model
- BP 2014 Benchmark Model

伺 ト イヨト イヨト

Marmousi Model

Figure: Marmousi model and 1D initial model

Э.

<ロ> <四> <四> <日> <日> <日</p>

Comparison of Results

Figure: Inverted velocity by MSWI and FWI with (4,5,6,7,8) Hz data

3 x 3

・ 回 ト ・ 三 ト ・

Overview

2 Avoiding Cycle Skipping: Model Extension

3 MSWI: Space-time Extension

4 Numerical Examples

- Transmission Configuration
- Diving Wave Inversion
- Marmousi Model
- BP 2014 Benchmark Model

伺 ト イヨト イヨト

Transmission Configuration Diving Wave Inversion Marmousi

BP Benchmark Model

Figure: BP model

G. Huang, W. Symes and R. Nammour

MSWI: Space-time

30 / 34

<ロ> <四> <四> <日> <日> <日</p>

ヨー つくぐ

Inverted Result

Figure: Initial model and inverted model using (1,2,3,4) Hz data

э

米部 とくほと くほう

BP Benchmark Model

2

<ロ> <四> <四> <日> <日> <日</p>

Conclusion

- Nonlinear extended waveform inversion can handle any kinds of waves including transmission wave and reflection without separation of data.
- Lower the requirement of low frequency and initial model.
- Source wavelet function is not required.
- Straightforward extension to multi-parameter inversion and elastic wave inversion.

Main obstacles:

- Limitation to 3D Helmholtz eqn solver.
- Storage requirement of extended model $\bar{f}(\mathbf{x},\mathbf{x}_s,t)\in\mathbb{R}^6$ in 3D.

A B > A B >

Acknowledgements

- Bertrand Duquet and Fuchun Gao
- Total E & P USA
- TRIP sponsors and members
- Rice University Research Computing Support Group (RCSG)
- All of audiences

< ∃ > <

э