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The Rice Inversion Project, TRIP15, April 10, 2016

INTRODUCTION TO THE 2015 ANNUAL REPORT

Welcome to the 2015 Annual Report volume of The Rice Inversion Project. This
volume contains manuscripts of papers, abstracts and reports completed during
the course of the project year. The finished Annual Report web page will also
include the program of the Annual Review Meeting and links to slides sets pre-
sented there, as in prior years.

At this writing, two of these papers (“Accelerating Extended Least Squares Mi-
gration with Weighted Conjugate Gradient Iteration”, Hou and Symes, and “Scat-
tering and dip angle decomposition in relation with subsurface offset extended
wave equation migration”, Dafni and Symes) have been returned to Geophysics af-
ter minor revision, and “Flexibly Preconditioned Extended Least Squares Migra-
tion in Shot Record Domain”, Huang and Symes, has been submitted to Geophysics
and is in review. Expanded abstracts for various meetings have been submitted,
accepted, or presented, as noted in the text.

TRIP members received several awards during 2015. Jie Hou received the
SEG’s 2014 Best Student Paper award for his presentation “An Approximate In-
verse to the Extended Born Modeling Operator”. A paper of the same title is part
of the 2014 Report, and appeared in the November-December 2015 issue of Geo-
physics. Jie’s 2015 SEG presentation “Accelerating Extended Least Squares Migra
tion with Weighted Conjugate Gradient Iteration” has been designated as one of
the 31 best papers presented at that meeting. Finally, I received the Desiderius
Erasmus award from the EAGE at its 2015 meeting in Madrid.

I am pleased to acknowledge our debt to Sergey Fomel and other contributors
to the Madagascar project, whose reproducible research framework makes our
approach to distribution of reports possible.

– WWS, 15 January 2016
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The Rice Inversion Project, TRIP15, April 10, 2016

Accelerating Extended Least Squares Migration with
Weighted Conjugate Gradient Iteration

Jie Hou and William W. Symes

ABSTRACT
Least Squares Migration (LSM) iteratively achieves a mean square best fit to
seismic reflection data, provided that a kinematically accurate velocity model
is supplied. The subsurface offset extension adds extra degrees of freedom
to the model, thereby allowing LSM to fit the data even in the event of sig-
nificant velocity error. This type of extension also implies additional expense
per iteration from cross-correlating source and receiver wavefields over the
subsurface offset, and therefore places a premium on rapid convergence. We
accelerate the convergence of Extended Least Squares Migration, by combin-
ing the Conjugate Gradient algorithm with weighted norms in range (data)
and domain (model) spaces that render the extended Born modeling operator
approximately unitary. Numerical examples demonstrate that the proposed
algorithm dramatically reduces the number of iterations required to achieve
a given level of fit or gradient reduction, compared to Conjugate Gradient
iteration with Euclidean (unweighted) norms.

INTRODUCTION

Least Squares Migration (LSM) iteratively seeks a short-scale reflectivity model
so as to achieve a best fit to the seismic reflection data in least squares sense, via
repeated migrations and demigrations (Nemeth et al., 1999; Kuehl and Sacchi,
2003). LSM is in fact least squares inversion based on Born (linearized) modeling
(Bourgeois et al., 1989): since it is an inversion, the amplitudes are likely to be
physically reasonable, and many authors have noted the effective spatial decon-
volution and increase in apparent resolution resulting from data fitting (Dutta
et al., 2014).

In the cited references and many others, the LSM optimization problem is solved
iteratively. Since each iteration involves both (prestack) migration and demigra-
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4 Hou and Symes

tion, the expense of iterative LSM can be considerable. This paper presents a
technique for accelerating the convergence of extended LSM (ELSM), which con-
structs an extended or non-physical model depending on extra parameters be-
sides spatial coordinates. When the velocity and data are compatible, ELSM out-
puts a volume focused in physical space, from which one may extract a physical
inverted model equivalent to LSM’s. Unlike LSM, however, ELSM may be approx-
imated by a modified extended reverse time migration (RTM) operator, involving
only wave equation (as opposed to ray-theoretic) computations (Hou and Symes,
2014, 2015). Also unlike LSM, this modified extended RTM accurately inverts
the extended Born modeling operator even when the velocity is not kinematically
correct. In this paper, we use the components of the modified extended RTM
to modify a conjugate gradient algorithm for ELSM, and demonstrate dramatic
convergence speedup of the modified algorithm.

To explain how convergence acceleration is accomplished, begin with the obser-
vation that LSM data fitting depends critically on the accuracy of the background
velocity model. Velocity error leads to mispositioned and defocused structures
in the image domain, and related data misfit. That is as one would expect: the
model depends on fewer parameters than the data, so only in special case (correct
velocity) can the data be fit well throughout.

One might guess that data-fitting might be decoupled from choice of velocity
model, at least to some extent, by extending the model with extra dimensions,
to equalize the model and data dimension. Claerbout’s survey-sinking migration
concept (Claerbout, 1985) inspires one possibility: Stolk and De Hoop (2005),
Symes (2008b), Stolk et al. (2009) describe how to add an internal subsurface off-
set variable to the model, so that incident wavefield at one point can interact with
(cause) a reflected wavefield at a nonzero offset. Extended least squares migration
(ELSM) with this subsurface offset extension is the algorithm explored in this pa-
per. It is able to fit data equally well with correct or incorrect background velocity
model, within broad limits (Liu et al., 2013).

On the other hand, LSM (extended or not) via conjugate gradient or another rel-
atively fast iterative algorithm generally requires tens of iterations for an accept-
able result, each costing as much as two migrations. The additional parameters
in ELSM add extra cost: for subsurface offset extension, computational loops over
the offset axes are implicit in the definition of extended modeling or migration.
This heavy cost could be alleviated in two ways : either lower the cost for each
iteration or accelerate the convergence rate.
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Several acceleration techniques of the first kind have been suggested. For exam-
ple, one might reduce the cost of modeling/migration operator through simulta-
neous source (Beasley et al., 1998), blended data (Berkhout, 2008) or phase encod-
ing method (Romero et al., 2000; Ikelle, 2007), together with various technologies
to suppress the crosstalk artifacts (Krebs et al., 2009; Schuster et al., 2011; Xue
et al., 2014). Another approach to cost reduction couples downsampling on all
space-time axes (including subsurface offset) with low-pass filtering and veloc-
ity updating. As the velocity improves, the necessary range of offsets required to
fit data is also reduced, so that upsampling and increased frequency content can
be accommodated with a constant (and relatively small) number of gridpoints in
offset (Fu and Symes, 2015).

In this paper, we confine ourselves to the second kind of acceleration, often ac-
complished by conditioning the linear system to be solved, that is, creating a re-
lated system by linear change of variable, for which convergence is faster. For ex-
ample, an approximate inverse least squares Hessian can be computed by invert-
ing the diagonal matrix elements, perhaps complemented by a limited number of
off-diagonals, and used to compensate for poor illumination and thus accelerate
convergence (Chavent and Plessix, 1999; Pratt, 1999; Shin et al., 2001; Rickett,
2003; Symes, 2008a; Tang, 2009; Aoki and Schuster, 2009).

Recently ten Kroode (2012) explained the construction of a computable approxi-
mate inverse to the subsurface offset extended Kirchhoff modeling operator. Hou
and Symes (2014, 2015) modified ten Kroode’s construction for the Born opera-
tor, and observed that the geometric optics based derivation of the computable
approximate inverse owes its feasibility to a remarkable identity, due to Zhang
et al. (2003), linking the so-called Beylkin determinants of Kirchhoff migration-
inversion and the geometric amplitudes. For the subsurface offset extension (and
only for this and similar extended modeling operators) this identity implies that
a simple modification of the least-squares Hessian is to leading order computable
without resort to ray-theoretic constructs, thus purely via numerical solution of
wave equations and a few explicit filtering operations. Inverting these filtering
operations, one obtains an approximate inverse, asymptotically correct in the
same sense as Generalized Radon Transform inversion (Beylkin, 1985; De Hoop
and Bleistein, 1997; Operto et al., 2000) but without ray-tracing.

Hou and Symes (2015) also demonstrate that the approximate inverse F̄† of the
subsurface offset extended Born modeling operator F̄ takes the form

F̄† =W −1
modelF̄

TWdata, (1)
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in which F̄T is the transpose of F̄ (extended RTM), Wmodel and Wdata are positive-
definite symmetric operators on model and data spaces respectively, explicitly
computable directly from knowledge of the velocity field. Since F̄†F̄ ≈ I , it follows
that F̄ is approximately unitary with respect to the norms defined by Wmodel and
Wdata. Therefore a conjugate gradient or similar algorithm (for example, LSQR)
formulated with weighted norms in data and model spaces, with weight operators
Wdata and Wmodel respectively, will converge much more rapidly than the same
algorithm formulated with the Euclidean norm.

In this paper, we explain exactly how to compute Wmodel and Wdata, and numer-
ically verify the dramatic improvement in convergence rate resulting from using
these operators to define the norms appearing in the conjugate gradient algorithm
applied to ELSM.

The work we report here differs from that cited above, amongst others, in several
ways. As noted above, Hessian approximations of various sorts, mostly based on
extraction of diagonal or near-diagonal elements, have long been used as conver-
gence accelerators in various forms of full waveform inversion. These approxima-
tions, however, are of uncertain accuracy, whereas approximate inversion as we
use it here is an asymptotic inverse, increasingly precise as frequency increases,
Asymptotic inversion has also been used to accelerate iterative waveform inver-
sion - for a recent example, see ?. However so far as we know all prior work of this
type has relied explicitly on ray-trace constructions (Generalized Radon Trans-
form inversion), as opposed the purely “wave equation” construction explained
here. Wave equation based asymptotic inversion is often termed “true ampli-
tude migration”, and has been even been developed for various types of extended
models, for instance by Xu et al. (2011); Tang et al. (2013), not however used to
accelerate iterative extended inversion. Finally, the remarkable form of the ap-
proximate inverse (5), its relation to the mapping properties of Born modeling,
and the implications for iterative inversion do not seem to have been exploited
before.

The rest of the paper is organized as follows. We first review the theory of ELSM
and the approximate inverse operator. We then explain how to compute the
weight operators, and how to write conjugate gradient iteration to accommodate
them. We call the reformulated conjugate gradient (CG) algorithm with weighted
norms the weighted conjugate gradient (WCG) algorithm. We present three syn-
thetic examples, illustrating the considerably faster convergence of WCG over
(unweighted) CG. In these examples, the number of WCG iterations necessary
to reduce the least squares gradient to any reasonable proportion of its original
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size (5%, 1%,...) is an order of magnitude or more smaller than the corresponding
number for CG. We end with a discussion of consequences of our work and open
questions.

THEORY

The wave physics underlying the theory to be explained in this paper is the Born
(linear, single scattering) approximation to constant density acoustics. Write v =
v0 + δv for the acoustic wave velocity v resulting from a perturbation δv of a ref-
erence velocity v0. To first (linear) order in δv, the corresponding change in the
pressure field p is p ≈ p0 + δp, in which p0 corresponds to v0. The reference and
perturbation pressure fields, p0 and δp, satisfy a coupled system of wave equa-
tions

∂2p0

∂t2
− v2

0∇
2p0 = f (2)

∂2δp

∂t2
− v2

0∇
2δp = 2v0δv∇2p0 (3)

in which f is a representation of the acoustic energy source, localized near source
position xs. The approximation p ≈ p0 + δp is most accurate when v0 is smooth
(transparent) on the wavelength scale, and all model oscillations (reflectivity) are
confined to δv (Symes, 2009).

The Born modeling operator F[v0] is parametrized by the reference velocity v0
and relates the perturbations δv and δp:

F[v0]δv = δp (4)

Implicit in this definition is sampling at receiver positions xr , possibly dependent
on the source position xs, also the sampling time interval.

With this notation, the constant density acoustic linearized, or Born, inverse prob-
lem is: given a reference velocity v0(x), source field f (x, t;xs), and data perturba-
tion field δd(xr , t;xs), find a velocity perturbation δv so that

F[v0]δv = δd. (5)

The migration operator approximately solves this linearized inverse problem by
computing the adjoint of the Born modeling operator. However, the migrated im-
ages typically suffers from quality degradation, such as amplitude imbalance and
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wavelet sidelobes (Bednar and Bednar, 2006; Mulder and Plessix, 2004). Least
squares migration (LSM) (Nemeth et al., 1999; Kuehl and Sacchi, 2003) can sig-
nificantly reduce all of these defects. LSM is actually synonymous with solution
of the least squares problem

JLS =
1
2
||F[v0]δv − δd||2, (6)

and equivalent to solving the normal equation:

F[v0]†F[v0]δv = F[v0]†δd. (7)

where F† is the adjoint relative to the choice of norms in data and model spaces.
LSM will generate a model fitting the data as well as possible, but that may not be
very well for even relatively small velocity errors.

Figure 1 shows LSM images of a flat reflector in correct and incorrect constant
background velocity respectively. The wrong velocity image is mispositioned and
has incorrect amplitude. The velocity error deprives LSM of the inversion prop-
erty, that is, the image does not fit the data well (misfit plot is shown in Figure
4a). The reason for this misfit is overdetermination: the dimension of the model
is less than the dimension of the data, so that the data can only be fit well in the
exceptional case that the background velocity v0 is kinematically correct.

Figure 1: Least Squares Migration result after 30 CG iterations using (a) correct
background velocity model, 2.5km/s (b) incorrect background velocity model,
2km/s.
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Extended Least Squares Migration

In order to equalize the model dimension with data dimension, it is natural to
introduce extra degrees of freedom by extending the physical model. Common
choices for additional dimensions include reflection angle and surface offset. An-
other possible extension is the subsurface offset, which is essentially the (horizon-
tal) offset h between sunken source and sunken receiver in Claerbout’s survey-
sinking imaging condition (Claerbout, 1985; Symes, 2008b; Stolk et al., 2009).

x

z

x

z

h

Physical Model Extended Model

S R

h h

Figure 2: Sketch of the subsurface offset extension. The subsurface offset is half
the distance between subsurface scattering points. This extension allows stress to
produce strain at a distance.

Physical (non-extended) models δv give rise to subsurface offset extended models
δv̄ via multiplication by δ(h): in 2D, δv̄(x,z,h) = δv(x,z)δ(h). That is, as extended
models, physical models are focused. See Figure 2 for an illustration of the 2D
variant, which we will discuss for the remainder of this paper. The operator ex-
tension F̄ integrates δv̄, over h, hence coincides with F when δv̄ is physical. Note
that the data space is the same in both cases. We call least squares migration with
extended operators (solution of (4) or (5) with F replaced by F̄) Extended Least
Squares Migration (ELSM).

Figure 1 and Figure 3 show LSM and ELSM model estimates computed with Con-
jugate Gradient (CG) iteration (Nocedal and Wright, 1999), in a precise sense the
best iterative method for this type of problem. With the extra dimension, all the
data information can be preserved in the model space. Correct velocity model
will force the energy focus at h = 0 section. Incorrect background velocity model
will spread event energy to nonzero h. The LSM data residual is large for incor-
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rect velocity, but the ELSM data residual remains small with correct or incorrect
velocity.

Figure 3: Extended Least Squares Migration result after 30 CG iterations using
(a) correct background velocity model, 2.5km/s (b) incorrect background velocity
model, 2km/s. The subsurface offset range is from -500m to 500m.

Figure 4 compares the relative misfit plot between LSM and ELSM as a function
of conjugate gradient iteration, confirming ELSM’s tolerance of velocity error.

The information in the offset plane can be used to update the background velocity
model, if energy is not focused. However, the integration over hmakes F̄ more ex-
pensive than F, therefore fast convergence is very desirable. The convergence rate
of CG depends on the operator spectrum: error components associated with clus-
tered eigenvalues (for example, near 1) of the normal equation (5) are reduced by
a large factor in a single iteration. Since the definition of the operator adjoint F̄†

depends on the norms chosen for domain and range spaces, accelerating conver-
gence can be accomplished by choosing these norms to move many eigenvalues of
F̄†F̄ close to 1.

Unitary Property of Extended Modeling

ten Kroode (2012); Hou and Symes (2014, 2015) show how to compute an ap-
proximate inverse to the extended Born modeling operator, using only solutions
of wave equations and local algebraic computations in physical and Fourier space,
without the use of ray-tracing. This approximate inverse has exactly the form (5),
with

W −1
model = 4v5

0LP , Wdata = I4
t DzsDzr (8)
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Figure 4: Relative data misfit plot for (a) LSM and (b) ELSM with correct and
wrong velocity model. The blue line represents correct background velocity
model and the red line shows the incorrect background velocity model. Notice
ELSM will converge to zero no matter with correct or incorrect velocity model.
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where L =
√
∇2

(x,z)∇
2
(h,z), It is time integration, F̄T is the Euclidean adjoint of extend

Born modeling operator (extended RTM) and Dzs ,Dzr are the source and receiver
depth derivatives. P is a Fourier-like operator whose amplitude is a known alge-
braic function of v0(x,z),v0(x ± h,z), and (kx, kz, kh), given explicitly in (Hou and
Symes, 2015), Appendix A.

The expression above for Wmodel is not symmetric, but can be symmetrized with
negligible error. Both weight operators are positive definite.

The operator L is easily realized in Fourier space, using 2D discrete Fourier trans-
forms. It is approximated by cumulative sum. Approximation of Dzs ,Dzr is more
subtle, if only pressure data is recorded, as in conventional streamer aquisition.
For streamer simulation with shallow tow depth, Hou and Symes (2015) point out
that free surface ghosts effectively supply the vertical derivatives, and therefore
the data weight operator in the approximate inverse formula (5) requires only
the use of the absorbing boundary adjoint (extended RTM). Conversely, for data
without free surface ghosts, the free surface extended RTM operator should be
used. This is the approach taken in this paper. Of course this approximation is
good only up to the first ghost notch. ten Kroode (2012) points out that the ver-
tical source and receiver derivatives may be expressed as square root operators
in t,xs,xr , due to the field at the receivers being upcoming (for absorbing surface
data). Besides supplying the grounds for treating DzsDzr as positive-definite sym-
metric (see (Hou and Symes, 2015) for more on this), this observation suggests
a computation of the data-side weight operator using one-way operators, which
could be valid in settings other than shallow towed streamer acquisition, for ex-
ample ocean-bottom recording. Finally, we note that the required data is actually
recorded by multicomponent ocean bottom and land instruments, and more re-
cently by specialized streamers.

It remains to address the operator P . P = I in two special cases: for input data
focused at (that is, only nonzero near) h = 0, or for any data if v0 is indepen-
dent of x. Numerical experiments, including those reported here, tend to indicate
that P ≈ I for slowly varying v0, so we have adopted the approximation P = I
throughout this paper. While the effect of this approximation on the accuracy of
the approximate inverse appears to be small, we have not yet assessed it explic-
itly by implementing P and including it in the model-side weight operator: that
remains a topic for further research.

See Hou and Symes (2015) for further discussion of the numerical implementatio
of formula (5).
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Weighted Conjugate Gradient Algorithm

As pointed out in the introduction, the form of the approximate inverse (5) im-
plies that the extended Born modeling operator is unitary, provided that we define
inner products in model and data space use the weight operators discussed in the
last section:

〈δv̄1,δv̄2〉2model =
∑
x,z,h

δv̄1(x,z,h)(Wmodelδv̄2)(x,z,h), (9)

and similarly for data space. Therefore, a Krylov subspace algorithm formulated
using these inner products and the corresponding adjoint would be expected to
converge much more rapidly than the same algorithm using Euclidean inner prod-
ucts and the corresponding adjoint (standard RTM).

Conjugate gradient iteration is a standard choice of Krylov space iteration for
symmetric positive definite linear systems such as (5) (Björk, 1997). This and
similar iterations take the same form regardless of choice of inner product, so
long as the adjoint operator is defined relative to the inner product used. We
call the following algorithm Weighted CG (WCG), remarking that it is really just
the CG algorithm using the weighted inner products (9). We formulate it in the
notation of the target problem, the extended version of the normal equation (5):

F̄†[v0]F̄[v0]δv̄ = F̄†[v0]δd. (10)

Inputs to the algorithm are the operators F̄ = F̄[v0], F̄†[v0], the data δd, and an ini-
tial estimate of extended velocity perturbation δv̄0 (which may be the zero field).
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Algorithm 1 Weighted Conjugate Gradient Algorithm

1: z0← F̄†(δd − F̄δv̄0)
2: p0← z0
3: k← 0
4: repeat

5: αk←
〈zk , zk〉model

〈F̄pk , F̄pk〉data
6: δv̄k+1← δv̄k +αkpk
7: zk+1← zk −αkF̄†F̄pk
8: βk+1←

〈zk+1, zk+1〉model

〈zk , zk〉model
9: pk+1← zk+1 + βk+1pk

10: k← k + 1
11: until Error is sufficiently small, or max iteration count exceeded

In the termination statement, “Error” refers to the error
√
〈zk , zk〉 in the solution of

the normal equation (10). In all of the experiments reported below, termination
occurred when the maximum iteration count was reached, as our intent was to
explore the asymptotic behaviour of the iteration.

This algorithm may be transformed by introducing temporary vectors such as qk =
F̄pk , yk = F̄TWdataF̄pk, and so on, and the algebra re-arranged to minimize the
applications of the weight operators. As these are relatively cheap, most of the
computational work resides in the extended modeling (F̄) and RTM (F̄T ) steps,
so the cost per step is negligibly greater than that of standard CG with Euclidean
inner products.

NUMERICAL EXAMPLES

In this section, we will compare the performance of ELSM with CG and WCG
iterations using several examples. Besides the performance comparison, we will
also illustrate the robustness of both data-fitting via ELSM and accelerated con-
vergence of WCG against velocity error.

In all examples, we use a 2nd order in time, 8th order in space centered finite dif-
ference algorithm to approximate wave propagation, and apply absorbing bound-
ary conditions on all four sides of the rectangular computational domain. We use
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fixed spread geometry. The Born modeling operator uses a point source and the
migration operator adopts a dipole source to simulate the source/receiver depth
derivative operators required by the approximate inverse, as discussed in the pre-
ceding section.

Simple Example

The first example involves a simple layered model, shown in Figures 5. The com-
putational domain is a 3 × 3 km rectangular grid with 10 m grid interval in all
directions. Subsurface offset ranges over the interval [-250 m, 250 m], with the
same 10 m interval as the spatial coordinates. We generate 76 shots using a 2.5-5-
30-35 Hz zero phase trapezoidal bandpass wavelet and a discrete isotropic point
source representation. The time step is 1 ms. All 76 shots are recorded in the
301 receivers spaced 10 m apart. Shot spacing is 40 m, and the first source and
receiver are located at x = 0 m. Depth of both sources and receivers is 10 m.

Figure 5: An example layered model with simple structures. (a) Background ve-
locity model (b) Reflectivity model.

The inverted ELSM models using 20 iterations of CG and WCG appear in Figure
6. The zero offset section for both cases depicts the main structures of the model
with focused energy. However, one can observe obvious lower resolution for the
CG result in comparison to the WCG result: in fact, CG is much further from
convergence.

As discussed in Hou and Symes (2014, 2015), stacking the output extended image
over offset produces a physical image. The stacked image from the WCG inversion
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Figure 6: 20 iterations result of ELSM via (a) CG iteration (b) WCG iteration.

volume shown in Figure 7a reconstructs the original reflectivity model with very
small error. The difference with the original model is mainly composed of edge
artifacts (Figure 7b).

Figure 7: (a) Physical image obtained by stacking 20 WCG iterations ELSM result
along subsurface offset axis (b) Difference between the obtained physical image
and the original reflectivity model. All figures are plotted on the same grey scale.

The misfit plot, displayed in Figure 8a, exhibits the remarkable acceleration of
WCG over CG. The required number of iterations for a given error level in WCG
is substantially smaller than that required for CG. In fact, the first iteration of
WCG, which is the approximate inverse operator itself, is comparable to the 20 it-
eration result of CG. Figure 8b plots the norm of the normal residual (least squares
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gradient), again confirming the accelerated convergence of WCG compared to CG.
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Figure 8: (a) Relative data misfit plot against the number of iterations (b) Relative
normal residual plot against the number of iterations. The blue line represents
the WCG iteration and the red line shows the CG iteartion.

Marmousi Example

Our second example is based on the Marmousi model (Versteeg and Grau, 1991).
We smooth the original model as the background model (Figure 9a) for simulation
and migration and take the difference as the reflectivity model (Figure 9b). The
synthetic data correspond to a fixed spread acquisition with a source spacing of 40
m and receiver spacing of 20 m. Both the first source and receiver are at x = 0 m.
231 sources and 461 receivers are all placed at 20 m depth. Spatial grid interval
is 20 m in x, z, and (subsurface offset) h, and the subsurface offset range is [-500
m, 500 m]. The source wavelet is a 2.5-5-20-25 Hz trapezoidal bandpass wavelet
with 2 ms time interval, also the time step in the finite difference computations.



18 Hou and Symes

Figure 9: Marmousi Model. (a) Background velocity model obtained by smooth-
ing the original Marmousi model (b) Reflectivity model obtained by taking the
difference between orginal velocity model and background velocity model.
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Figure 10 shows the results of 20 iterations. The stacked images from both CG
iteration and WCG iteration are shown in Figure 11. The WCG algorithm yields an
inversion with noticeable higher resolution than does CG with the same number
of iterations.

Figure 10: 20 iterations result of ELSM via (a) CG iteration (b) WCG iteration.

Figure 12 plots the normalized data misfit and the normal residual as a function
of the iteration number for the Marmousi example. As in the first example, WCG
exhibits dramatically faster convergence than CG.

As indicated in the theory section, ELSM should permit good fit to data regard-
less of the accuracy of the background velocity, within broad limits. Also, as es-
tablished by Hou and Symes (2015), the approximate inverse described earlier is
accurate even with erroneous velocity, that is, approximates the solution of the
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Figure 11: (a) Physical image obtained by stacking 20 CG iterations ELSM result
along subsurface offset axis (b) Physical image obtained by stacking 20 WCG iter-
ations ELSM result along subsurface offset axis.
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Figure 12: Marmousi example: (a) Relative data misfit plot against the number of
iteartions (b) Relative normal residual plot against the number of iterations. The
blue line represents the WCG iteration and the red line shows the CG iteartion.
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ELSM problem. Therefore we expect the same acceleration of WCG over CG even
in the presence of obvious velocity error. We conduct the same experiment with
an incorrect velocity model, by reducing the background velocity everywhere by
a factor of 0.9. After 20 iterations CG and WCG, we obtain the results shown
in Figure 13. The subsurface offset ranges over [-1000 m, 1000 m]. Due to the
incompatibility of the background velocity used in this ELSM with the data, the
inversion is not focused at zero offset: energy spreads significantly to nonzero
offset.

Figure 13: 20 iterations result of ELSM via (a) CG iteration (b) WCG iteration.

Of course it is the presence of nonzero offset reflectivity that permits ELSM to
fit data even with erroneous velocity, although in order to make this happen, the
offset range needed to be twice that used in the preceding experiment. Both CG
and WCG versions of ELSM yield increasing data fit with iteration, though WCG
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reduces misfit much faster than does CG. The convergence behaviour of the two
algorithms is very similar to that shown earlier for the correct background velocity
(Figures 14).
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Figure 14: (a) Relative data misfit plot against the number of iterations (b) Relative
normal residual plot against the number of iterations. The blue line represents the
WCG iteration and the red line shows the CG iteration.

Salt Example

Our third example is based on a 2D section of the SEG/EAGE salt model (Am-
inzadeh et al., 1997). The background velocity model shown in Figure 15a is
achieved by (a) removing the salt from the original salt model, (b) smoothing the
salt-free result, and (c) inserting the salt body into the smoothed background. The
difference between the background model and original velocity model is used as
the reflectivity model, displayed as Figure 15b. Note that the reflectivity van-
ishes inside the salt. The model is discretized with 20 m grid spacing in all di-
rections. The experiment simulates 251 evenly spaced shots and records at 501
evenly spaced receivers, both at 20 m depth. The shots begin at x = 0 m with a shot
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interval of 40 m and the receiver array begins at the same position with a receiver
interval of 20 m. The subsurface offset range is [-500 m, 500 m], and the offset
interval is also 20 m. The source waveform is a 2.5-5-20-25 Hz bandpass wavelet
with 2 ms time interval. The velocity discontinuity at the salt boundary violates
the scale-separation hypotheses underlying the theory of the approximate inverse
(Hou and Symes, 2015): that is, the velocity model has significant spectral con-
tent at spatial frequencies excited by the data. We will use this example to show
that the WCG algorithm has an improved convergent rate even in the presence of
discontinuities in the background model, at least in some cases.

Figure 15: SEG/EAGE salt model. (a) Smooth background velocity model with
salt overlaid (b) Reflectivity model.

Both CG and WCG are used to generate the extended inversions, displayed in
Figure 16.
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Figure 16: 20 iterations result of ELSM via (a) CG iteration (b) WCG iteration.
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Both algorithms correctly recover the main structures and salt boundary of the
salt. Classical low frequency noise above the salt is still present in the CG re-
sult while WCG removes most of the top salt noise, probably a side effect of the
Laplacian filtering implicit in the model space weight operator Wmodel. WCG also
better recovers subsalt reflectivity. Stacking over offset yields the image shown in
Figure 17.

Figure 17: Physical image obtained by stacking 20 WCG iterations ELSM result
along subsurface offset axis. Plotted on the same grey scale with the reflectivity
model.

Figure 18 shows the misfit plot and normal residual plot for CG and WCG. From
the figure, it is clear that the proposed WCG has substantially faster convergence
for this example also. The salt in the background appears to considerably slow
the convergence of (unweighted) for CG iteration, while barely influencing the
progress of WCG iteration.

DISCUSSION

We have described a method to accelerate the convergence of conjugate gradient
iteration for extended linearized inversion (ELSM), and illustrated the accelera-
tion so obtained with several numerical examples. In this section we note several
interesting aspects of this topic that merit further study.

The careful reader will have noticed that in Figure 4, the misfit for ELSM is con-
siderably larger at 30 iterations than is that for LSM (with correct velocity model),
and one could wonder whether the convergence curve might be flattening out and
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Figure 18: (a) Relative data misfit plot against the number of iteartions (b) Relative
normal residual plot against the number of iterations. The blue line represents the
WCG iteration and the red line shows the CG iteration.
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possibly even asymptotic to a positive value. Similar behavious is visible in other
convergence plots, for both CG and WCG (though the latter reduces the resid-
ual norm much faster than the former). The residual norm would be expected
to converge to a positive value if the data were not in the range of the modeling
operator - in principle impossible, as our experiments are all inverse crimes, with
data computed using the same algorithms as used in the inversion. Instead, we
suggest that the addition of many degrees of freedom via the subsurface offset ex-
tension has expanded the spectrum of the linearized modeling operator, and thus
enlarged its condition number and in particular the number of singular values
near zero. This would be true even for the weighted norms: as remarked in the
theory section, the weight operators are actually only semidefinite in the contin-
uum limit. Therefore it would not be so surprising that the error reduction curves
for ELSM would have relatively long tails. This conclusion would also be con-
sistent with the rapid convergence to zero of the gradient norms. The spectrum
of the extended modeling operator may have some relation to the ray theory of
extended modeling, and is surely worth some attention.

The extra offset axis is an unattracitve aspect of extended modeling and inversion.
It adds to both memory and computation intensity of subsurface offset ELSM: as
noted by Mulder and van Leeuwen (2008), the cycles used in summations over
offset can easily overwhelm the other finite difference operations. Against this
considerable cost one must count the robustness of data fit against velocity error,
noted and illustrated above. However LSM assuming a sufficiently correct ve-
locity is of considerable interest, and one must wonder whether carrying the (in
principle) useless subsurface offsets is really necessary for an efficient LSM algo-
rithm. In fact, we have found that in the special case of ELSM for data-consistent
velocity, it is possible to enforce the focusing at h = 0 that should eventually result
by using only one sample in offset for the bulk of the computation. By resorting
to multiple offsets only for the computation of the model weighting operator, an
inexpensive step as it’s outside of the time loop, it is still possible to obtain the
sort of acceleration over CG described here. We will discuss the resulting effcient
LSM algorithm elsewhere.

This paper has adopted the simplest useful wave physics, constant density acous-
tics, and it is natural to wonder whether similar reasoning could be applied to
generate efficient extended inversion algorithms for more physically complete de-
scriptions of seismic wave motions. ten Kroode (2012) based his “wave equation”
approach to asymptotic Kirchhoff inversion on variable density acoustics, and a
similar treatment is certainly possible for Born inversion. The most important fur-
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ther step is surely to anisotropic elasticity. It remains to be seen, to what extend
asymptotic approximate inversion via wave equation computations is possible in
that setting, in particular whether multicomponent data and/or polarization is re-
quired. Finally, wave attenuation and dispersion are ubiquitous, and it is not even
clear what “asymptotic approximation” should mean when those phenomena are
significant.

CONCLUSION

We have proposed a model-dependent choice of norms in conjugate gradient al-
gorithm, based on the construction of a high-frequency asymptotic approximate
inverse to the extended Born modeling operator of constant-density acoustics, to
accelerate the convergence of iterative extended least squares migration. The
weighted norm algorithm has roughly the same computational cost as the un-
weighted algorithm commonly used for least squares migration, and in particular
involves no ray tracing. Numerical examples suggest that weighted conjugate
gradient iteration converges considerably more rapidly, and to a better extended
linearized inversion estimate of reflectivity, than does unweighted conjugate gra-
dient iteration. The improved convergence survives velocity error, as theory pre-
dicts, and even model features that contradict the theoretical underpinnings of
the wave-equation based asymptotic approximate inverse construction.
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ABSTRACT
This paper demonstrates a method for accelerating the convergence of itera-
tive least squares migration. The algorithm uses a pseudodifferential scaling
(dip- and spatially-varying filter) preconditioner together with a variant of
conjugate gradient iteration with iterate-dependent (“flexible”) precondition-
ing. The migration is formulated without the image stack, thus producing a
shot dependent image volume that retains offset information useful for veloc-
ity updating and amplitude-versus-offset analysis. Numerical experiments
show that flexible preconditioning with pseudodifferential scaling not only
attains considerably smaller data misfit and gradient error for a given com-
putational effort, but also produces higher resolution image volumes with
more balanced amplitude and fewer artifacts than is achieved with a non-
preconditioned conjugate gradient method.

INTRODUCTION

While prestack reverse time migration (RTM) (Baysal et al., 1983; Loewenthal
and Mufti, 1983; Mulder and Plessix, 2004) can produce accurate images of com-
plex subsurface structure, it can also suffer from unbalanced amplitude and il-
lumination artifacts, acquisition footprint, and imperfect focusing of the seismic
wavelet. Least squares RTM, or LSM, an alternate name for iterative least-squares
linearized inversion (Bourgeois et al., 1989; Chavent and Plessix, 1999; Nemeth
et al., 1999; Tang, 2009; Aoki and Schuster, 2009; Dutta et al., 2014; Luo and
Hale, 2014; Valenciano et al., 2015), can resolve the aforementioned problems of

33
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RTM (its first iteration) to some extent. Since each iteration requires a migration-
modeling pair, the expense of LSM can be considerable, yet achieving its benefits
requires that sufficient iterations be performed.

In this paper, we show how to accelerate iterative LSM by combining optimal
pseudodifferential scaling (Symes, 2008a; Nammour and Symes, 2009; Nammour,
2009) with the Flexibly Preconditioned Conjugate Gradient (FPCG) algorithm
(Notay, 2000; Knyazev and Lashuk, 2006). Our algorithm is designed to invert
each shot record individually, and thus produce image gathers that can be used
for velocity and amplitude-versus-offset analysis. We argue that the theoretical
properties of this algorithm suggest that it should substantially reduce the num-
ber of iterations required for good data fit and small LSM gradient, and illustrate
this conclusion with a number of examples showing the benefits of accelerated
LSM in better image amplitude and phase for a given computational effort.

Many previous works have addressed computational efficiency of LSM, or lin-
earized inversion. Our work belongs to the scaling genre, in which the (com-
putable) action of the normal operator or Hessian FT F of the scattering operator F
on an image or set of images is used to constrain a matrix representation, which is
then inverted to approximately solve the normal linear system equivalent to least
squares minimization. The type of algorithm explored in this paper originated
in the work of Claerbout and Nichols (1994), who computed an approximate in-
verse Hessian scale factor by point-wise division of migrated image FT d by the
output of the Hessian applied migrated image, that is, (FT F)FT d. Rickett (2003)
polished this idea and compared it with other alternatives for replacing the mi-
grated image in the denominator. This type of approximation implicitly presumes
that the Hessian acts mostly by space-dependent scaling of its input, that is, as a
spatially diagonal operator: in effect, that the Hessian acts mostly to modify am-
plitudes. However, Chavent and Plessix (1999) showed that the Hessian is not
spatially diagonal, or even diagonally dominant: that is, the Hessian is also a fil-
ter of non-zero width. They suggested taking this non-diagonality into account
via a partial mass-lumping method, that is, adding the off-diagonal terms to the
diagonal, and then scaling the migrated image by the inverse of resulting diagonal
matrix. Shin et al. (2001) suggested another narrow-band approximation to the
normal operator, which they call the pseudo-Hessian matrix. Guitton and Kaelin
(2006) replaced the diagonal multiplier of Claerbout and Nichols (1994) and Rick-
ett (2003) with a localized filter, and demonstrated a more accurate approximate
inversion in some cases. Symes (2008a) explained the non-diagonality observed
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by Chavent and Plessix (1999) and others: under well-understood conditions, the
normal operator is the product of a known power of the Laplace operator, which
is not a spatially diagonal operator, and another operator that really does act as
a spatially diagonal operator, at least so long as the image has a well-defined dip
field in most places, as seismic images of sedimentary structures tend to do. This
paper also introduced an inverse problem for finding the optimal scaling operator,
to replace pointwise division. In essence, optimal scaling is possible because the
normal operator (LSM Hessian) is pseudodifferential, that is, a space-varying filter
behaving like a polynomial in spatial frequency for large frequencies (Beylkin,
1985; Rakesh, 1988; ten Kroode et al., 1998; Stolk, 2000). Nammour and Symes
(2009); Nammour (2009) used this observation to extend optimal scaling to imag-
ing problems with conflicting dips, using an algorithm due to Bao and Symes
(1996) for approximating pseudodifferential operators efficiently. Herrmann et al.
(2008) implemented the same idea using a different approach to computing pseu-
dodifferential operators, based on their approximate diagonalization in curvelet
frames. Demanet et al. (2012) used the low-rank property implicit in the pseu-
dodifferential nature of the normal operator to approximately constrain a matrix
representation by its action on a randomly chosen set of vectors, then efficiently
inverting the matrix.

The works cited so far approximate the inverse normal operator, or approximately
solve the normal equation. It is natural to think that an approximate inverse could
be used to precondition iterative methods for faster convergence, and many of
the ideas described in the last paragraph have been used in this fashion, begin-
ning with Chavent and Plessix (1999). We mention in particular Herrmann et al.
(2009), who based a preconditioning construction on the use of curvelet repre-
sentation as in Herrmann et al. (2008). See Pan et al. (2014) for a comparison of
several scaling methods used as preconditioners.

Note that under some circumstances approximate least squares solutions can be
constructed via asymptotic analysis. The seminal paper Beylkin (1985) led to
much work on so-called Generalized Radon Transform inversion, which uses ray
tracing quantities to build a Kirchhoff-type integral approximating a pseudo in-
verse to the scattering operator. See ?Lameloise et al. (2015) for recent examples
of the use of asymptotic inversion based on ray-tracing to accelerate iterative LSM
or full waveform inversion. Recently it has been recognized that asymptotic ap-
proximate inverses may be constructed without any ray-trace computations what-
soever: see (Zhang et al., 2003; Stolk et al., 2009a; Hou and Symes, 2015b), and
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(Hou and Symes, 2015a) for the use of ray-free asymptotics for preconditioning.

The scaling operator concept (and our use of it) does not rely explicitly on high
frequency asymptotics or ray tracing, or involve any ray computations. However
its justification rests on the pseudodifferential property of the normal operator or
Hessian of the scattering operator, and that in turn is a consequence of the ray
asymptotics of the wave equation.

Our work differs from that described so far in two main respects. First, we ac-
celerate the solution of the shot record extension of linearized (or “Born”) forward
modeling, in which each shot is modeled by a reflectivity or model perturbation
proper to that shot, while sharing a background or reference model with all other
shots. The result of a least-squares Born inversion with this extended modeling
principle is an inverted extended reflectivity volume, analogous to the prestack
shot-record migration image volume - which is, in fact, the result of the first it-
eration of most iterative algorithms for solving the extended problem. The fixed
horizontal position slices of this migrated image volume are known as shot record
common image gathers or CIGs, and are crucial ingredients in migration-based ve-
locity analysis and amplitude-versus-offset analysis. All of the works cited so far
have concerned the non-extended version of the Born inverse problem. Our al-
gorithm iteratively inverts the extended Born modeling operator. The extended
reflectivity volume so constructed may be similarly sliced into higher-resolution
and more artifact-free version of migration CIGs, as we shall illustrate with sev-
eral examples.

The other major innovation in our work stems from the nature of scaling algo-
rithms, which do not in general produce an approximate inverse of the modeling
operator, but rather an operator that approximately solves the least squares prob-
lem with specific data. The scaling operator so produced likely does not solve
the least squares problem with any data other than that used to generate it. Thus
use of a scaling operator as preconditioner requires an algorithm that admits a
different preconditioner each iteration. In contrast, all of the work cited so far
uses conventional (fixed) preconditioned iterations. Fortunately, algorithms us-
ing iteration dependent preconditioning, called Flexibly (or Variably) Precondi-
tioned, have been studied in the computational mathematics literature (Notay,
2000; Knyazev and Lashuk, 2006). We combine a flexibly preconditioned con-
jugate gradient iteration with the pseudodifferential approximation of Bao and
Symes (1996) and the optimal coefficient selection of Symes (2008a) and Nam-
mour and Symes (2009); Nammour (2009) to substantially accelerate the conju-
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gate gradient algorithm for shot-record Born inversion, and improve the quality
of its output in the bargain.

We note that the preconditioning strategy presented in Hou and Symes (2015a)
and related algorithms are based on the use of subsurface offset extension, which
involves more expensive modeling and migration in comparison with ordinary
modeling and migration, but functions well with highly refractive velocity models
(“complex structure”, see Stolk et al. (2009b)). In contrast, while the shot-record
extension leads to accurate imaging only for mild lateral heterogeneity (no multi-
pathing, see Stolk and Symes (2004)), it is no more expensive than standard Born
modeling and RTM. Optimal pseudodifferential scaling doubles the cost of each
iteration of LSM, but considerably reduces the required number of iterations, for
significant overall reduction in computational cost, as we shall show.

The rest of the paper is organized as follows: In the theory section, we will briefly
discuss the LSM in shot record domain, illustrate its ill-condition property, then
review the pseudodifferential scaling optimization and describe a flexibly pre-
conditioned conjugate gradient (FPCG) method to solve the extended LSM prob-
lem in shot record domain. In the numerical results section, we apply the FPCG
method to two simple synthetic problems and to a Born inversion problem de-
rived from the Marmousi model, and compare its efficiency with ordinary conju-
gate gradient method. We end with a discussion of some possible future develop-
ments and applications of FPCG-accelerated extended LSM.

THEORY

We choose constant density acoustics for modeling wave propagation in the deriva-
tion of the following theory and algorithm. The constant density acoustic wave
equation with squared velocity m(x) = c2(x) and isotropic radiator source with
wavelet w(t) at source position xs is(

∂2

∂t2
−m(x)∇2

)
u(x, t;xs) = w(t)δ(x− xs). (1)

The shot-record extended Born approximation (Kern and Symes, 1994; Symes,
2008b) allows the model perturbation δm to depend on the shot-record parameter
as well as spatial location x. Since we use shot position xs to parametrize the
isotropic point radiator in equation 1, the extended model perturbation takes the
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same functional form δm(x;xs) as the image volume of prestack migration sorted
by shot record. The corresponding perturbational (or Born) wave equation is(

∂2

∂t2
−m(x)∇2

)
δu(x, t;xs) = δm(x;xs)∇2u(x, t;xs) (2)

The extended Born modeling operator is defined by sampling the perturbation field
δu at the receiver positions xr corresponding to each source:

F[m]δm(xr , t;xs) = δu(xr , t;xs). (3)

The adjoint operator FT of the extended Born modeling operator F is the re-
verse time migration (RTM) with the standard cross-correlation imaging condi-
tion (Tarantola, 1984b), but without the final stack over shot position: thus the
output of FT is a shot-dependent image volume field of the same type as δm.
The corresponding adjoint operator of the non-extended Born modeling operator
stacks the output of the extended adjoint over shot position to produce an image
(function of spatial position).

With these notational conventions, the linearized least squares, or LSM, problem
takes the following form: given a data perturbation d, find a model perturbation
δm to minimize

1
2
‖F[m]δm− d‖2. (4)

As (4) is quadratic in δm, the global minimizer is obtained at any stationary point.
Thus the minimizer of the problem (4) is equivalent to the solution of the normal
equations

FT Fδm = FT d, (5)

Since we will fix the background model m in almost all the cases, we write the ex-
tended Born modeling operator as F instead of F[m] for simplicity. Due to the size
of the problem, the computation of (FT F)−1, or solution of equation 5, by any vari-
ant of Gaussian elimination is infeasible even for 2D field-scale examples. Thus
iterative methods are used to solve equation 5. Most of these converge at rates
that depend on the spectrum of the normal operator FT F, and are faster when the
spectrum has small extent. However FT F tends to be ill-conditioned (have a spec-
trum spread over a large interval) for several reasons. The limited aperture of field
survey geometry implies that some structural perturbations have no appreciable
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impact on the Born seismogram, and imply existence of very small eigenvalues.
The dynamic range of geometric spreading also tends to spread the spectrum.
Most dramatic in effect is the frequency-dependent scaling between model and
data perturbation: in 2D, an oscillatory localized plane wave component of δm, of
spatial frequency k, results in an output of FT F amplified by O(k). The analogous
amplification in 3D is O(k2). This frequency-dependent scaling has been under-
stood since Beylkin (1985). In effect, the 2D version of FT F has the square root of
the Laplace operator as a factor, whereas the 3D version has the Laplace operator
itself. In the continuum limit, the spectrum is without bound; for discretization,
the largest eigenvalue grows in proportion to the Nyquist frequency.

Ill-conditioning due primarily to the frequency-dependent scaling of FT F has a
disastrous effect on convergence of iterative methods for solution of equation 5.
While the analysis simply suggests that the condition of equation 5 grows worse
with increasing frequency, numerical experiment suggests that it is quite bad al-
ready for length and frequency scales characteristic of exploration seismology.
We illustrate this effect with a simple example, in which we attempt to invert for
a model perturbation δm representing a single reflector in the presence of a slow
Gaussian anomaly in the background model, as shown in Figures 1a and 1b.

Figure 1: Slow Gaussian anomaly model: (a) background m, (b) perturbation δm.

We use point sources with impulse wavelets bandpass filtered with corner fre-
quencies 1 Hz, 7 Hz, 28 Hz, 35 Hz. A total of 81 point sources are placed at depth
20 m with a spacing of 50 m. 401 fixed receivers with a spacing 10 m are placed
at depth 10 m. Data is recorded until 2.4 s.

We use a very simple iterative algorithm, the steepest descent method with fixed
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Figure 2: Convergence curve of steepest descent method for the slow Gaussian
anomaly problem: (a) normalized data misfit (b) normalized gradient length.

step length chosen as a crude estimate of the reciprocal maximum eigenvalue of
FT F (Boyd and Vandenberghe, 2004). Although this choice of step length guar-
antees decrease of the objective function value at each iteration, very slow con-
vergence rate is expected if the condition number of FT F is large. The data misfit
history (Figure 2a) shows that there is no big decrease in the error after 3 steps
of iteration. The zigzag decrease of the normal residual (length of the difference
between the left hand side and right hand side in equation 5, Figure 2b) is typical
of the steepest descent method and indicates the ill-conditioning property of the
normal operator FT F.

This simple example strongly indicates that a reformulation of equation 5 is re-
quired for reasonably fast convergence of iterative solvers.

Pseudodifferential Scaling

The second author introduced an approximate inversion by scaling (Nammour
and Symes, 2009; Nammour, 2009), based on a fundamental observation about
the normal operator FT F established by Beylkin (1985); Rakesh (1988); ten Kroode
et al. (1998); Stolk (2000), namely that FT F is a pseudodifferential operator (Ψ DO)
under some conditions, a synopsis of which appears at the end of this section.
This fact underlies the effectiveness of migration as an imaging algorithm.
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We point out several important properties of Ψ DOs:

• their action preserves the location and orientation of localized oscillatory
plane waves;

• to each is associated an order, which captures the power of frequency with
which localized plane waves are scaled; and

• they are expressed via an oscillatory integral, examples below, and take the
form of a spatially variable filter.

The first of these facts explains the connection between the Ψ DO nature of the
normal operator and the imaging property of the RTM operator FT : its effect on
the data created by Fδm is to recover localized oscillatory plane waves compo-
nents of δm in location and orientation.

The oscillatory integral form of the Ψ DO FT F is

FT Fδm(x) ≈
∫
a(x,k) ˆδm(k)eik·xdk (6)

The function of position and wavenumber a(x,k) is the principal symbol of FT F; a
is homogeneous of order s in wavevector k (identical to the order of the operator,
mentioned above) and depends on the background model m. Note that if a were
independent of x, then equation 6 would define a filter, and thus could be com-
puted inexpensively via FFT. However, the dependence on x is essential: includes
geometric amplitudes and other factors. The theory of Ψ DOs (Taylor, 1981) re-
quires that a is smooth, that is, with arbitrarily many well-defined derivatives, in
both x and k. Smoothness of m implies this property for the principal symbol of
FT F, under some assumptions that will be detailed below.

The order s is dimension-dependent: for dimension d, the order is s = d − 1
(Rakesh, 1988). The sense of approximation suggested in equation 6 is asymp-
totic, in the sense that the difference between the two sides is O(|k|s−1), in terms
of spatial frequency.

From here on, we will consider the 2D case only. In particular, s = 1.

The pseudodifferential scaling problem (Nammour and Symes, 2009; Nammour,
2009) constructs an approximate solution of equation 5: for a given image, for
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example b = FT d with d the observed data, find a pseudodifferential operator Q
with principal symbol q(x,k) of order −1,

Qu(x) =
∫
q(x,k)û(k)eik·xdk, (7)

such that
QFT Fb ≈ b. (8)

That the order of Q should be −1 is a consequence of one of the rules for combin-
ing Ψ DOs: the product of two Ψ DOs is another Ψ DO, whose order is the sum
of the orders of the factors (Taylor, 1981). Since the identity operator is a Ψ DO
of order 0 (principal symbol ≡ 1!), and the 2D version of FT F has order 1, the
approximate inverse Ψ DO should have order −1.

Whatever approach one might use to solve the pseudodifferential scaling prob-
lem, it is necessary to compute the actions of the operators Q and FT F, if only to
gauge success. We will use a finite difference time-stepping method to approx-
imate both Born modeling (F) and RTM (FT ). To approximate the action of Q,
we use the algorithm of Bao and Symes (1996). This algorithm is based on the
observation that since the principal symbol q−1(x,k) of Q is homogeneous of or-
der −1 in k = kk̂ = (k cosθ,k sinθ), q−1(x,k) = k−1q−1(x, k̂) is a 2π-periodic smooth
function of θ, hence approximated using its first N + 1 Fourier components with
exponentially small error in N :

q−1(x, k̂) ≈ 1
2
c0(x) +

N∑
n=1

cn(x)Cn(k̂) + sn(x)Sn(k̂) (9)

The spatial functions {cn} and {sn} are Fourier coefficients, and {Cn} and {Sn} are
polynomials in the unit vector k̂ defined by the conditions:

Cn(k̂) = cosnθ
Sn(k̂) = sinnθ (10)

Recursion rules derived from the sum-of-angle formulas are the easiest way to
compute {Cn} and {Sn}:

Cn+1(k̂) = 2k̂1Cn(k̂)−Cn−1(k̂);C0 = 1,C1(k̂) = k̂1

Sn+1(k̂) = 2k̂2Cn(k̂) + Sn−1(k̂);S0 = 0,S1(k̂) = k̂2 (11)
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The reader will note that the first of these rules defines the Chebyshev polynomi-
als in k̂1.

It remains to discretize the equation 7 in x. Bao and Symes (1996) use cubic
spline approximation on a coarse nodal grid, taking advantage of the smoothness
of q(x,k) and the implied smoothness of {cn(x)} and {sn(x)}. In terms of a B-spline
basis {ψj(x) : 1 ≤ j ≤ J},

cn(x) =
J∑
j=1

c
j
nψj(x)

sn(x) =
J∑
j=1

s
j
nψj(x) (12)

Combine equations 9 through 12 with the definition 7 and rearrange to obtain the
approximation of the action of Q in terms of the coefficient sequence c = {cjn, s

j
n :

0 ≤ n ≤N,1 ≤ j ≤ J}:
Q[c]u(x) =

J∑
j=1

 N∑
n=0

[
c
j
n

∫
k−1Cn(k̂)û(k)eik·xdk + sjn

∫
k−1Sn(k̂)û(k)eik·xdk

] ψj(x). (13)

Each integral inside the square bracket is actually a filter hence can be computed
with the aid of the FFT at low cost. There are only O(N ) such filters to com-
pute, for a much lower total cost per application than a straightforward gridded
quadrature method applied to the definition 7. This reduction in cost is possible
because the approximation 9 has replaced a joint function of x and k with a sum
of products of x and k separately, and each of these can be computed using coarse
grid computations by virtue of the smoothness of q. See Bao and Symes (1996);
Nammour and Symes (2009) for a careful discussion of the computational cost of
this algorithm.

If the goal were to calculate the action of Q given the principal symbol q, then the
coefficient array c would have to be extracted from q by FFT and solution of a large
linear system. Instead, Nammour (2009) simply reformulates the optimal pseu-
dodifferential scaling problem to extract c directly from its data, via solution of
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an optimization problem: given an image b, for example b = FT d, find coefficients
c to minimize

‖b −Q[c](FT F)b‖2, (14)

Problem 14 is a quadratic least squares problem, and could be solved using an ap-
propriate numerical optimization method, for example conjugate gradient method.
Note that the number of unknowns here is (2N+1)J , which could be much smaller
than the unknowns of extended LSM: based on our experience, N ≈O(10) is ade-
quate, and J can be taken to be 2-3 orders of magnitude smaller than the number
of grid points of the model b (orm). Given the work estimate mentioned above for
each application of Q, the optimal pseudodifferential scaling problem is cheap to
solve, compared with the iterative extended LSM.

Nammour (2009) shows that the solution of problem 14 satisfies

Q[c]b ≈ (FT F)†b = (FT F)†FT d ≈ δm, (15)

for b = FT d with d = Fδm. (FT F)† denotes the Moore-Penrose pseudoinverse (Moore,
1920).

To summarize, to compute the optimal pseudodifferential scaling,

• Compute extended migration b = FT d;

• Apply normal operator to get re-migrated image (FT F)b;

• Solve problem 14 to get c;

• Compute Q[c]b ≈ (FT F)−1b.

We end this discussion by mentioning the restrictions that must hold in order
that the underlying assumption of this construction, namely that FT F be a Ψ DO,
is valid. Smoothness of the velocity model m is essential: presence of interfaces
typically implies the well-known tendency for reflectors to be imaged in multi-
ple locations, whereas Ψ DOs preserve reflector locations. For the physical (non-
extended) Born operator, the necessary additional conditions are rather mild: es-
sentially, no rays can arrive at the receiver or source arrays tangent to the surfaces
on which they lie, and scattering over π (diving waves) must also be ruled out
(or removed from the output of F) (Stolk, 2000). For the shot record extension,
an additional and rather strict assumption must be satisfied, namely that the ray
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field associated to m have no caustics in the region where δm , 0. This condition
effectively restricts preconditioning by pseudodifferential scaling to models with
mild lateral heterogeneity. Nolan and Symes (1996); Stolk and Symes (2004) thor-
oughly discuss the reasons for this restriction, which is related to failure of shot-
record extended prestack migration to act as an imaging operator in the presence
of caustics or multipathing.

Flexibly Preconditioned Conjugate Gradient Algorithm

Preconditioned conjugate gradient (CG) iteration (Nocedal and Wright, 1999; Golub
and van Loan, 1996) is simply the CG algorithm formulated with an inner product
different from the usual Euclidean dot product. Applied to least-squares prob-
lems such as equation 5, the effect is to alter the application of the adjoint oper-
ator (FT ) by appending another operator M. If MFT F ≈ I , convergence is much
accelerated.

It is tempting to use the approximate inverse Q, computed by solving equation
14 as in the previous section, for M in preconditioned CG, however that does not
result in accelerated convergence. The reason is that while Q satisfies equation 8
approximately, it is not generally an approximation to (FT F)† - it only approxi-
mates the action of the latter operator on a particular vector.

There is however a variant of preconditioned CG, called flexibly preconditioned CG
(FPCG), that makes use of this type of approximate solution of the normal equa-
tion as opposed to an approximate inverse of the normal operator. The algorithm
is listed explicitly in algorithm 2. The action of a conventional preconditioner is
replaced by an approximate solution of the normal equation at each step - thus
each iteration requires that Q, hence c, be constructed anew, and an additional
application of Hessian per iteration is required. In the algorithm listing, the con-
struction of the iteration-dependent preconditioning step is highlighted in red.

One thing to note is the formula for the direction update scalar β in algorithm 2
should be the Polak-Ribiere variant (Nocedal and Wright, 1999), as recommended
by Notay (2000), who proved that as long as the variation in the preconditioner
is sufficiently small, the FPCG method will have a convergence rate that is com-
parable with CG method with an approximate inverse of FT F as the iteration-
independent preconditioner. While the conditions for convergence developed in



46 Huang, Nammour and Symes

Algorithm 2 A flexibly preconditioned conjugate gradient method

Given data d and δm0 = 0, Born modeling operator F, RTM operator FT

Given maximum iterations MaxIter and i = 0
r0 = d, G0 = FT r0
compute c0 by solving equation 14 with b = G0
g0 =Q[c0]G0
p0 = g0
while (not converge && i < MaxIter) do

qi = Fpi

αi =
〈gi ,Gi〉
〈qi ,qi〉

δmi+1 = δmi +αipi
ri+1 = ri −αiqi
Gi+1 = FT ri+1
compute ci+1 by solving equation 14 with b = Gi+1
gi+1 =Q[ci+1]Gi+1

β =
〈gi+1,Gi+1 −Gi〉
〈gi ,Gi〉

pi+1 = gi+1 + βpi
i = i + 1

end while



Flexibly Preconditioned LSM 47

(Notay, 2000; Knyazev and Lashuk, 2006) do not appear to be verifiable in exam-
ples, the algorithm nontheless appears to perform reasonably well, as the exam-
ples to come will show.

We note that the behavior of the algorithm may be improved by modifying the
definition of F so that FT F is better approximated by a Ψ DO. For example, ap-
propriate mutes and window functions to remove diving wave energy and shallow
acquisition footprint will improve the approximate solution by pseudodifferen-
tial scaling. High pass filtering may also make this approximation more accurate,
since we keep only the leading order terms in frequency throughout our construc-
tions.

NUMERICAL EXAMPLES

In this section, we show several numerical results for the FPCG method and com-
parisons with conjugate gradient and steepest descent methods.

Wave equations are discretized using regular grid finite-difference scheme: 2nd
order accurate in time and 4th order accurate in space. We use free surface top
boundary condition and place sources and receivers below the surface. The choice
of free surface boundary condition and this acquisition geometry introduce two
derivatives to the data: vertical derivative over the source position and vertical
derivative over the receiver position (Hou and Symes, 2015b), which are approx-

imately equivalent to
∂2

∂t2
. Thus composing the original Born modeling operator

with the square of integral operator over time I2
t roughly undo the effect of using

this free surface boundary condition and acquisition geometry, where It =
∫
t
dt.

The FPCG method used in following examples contains two steps of precondi-
tioning: first, apply I2

t to both the input data and the source wavelet; second,
apply Algorithm 2 to the integrated data and the integrated source wavelet.

The first two examples concern recovering a single reflector under the presence of
a slow and a fast Gaussian anomaly in background model respectively. These two
simple synthetic examples are used to demonstrate the behavior of the proposed
algorithm. The last example is the Marmousi model with 450 m extended water
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layer, which is used to illustrate the capability and highlight the superiority of the
proposed method when a model has complex structures.

For each example, we show the convergence curves of solving extended LSM using
FPCG method and other methods, display the inverted extended image δm(x,xs).
We also show the stacked image

∑
xs

δm(x,xs), the target data, and the data residual

(the difference of the predicted and target data).

Slow Gaussian anomaly model

The slow Gaussian anomaly model is illustrated in Figures 1a and 1b. The acqui-
sition geometry is as described in the last section. Source and 3 shots of the data
are shown in Figures 3a and 3b.

Figure 3: (a) source wavelet with corner frequency 1 Hz, 7 Hz, 28 Hz, 35 Hz, used
in Gaussian anomaly examples (b) 3 of 81 Born shot records for slow Gaussian
anomaly example (Figures 1a and 1b.)

Data shown in Figure 3b is used as the observed data in this example (81 shots
- only 3 are shown here). Figure 4a shows the normalized data misfit (the value
of the objective function in equation 4) as a function of number of Hessian ap-
plications. Figure 4b plots the normalized normal residual (the L2 norm of the
difference of the right hand side and the left hand side with or without precon-
ditioning of equation 5). CG with windowing is the conjugate gradient method
with the forward map F replaced by FW , the composition of F and a window-
ing operator W which multiplies a smooth cutoff function that sets δm(x,xs) to
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zero from the surface to depth = 200 m: this is the depth range in which imaging
is dominated by acquisition footprint and large amplitude, making the Hessian
more ill-conditioned. The improvement of conditioning resulting from window-
ing out these effects is evident in the convergence plots, but is not sufficient to
bring the residual below 40% of its initial value in 20 iterations. Unwindowed CG
converges even more slowly.
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Figure 4: Slow Gaussian anomaly example: convergence curves of numerical
methods, (a) normalized data misfit and (b) normalized gradient length.

In contrast, FPCG (Algorithm 2, without windowing or muting) achieves 4% of
the initial residual RMS in 10 iterations. Note that each iteration of FPCG re-
quires a second application of the Hessian, hence is twice as expensive as each
iteration of CG. The convergence plots are arranged to take this expense differen-
tial into account: the horizontal axis unit is Hessian applications. In particular,
note that FPCG with 2 Hessian applications fits the data as well as CG with 20
Hessian applications (and depth windowing as described above, Figure 4a). In
this example, FPCG is the only method to approximate a stationary point of the
least squares objective, reducing the gradient length to a small fraction (0.8%) of
its original value in 20 iterations (Figure 4b).

Figures 5a and 5b show the inverted extended images or extended model pertur-
bations, the solutions of equation 5 using FPCG and CG method with windowing.
They are 2D views of 3D volumes. The physical model axes are labeled as ”Dis-
tance” and ”Depth”. The third axis without label is the shot record. Figures 6a, 6b,
7a and 7b compare the stacked images and data residuals of FPCG method and
CG method with windowing. Figures 5a and 5b and stacked images in Figures
6a and 6b show that the frequency contents in the final images are quite differ-
ent with and without preconditioning. Fewer artifacts are observed in the image
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Figure 5: Slow Gaussian anomaly example: inverted model perturbation cube
after 20 Hessian applications using FPCG (a) and using CG with windowing (b).

Figure 6: Slow Gaussian anomaly example: Stacked image after 20 Hessian appli-
cations using FPCG (a) and using CG with windowing (b).
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Figure 7: Slow Gaussian anomaly example: data residual, same 3 shots as in Fig-
ure 3b after 20 Hessian applications using FPCG (a), and using CG with window-
ing (b).

from FPCG method (Figures 5a and 6a). It is obvious from Figures 7a and 7b that
preconditioning improves the data fitting greatly as well as helps to attenuate
unwanted noise.

Fast Gaussian anomaly model

The fast Gaussian anomaly model is shown in Figure 8a. The acquisition geome-
try, source wavelet, and the true reflectivity model are the same as the slow Gaus-
sian anomaly model example. 3 shots of the data are shown in Figures 8b. Very
similar convergence behavior (Figures 9a and9b) as in the slow Gaussian anomaly
model example is observed in this set of tests. See Figures 10, 11 and 12 for
the comparison of inverted images, stacked images and data residuals by FPCG
method and CG method.

Marmousi model

To evaluate the potential of the FPCG algorithm to recover reflectivity with a wide
range of dips and strengths, we apply it to the a model derived from the Marmousi
model (Versteeg and Grau, 1991). We smoothed the model and added a 450 m
deep water layer to produce the smooth background model shown in Figure 13a.
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Figure 8: Fast Gaussian anomaly example: (a) background model, and (b) 3 of 81
Born shot records.
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Figure 9: Fast Gaussian anomaly example: convergence curves of numerical meth-
ods for (a) normalized data misfit and (b) normalized gradient length.

Figure 10: Fast Gaussian anomaly example: inverted model perturbation cube
after 20 Hessian applications using FPCG (a) and using CG with windowing (b).
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Figure 11: Fast Gaussian anomaly example: Stacked image after 20 Hessian ap-
plications using FPCG (a) and using CG with windowing (b).

Figure 12: Fast Gaussian anomaly example: Data residual after 20 Hessian appli-
cations using FPCG (a) and using CG with windowing (b).
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The difference between the original and a slightly less smoothed model serves as
the model perturbation or reflectivity field (Figure 13b). The model was gridded
at 8 m in both directions, and a finite difference method used to produce Born
data (Figures 14a, 14b). The source wavelet was a zero-phase bandpass filter with
corner frequencies 1 Hz, 6 Hz, 25 Hz, 30 Hz. 128 point sources were located at
depth 8 m with 48 m spacing. 1151 fixed receivers with 8 m spacing were placed
at depth 6 m. Final recording time was 3.4 s.

Figure 13: Marmousi example: (a) background model, (b) model perturbation.

Figure 14: Marmousi example: (a) source wavelet with corner frequencies = 1 Hz,
6 Hz, 25 Hz, and 30 Hz. (b) Born shot record, shot index 65.

Although we use Born modeling to generate the observed data, diving waves kine-
matics are still present since diving waves generated by the background model are
also perturbed. We have muted the diving waves, both in the target data and by
composing the modeling operator with a the same mute.

As in the previous examples, we used both CG with windowing and FPCG to
invert this data. The windowing operator in this case zeroes the first 450 m in
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Figure 15: Marmousi example: convergence curves of numerical methods, (a) nor-
malized data misfit and (b) normalized gradient length.

depth, with a smooth taper to avoid introducing high-frequency artifacts into the
inversion. Figure 15a shows the normalized data misfit as a function of Hessian
applications. Figure 15b plots the normalized normal residual or the gradient of
the CG and FPCG method. The FPCG method with 6 Hessian applications fits
the data better than the CG method with 20 Hessian applications (Figure 15a),
similarly for the gradient length.

Figure 16: Marmousi example: inverted model perturbation cube after 20 Hessian
applications using FPCG (a) and using CG with windowing (b).

Figures 16a and 16b show the inverted extended model perturbations produced
by these methods. The FPCG result (Figure 16a) shows both more accurate am-
plitudes and better forused wavelet than does the non-preconditioned CG re-
sult (Figure 16b). The superiority of the FPCG method is especially evident in
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the gather panel: the FPCG-produced events are better separated and flatter,
with fewer artifacts contaminating the image volume, than are the CG-produced
events.

Figure 17: Marmousi example: Stacked image after 20 Hessian applications using
FPCG (a) and using CG with windowing (b).

Figures 17a and 17b compare the stacked version of the inverted extended images
of FPCG method and CG method with windowing. We see that preconditioning
is effective in mitigating artifacts and producing a better balanced amplitude in
the image,as well as improving the resolution of the image especially in the deep
part (below 2.5km).

Figure 18a compares the well logs at x = 4000 m of inverted model perturbations
from the 44-th shot data by FPCG and CG with windowing methods with the true
reflectivity model. Both FPCG and CG with windowing recover the amplitude of
the shallow part of the model, while FPCG method restores relatively better the
amplitude of the deep part of the model than the non-preconditioned method.
The spectra of traces of inverted images corresponding to shot 44 are shown in
Figure 19a. It is clear that for the wavenumber range that could be explained by
these methods (between 0.003 1/m and 0.013 1/m), the amplitude of the inverted
image by FPCG method resembles that of the target image.

Since the LSM is in the shot record domain, the inverted image volume mini-
mizes the data residual, while the stack of the inverted image does not, although
the stacked image contains a lot of useful informations as well. That is why af-
ter stacking, the amplitude does not match the true reflectivity as shown in Fig-
ure 18b, but the amplitude from FPCG method is still relatively closer to the true
one than that from CG with windowing at the deep part of the model (below
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Figure 18: Marmousi example: Vertical trace comparison at x = 4000 m of target
model perturbation with inverted model perturbation cube from the 44-th shot (a)
and with stacked inverted image (b) by FPCG and CG with windowing methods
after 20 Hessian applications.
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Figure 19: Marmousi example: Spectrum comparison of the vertical trace shown
in Figure 18 of target model perturbation with inverted model perturbation cube
from the 44-th shot (a) and with stacked inverted image (b) by FPCG and CG with
windowing methods after 20 Hessian applications.
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2500 m). The corresponding spectra comparison of traces of stacked images are
shown in Figure 19b. Note that the traces and spectra of stacked images are for
visualization purposes and have no quantitative meaning.

Figure 20: Marmousi example: data residual, same shot record as in Figure 14b,
after 20 Hessian applications using FPCG (a), and using CG with windowing (b).

Data residuals from FPCG method and CG method with windowing are shown
in Figures 20a and 20b respectively. With preconditioning, data residual is small
everywhere, while the non-preconditioned CG is struggling to fit the deep part
(around and below 2s) of the data. We also see steeply-dipping events in the
residual from FPCG method, which is better modeled by the non-preconditioned
CG method. These events are close to diving wave perturbations, and are poorly
explained by the pseudodifferential scaling operator.

Figure 21: Marmousi example: data residual after dip filtering with 20 Hessian
applications using FPCG (a), and using CG with windowing (b).

Since these straight-line events are mainly due to refracted waves, with a partic-
ular apparent velocity, they can be suppressed through dip filtering. Figures 21a
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and 21b show the same data residual, but after application of a dip filter with cut-
off velocity here is 2500 m/s, so that events with slopes larger than 0.0004 s/m
are excluded. Figures 21a and 21b show the data residual after application of the
dip filter.
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Figure 22: Marmousi example: Relative power spectra of data residual (a) and
data residual after dip filtering (b) with respect to observed data.

The relative data residual power spectrum gives another way of appreciating the
effect of preconditioning. FPCG method suppresses error regardless of frequency
components, while CG method fits different frequency components in the data
differently, as can be observed in Figure 22a. The error spectra with dip filter
(Figures 22b) are slightly lower in amplitude than those without dip filter.

One advantage cited earlier for extended Born modeling is ability to fit data even
with incorrect velocity. The final example of this section illustrates this property.
The smooth background model depicted in Figure 23 is obtained by adding 70%
of the target model in Figure 13a and 30% of the constant model m = 2.25 m2/s2.
Note that the background model is scaled, thus the reflection coefficients at the
ocean bottom is different from the target model and the refracted waves gener-
ated by the target model will not be predicted correctly. Perturbations of these
refracted waves form a part of the data that could not be fit using shot record do-
main LSM, preconditioned or not, which is a feature of shot record domain model
extension. However, for the part of data that could be fitted, using shot record
domain model extension, preconditioning will still significantly improve the con-
vergence rate. We show the convergence curves for inversion of the Marmousi-
Born data (Figure 14b) with this incorrect velocity model in Figure 24a. As was
the case with correct velocity, a reasonably good fit is obtained, with most of the
remaining residual energy located near the diving wave perturbations, and the
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FPCG iteration is considerably more efficient than the CG iteration, by about the
same factor as for the correct velocity case.

Figure 23: Marmousi example, incorrect background model
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Figure 24: Marmousi example, incorrect background model: convergence curves
of numerical methods, (a) normalized data misfit and (b) normalized gradient
length.

Figures 25a and 25b show the inverted extended model perturbations. The gather
information is more valuable than the single shot image in this example, since the
background model is wrong. We see a better focused gather with preconditioning
(Figure 25a) compared with non-preconditioning (Figure 25b). The curvatures
in image indicate that the background model is smaller than the true model and
thus could be used to update the background model.

Figures 26a and 26b compares the stacked images of FPCG method and CG method
with windowing at wrong background model (as shown in Figure 23). We see that
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Figure 25: Marmousi example, incorrect background model: inverted model per-
turbation cube after 20 Hessian applications using FPCG (a) and using CG with
windowing (b).

Figure 26: Marmousi example, incorrect background model: Stacked image after
20 Hessian applications using FPCG (a) and using CG with windowing (b).
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the preconditioning is still helpful in mitigating artifacts in the image, and pro-
duces better balanced amplitude as well as improves the resolution of the image,
although the reflector positions are wrong.

Figure 27: Marmousi example, incorrect background model: data residual, same
shot record as in Figure 14b, after 20 Hessian applications using FPCG (a), and
using CG with windowing (b).

Finally, the data residuals depicted in Figures 27a and 27b, using the same grey
scales as in Figures 20a and 20b, confirm the ability of shot record extended Born
modeling to fit data very well even with incorrect velocity. Once again, the FPCG
residual is considerably smaller than the CG residual, even though the same com-
putational effort has been expended in producing both.

DISCUSSION

The acceleration technique presented here suffers from some strict limitations
on its validity, noted in the section on pseudodifferential scaling: for example,
it depends on more or less unique energy paths between sources, receivers, and
scattering points. However, within the domain of validity - mild lateral velocity
variation and slow changes in spatially averaged index of refraction - it provides
an inexpensive and effective way to accelerate iterative LSM.

We have examined only the simplest relevant wave physics in this paper, namely
constant density acoustics. However, the foundations have been laid long since
for extension to variable density acoustics and indeed to elasticity (Beylkin and
Burridge, 1990; Burridge et al., 1998; De Hoop and Bleistein, 1997) This extension
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amounts to a rational version of amplitude versus offset (AVO) analysis, with illu-
mination based amplitude artifacts have been removed (Tarantola, 1984a; Lörtzer
and Berkhout, 1989; Castagna, 1993; Luh, 1993). Accelerated convergence in
these settings can in principle be achieved using similar ideas - for some first
steps see Nammour and Symes (2011).

A fast extended LSM available could be used in a form of optimization based mi-
gration velocity analysis based on Born inversion (Liu et al., 2014; Symes, 2015;
Huang and Symes, 2015). In fact, inversion (as opposed to migration), with its
improved amplitude and especially phase, is actually essential for reliable func-
tioning of such objective velocity analysis algorithms (Kern and Symes, 1994;
Lameloise et al., 2015).

CONCLUSION

We presented a flexibly preconditioned conjugate gradient algorithm with pseu-
dodifferential scaling preconditioner to improve the convergence rate of shot record
extended least squares migration method. Flexible preconditioning differs from
the usual preconditioning using a fixed operator, in that the preconditioner is
computed anew at each step. Scaling preconditioning, costing one additional ap-
plication of the Hessian per iteration, requires the use of an iteration-dependent
preconditioner. We have shown how such a an algorithm can be based on a fast
algorithm for application of pseudodifferential operators.

Although the computational cost associated with one image update via FPCG
method is effectively twice that of ordinary CG method per step, the FPCG method
has been shown to converge much faster. The faster convergence more than com-
pensates for the increased cost per step: FPCG produces more accurate inverted
extended model perturbations, with better amplitudes and more focused events,
than does CG, for the same computational effort.
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Scattering and dip angle decomposition in relation
with subsurface offset extended wave-equation

migration

Raanan Dafni and William W. Symes

ABSTRACT
An angle-dependent reflection coefficient is recovered by seismic migration
in the angle-domain. We propose a post-migration technique for computing
scattering and dip angle common-image gathers (CIGs) from seismic images,
extended by the subsurface offset, in relation with wave-equation migration
methods. Our methodology suggests a system of Radon transform operators
by introducing local transform relations between the subsurface offset im-
age and the angle-domain components. In addition to the commonly used
decomposition of the scattering-angle, the methodology associates the wave-
equation migration with dip-domain images as well. The same post-migration
subsurface offset image is employed to decompose scattering and dip angle
CIGs individually, or to decompose a multi-angle CIG by showing simultane-
ously both angles on the gathers axis. A unique dip-angle response of seismic
reflections is introduced as a spot-like signature, focused at the specular dip of
the subsurface reflector. It differs from the well-studied smile-like response
usually associated with reflections in the dip-domain. The contradiction is
clarified by the nature of the subsurface offset extension, and by emphasiz-
ing that the angles are decomposed from the subsurface offset image after
the imaging condition, without directly involving the propagating incident
and scattered wavefields. Several synthetic and field data examples demon-
strate the robustness of our decomposition technique, by handling various
subsurface models, including seismic diffractions. It is our belief that dip-
angle information, decomposed by wave-equation migration, would have a
great impact in making the scattering-angle reflection coefficient more reli-
able and noise-free, in addition to the acceleration of wave-equation inversion
methods.
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ABSTRACT
Accurate representation and estimation of seismic sources is essential to
the seismic inversion problem. General sources can be approximated by a
truncated series of multipole point-sources, depending on the finiteness and
anisotropy of the source. Unfortunately the number of terms in the multipole
expansion needed to accurately represent a given source is problem depen-
dent and not known a priori in general. Most research in joint determination
of source and medium/model parameters assume isotropic point-sources re-
sulting in an inability to fit the anisotropy observed in data, ultimately im-
pacting the recovery of model parameters.

In my work I propose a novel method of joint model-source inversion
that handles general sources by incorporating two methodologies: Occam’s
inversion, also referred to as minimum structure inversion, and the variable pro-
jection (VP) method. Occam’s inversion regularizes ill-conditioned parameter
estimation problems by minimizing a complexity criterion subject to a data fit
constraint. In my approach I represent the seismic source as a series of multi-
pole point-sources with minimal number of terms, hence minimal-source, sat-
isfying certain data misfit criteria as model parameters are updated. The VP
method solves nonlinear least squares problems with separable structure, i.e.,
residual function is a linear combination of nonlinear functions. My proposed
algorithm incorporates VP for solving the joint model-source full waveform
inversion (FWI) problem, where source parameters are linear with respect to
data residual. The approach I propose here does not claim to solve the diffi-
culties associated with model inversion but instead seeks to preserve the re-
coverability of model parameters under unknown anisotropic sources. Thus,
difficulties associated with model estimation will be minimized by choosing
starting models correct enough for FWI to produce decent results; predicted
traveltimes from starting models are at most half a wavelength off from the
data.

In this proposal I present some numerical examples showing that conver-
gence rates for finite difference (FD) solvers can be preserved in the presence
of singular source terms, mainly spatial delta functions and its derivative. I
also give some joint model-source inversion results for simple 2-D constant-
density acoustic media with assumed isotropic source term.

My proposed work will consist of implementing the model and minimal-
source inversion algorithm, and related forward solvers (e.g., elasticity FD
solvers), as part of the seismic inversion software package IWAVE. I will in-
vestigate the interplay between source and medium anisotropy that may re-
sult in potential source-model ambiguity, in particular for the case of vertical
transversally isotropic (VTI) elastic media. I will also investigate the sensi-
tivity of my proposed inversion algorithm to modeling errors for controlled
synthetic and field test cases, primarily inverting data from an elastic medium
modeled with acoustics.
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INTRODUCTION

Accurate representation and estimation of seismic sources is essential to the seis-
mic inversion problem. I propose a novel method for joint model-source parame-
ter estimation that handles general sources with unknown anisotropy. Joint recov-
erability of model-source parameters, with an emphasis on the interplay between
anisotropic medium and general anisotropic sources, is the primary interest of
this work and will be explored under some reasonable assumptions. The approach
I propose here does not claim to solve the difficulties associated with model inver-
sion but instead seeks to preserve the recoverability of model parameters under
unknown sources.

Motivation

Seismic data in the form of seismograms contain information about the source
and receiver responses as well as properties of the Earth’s medium, the latter be-
ing of priority in exploration seismology. Conventional methodology focused on
removing the source dependency of seismograms as a preprocessing step in seis-
mic imaging by estimating the source time signature through statistical meth-
ods like predictive deconvolution Robinson (1957) and homomorphic deconvo-
lution Ulrych (1971). Ziolkowski has criticized these statistical methods for im-
posing unrealistic, and at times theoretically unjustifiable, constraints on both
the source and medium, yielding arguable results vulnerable to subjectivity Zi-
olkowski (1991). Alternatively, source time signatures for the Vibroseis™ and
air-gun array sources have been estimated using near field measurements with
some success, see Ziolkowski (1991) and Landrø and Sollie (1992) . Source esti-
mation via near field measurements will depend on how the source is modeled
( i.e., represented mathematically) and the near-field data’s dependency on the
medium, which can be unknown in applications where the source-receiver path
is partially submerged in unknown medium or the direct arrival cannot be cleanly
separated from the data.

Starting in the late 1980’s, efforts in decoupling source-medium interactions in
the context of seismic imaging shifted from removal of the source in seismic
traces to the joint determination of source and medium parameters. Early at-
tempts focused on proving theoretically the co-determinability of source time-
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dependecy and model parameters from reflectivity data under simplifying as-
sumptions: acoustic layered models, quasi-impulsive and non-impulsive sources,
primaries only data, inverting for only one model parameter (reflectivity); Ramm
(1985),Lewis (1989),Bube et al. (1988),Minkoff and Symes (1995). Later works
have implemented and tested the feasibility of joint model and source inversion
in a variety of synthetics and field data, testing the limits on the assumptions of
joint model-source recoverability theory and going beyond in some cases, e.g.,
Minkoff and Symes (1997), Wang et al. (2009), Zhou et al. (1997).

Despite some successful inversions, the joint determination of source and model
parameters under more realistic and general model assumptions can be difficult
and in some cases impossible as demonstrated by Delprat-Jannaud and Lailly
(2005). A simple 1-D isotropic acoustic medium is considered while inverting
for an isotropic point source and a “not so simple” impedance profile, assuming
velocity is known. Errors due to incorrect source time-dependency (i.e., wrong
phase, amplitude, and time shift) were shown to lead to accumulating errors in
depth. Moreover, source-model ambiguity is shown to be significant for both con-
stant and varying velocity cases, in which authors concluded that codetermination
of both source and model is infeasible due to high sensitivity and ambiguity of
model parameters with respect to the source time-dependency. The authors high-
light a fundamental limitation of joint source-model inversion but also, from an
optimistic point of view, motivate the further study of model-source ambiguities
in order to overcome them. More importantly, their work emphasizes just how
detrimental errors in the source can be to model inversion, or conversely how
important a “correct” source is model inversion.

Accurate estimation of seismic sources raises the more fundamental question of
source representation. All of the works mentioned above, with the exception of
Minkoff and Symes (1997), idealize the source contribution to that of an isotropic
source with spatial point support. Assuming that sources are essentially of point-
support is justified by the fact that the spatial dimension of seismic sources con-
sidered in exploration seismology are considerably smaller (typically by a magni-
tude) than the propagating wavelengths of seismic waves. The isotropy assump-
tion however is questionable, particularly when the source is known or poten-
tially expected to have an anisotropic radiation pattern. A perfect example is that
of an array of air-guns in marine seismic surveying where the effective radiation
pattern of the source is known to exhibit vertical directivity. As a matter of ex-
ample, Minkoff and Symes (1997) demonstrate the importance of accounting for
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anisotropy in the airgun array source for marine reflection field data where both
reflectivity and source terms were inverted for. Their results show that invert-
ing for anisotropic source terms, as oppose to using a given modeled source or
even inverting for an isotropic source, allows them to account for 25% more of
the data and were able to achieve 90% data fit up to a gas-sand target. Moreover
recovered medium parameters matched closely expected lithology, but only with
an isotropic source representation. Active work in seismic anisotropic source in-
version is primarily focused on the estimation of earthquake mechanisms, and
recently microseismic events (small earthquakes) resulting from hydraulic frac-
turing. Sources are typically assumed to be point double couples (DC) as to ap-
proximate the radiation pattern exhibited by a slipping fault. I refer to Aki and
Richards (2002), Shearer (2009), Jost and Herrmann (1989), Julian et al. (1998) for
an introductory discussion on this topic. Higher order multipole representations
have also been considered in cases where finiteness of source (i.e., size of fault)
leads to anisotropy unaccounted for in a DC model; Li et al. (2006), Stump and
Johnson (1982).

General sources of finite volume can be approximated by a truncated series of
multipole point-sources depending on the finiteness and anisotropy of the source;
this is the concept of the multipole expansion of sources commonly used in elec-
tromagnetism. Authors in Santosa and Symes (2000) analyze and quantify the
accuracy of multipole point-source approximations for the context of acoustic
sources using a combination of far-field and spherical harmonic expansions. Un-
fortunately, the number of terms in the multipole expansion needed to accurately
represent a given source is problem dependent and not known a priori for the
types of applications considered here. In Minkoff and Symes (1997) the number
of source terms needed was derived by trial by error during their preliminary
studies, where fewer terms would have lead to unexplained amplitude-versus-
angle behavior in the data.

In my work I seek to incorporate the importance of an accurate source represen-
tation for fitting seismic data in the context of seismic imaging, in hopes that
it will lead to better inversion results for model parameters. I propose a joint
source-model inversion algorithm that will automate, in a sense, the trial and
error procedure from Minkoff and Symes (1997) as a means for handling gen-
erally sources, where no structure on the source representation is assumed. My
algorithm is based on Occam’s inversion, also referred to as minimum structure in-
version: higher order multipole point-source terms are systematically introduced
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in the source representation, under the condition that the data can be better ex-
plained. In other words, the algorithm is biased towards more simplistic/minimal
sources of lower multipole terms and only considers adding complexity if it ben-
efits in driving the data residual down enough.

An added bonus of using a multipole point-source representation is that it yields a
linear relationship between source parameters and data, mainly through convolu-
tion in time with an appropriate Green’s function. The linearity of source param-
eters qualifies the joint source-model inversion problem for separable nonlinear
programming methods, primarily that of the variable projection (VP) method de-
veloped by Golub and Pereyra (1973). The VP method reduces the nonlinear LS
problem, resulting from an inversion formulation, by essentially eliminating the
source parameters and redefining the objective function in terms of model param-
eters only. In practice, VP methods, coupled with Gauss-Newton type algorithms
for solving nonlinear LS problems, have been proven to outperform their non-
reduced counterparts in some cases, Ruhe and Wedin (1980). My proposed algo-
rithm will also incorporate the VP method as a means to alleviate the difficulty of
joint source-model inversion.

Claim

Accurate representation and estimation of seismic sources is essential to the seis-
mic inversion problem where the goal is to recover medium parameters from
recorded seismograms. Most work in joint determination of model and source
parameters assumes that the structure of the source is given a priori, a practical
but unrealistic assumption in some applications. I propose the method of model
and minimal source estimation for handling the joint source-model inversion prob-
lem under general, possibly anisotropic, point-sources. My proposed algorithm
will incorporate the variable projection (VP) method to mitigate the difficulties of
joint source-model inversion, as well as Occam’s inversion for recovering the best
minimal source that explains the data sufficiently well.

My proposed work will consist of implementing the model and minimal-source
inversion algorithm, and related forward solvers (e.g., elasticity FD solvers), as
part of the seismic inversion software package IWAVE. Joint recoverability of
model-source parameters, in particular for anisotropic medium and general sources,
is the primary interest of this work and will be explored under some reasonable
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assumptions. The approach I propose here does not claim to solve the difficulties
associated with model inversion but instead seeks to preserve the recoverability
of model parameters under unknown sources. I consider full waveform inversion
(FWI) for the model parameter estimation aspect of the joint model-source in-
version. Moreover, the difficulties associated with model estimation will be min-
imized by choosing starting models correct enough for FWI to recover the true
model; predicted traveltimes from starting models are at most half a wavelength
off from the data. I will investigate the interplay between source and medium
anisotropy that may result in potential source-model ambiguity, in particular for
the case of vertical transversally isotropic (VTI) elastic media. I will also investi-
gate the sensitivity of my proposed inversion algorithm to modeling errors for
controlled synthetic and field test cases, primarily inverting data from an elastic
medium modeled with acoustics.

Agenda

The following sections in this document cover some of the methodology and pre-
liminary results for this project. In the methods section, I develop the formulation
for the proposed model and minimal-source inversion algorithm to better eluci-
date some of its key ideas. I also discuss discretization techniques used for repre-
senting singular source terms, in particular multipole point-sources, on uniform
grids points so as to preserve convergence order of finite difference schemes used
to solve the forward problem. A numerical convergence study for finite difference
schemes with discretized multipole point-sources is covered in the preliminary
results section, along with some very preliminary work on joint model-source
inversion, mainly 2-D constant-density acoustics with assumed isotropic source
term.

METHODS

A clear challenge and point of interest for this project will be the interplay be-
tween anisotropy of source and medium, and ultimately its impact on the inver-
sion of medium parameters. Thus in the development of my proposed model and
minimal-source inversion algorithm I consider the linear elasticity equations as I
formulate the related forward and inverse problems. As mentioned earlier, I plan
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on applying my inversion process to recover model parameters from VTI elastic
media, which follows as a special case of the linear elasticity equations. The mul-
tipole point-source representation is also presented in the development of the for-
ward problem as a parametrization of source parameters for general anisotropic
sources. After developing the forward problem, the joint model-source inverse
problem is first stated as an output least squares problem, after which is refor-
mulated through by application of the VP method. The last methods subsection
derives the proposed model and minimal-source inversion algorithm, highlight-
ing some of the key aspects of the method for handling general anisotropic sources
by an Occam’s inversion type strategy.

The second half of this section concerns methodology for incorporating multipole
point-source terms into forward solvers, particularly finite difference (FD) meth-
ods. I cover a technique developed by Waldén (1999) for discretizing constituents
elements of multipole point-sources, that is derivatives of the delta function δ(x).
The goal is to approximate the singularity of the source term by a more regu-
lar function of compact support such that the overall convergence rate of the FD
method is maintained.

Model and Minimal-Source Inversion Formulation

Forward Problem

For the forward problem, I will be considering the 3-D linear elasticity equations
in displacement-stress form:

ρüi = fi +
∂
∂xj

σij (1a)

σij = cijmn
∂
∂xn

um (1b)

for i, j,m,n = 1,2,3, where ρ is density, u ∈ R3 is the displacement field vector, f ∈
R

3 is the body force density, σσσ ∈R3×3 is the second-order stress tensor, and cijmn is
the fourth-order Hooke’s tensor from linear elasticity. Note that summation over
repeated indices is assumed, unless otherwise specified.

The general solution to Eq.(1) over a volume V , assuming homogeneous boundary



Anisotropic Source Inversion 79

and initial conditions, can be shown to be given by

ui(x, t) =
∫
V
dV (ηηη) fj(ηηη, t) ∗Gij(x, t;ηηη) (2)

where ‘∗’ denotes convolution in time and Gij(x, t;ηηη) is the Green’s function that
satisfies the elasticity equations with an impulsive source, i.e.,

ρ
∂2

∂t2
Gij = δijδ(x−ηηη)δ(t) +

∂
∂xj

{
cijmn

∂
∂xn

Gmn

}
, ∀x ∈ V ,

with homogeneous boundary and initial conditions. See Aki and Richards (2002)
for a derivation of these results. Work by Santosa and Symes (2000) has shown
that small acoustic anisotropic sources can be approximated to any degree of ac-
curacy by a multipole-point-source series, where the number of terms in the series
depends on the dimensions of the source region, desired accuracy, and anisotropy
of source. Thus, it suffices to equate f in Eq.(1) to some truncated multipole point-
source series centered at some ηηη∗ ∈ V ,

fj(ηηη, t) =
∑
|s|≤N

(−1)|s|Fj;s(t)Ds
ηηηδ(ηηη −ηηη∗), (3)

where I have used multi-index notation with s ∈N3
0, and hence

Ds
ηηη =

(
∂
∂η1

)s1 ( ∂
∂η2

)s2 ( ∂
∂η3

)s3
, |s| =

3∑
i=0

si .

I will assume that results from Santosa and Symes (2000) can be extended to the
elasticity case. In Eq.(3), the 4th-order tensor Fj;s for j ∈ {1,2,3} and |s| ≤ N is
related to the N -order force-moment tensor, reminiscent of the seismic moment ten-
sor in earthquake seismology; see Backus and Mulcahy (1976a) and Backus and
Mulcahy (1976b). Lastly, inserting Eq.(3) into Eq.(2) yields

ui(x, t) =
∑
|s|≤N

Fj;s(t) ∗Gij,s(x, t;ηηη∗), (4)

where
Gij,s(x, t;ηηη∗) :=Ds

ηηηGij(x, t;ηηη)
∣∣∣∣
ηηη=ηηη∗

.
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Least Squares Formulation

I first formulate the inverse problem as output least squares (OLS) and then in-
troduce a matrix-vector formulation, leading to the application of variable pro-
jection.

The OLS problem seeks to minimize the error in a least squares sense between
observed and predicted data, i.e., minimize OLS objective function ΦOLS ;

ΦOLS :=
1
2

Nr∑
r=1

Nk∑
k=1

∣∣∣∣uir (xr ,ωk)− d(xr ,ωk)
∣∣∣∣2

=
1
2

Nr∑
r=1

Nk∑
k=1

∣∣∣∣ ∑
|s|≤N

Fj;s(ωk)Gir j,s(xr ,ωk;ηηη
∗)− d(xr ,ωk)

∣∣∣∣2.
The indices r and k correspond to a discrete sample of receiver and frequency
points {xr}

Nr
r=1 and {ωk}

Nk
k=1 respectively. Note that indexes ir allude the possibility

of multicomponent data. Also, note that we are minimizing the Fourier transform
of the observed and predicted data, as hinted by their dependency on a sample of
frequencies ωk; this is done to decouple the source parameters from the Green’s
function terms since convolution is multiplication in frequency space. For each
frequency ωk, I assemble the Green’s function Gir j,s(xr ,ωk;ηηη

∗) into a matrix Gk,

source parameters F(n)
j;s (ωk) into vector fk, and data points d(xr ,ωk) into vector dk

such that

{Gkfk}r =
∑
|s|≤N

Fj;s(ωk)Gir j,s(xr ,ωk;ηηη
∗), and {dk}r = d(xr ,ωk).

Thus,

ΦOLS =
1
2

Nk∑
k=1

(Gkfk −dk)
T (Gkfk −dk) =

1
2

Nk∑
k=1

‖Gkfk −dk‖2.

The dimensions of the vectors and matrix given above;

dim(dk) = 2Nr

dim(Gk) = 2Nr × 2N∗

dim(fk) = 2N∗
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where N ∗ is the total number of terms in the multipole expansion, and the factor
of 2 accounts for the imaginary and real components of the now complex matrix
and and vector elements. Finally, I introduce the following augmented matrix G
and vectors f and d,

G :=


G1

G2
. . .

GNk

 , f :=


f1
f2
...

fNk

 , d :=


d1
d2
...

dNk

 , (5)

with
dim(d) = 2NrNk

dim(G) = 2NrNk × 2NkN∗

dim(f) = 2NkN∗
I now obtain the final form of the OLS objective function:

ΦOLS[f,m] =
1
2
‖G(m)f−d‖2, (6)

where the dependency of the Green’s functions matrix G on vector of model pa-
rameters m is implicit. The form of ΦOLS in Eq.(6) conveniently demonstrates
explicitly the linearity of the calculated data with respect to source parameters,
neatly packed into vector f. Note that the matrix-vector form given in Eq.(6) could
have also been derived in the time domain, though with a more complicated ma-
trix G and convoluted arrangement of source parameters.

Applying Variable Projection Method

The nonlinear LS problem from Eq.(6) exhibits a special structure, where param-
eters we wish to invert for can be split into two groups: parameters such that the
forward map

F [f,m] = G(m)f (7)

is a linear and nonlinear function with respect to said parameters, i.e., source
parameters f and model parameters m respectively. The variable projection (VP)
method, as developed by Golub and Pereyra (1973), seeks to exploit the separable
structure in nonlinear LS problems by eliminating the linear parameters, via an
orthogonal projection resulting from a linear LS problem.
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I now formulate the VP problem related to the previously discussed OLS problem:
minimize VP objective function ΦV P [m], where

ΦV P [m] := ΦOLS[f(m),m], and f(m) := argmin
f

ΦOLS[f,m]. (8)

Note that evaluating f(m) requires solving a linear LS problem. Furthermore, we
can obtain an explicit form of f(m) by solving the normal equations associated
with the respective LS problem;

G(m)TG(m)f(m) = G(m)Td. (9)

A clear benefit of VP is the reduction of parameters to invert for, though it may
come at the price of a “more nonlinear” reduced function. Fortunately, the re-
duced objective function preserves the global minimizer as well as stationary
points

Model and Minimal-Source Inversion Algorithm

Occam’s inversion, also referred to a minimum-structure inversion, was first in-
troduced by Constable et al. (1987) for generating 1-D smooths models from elec-
tromagnetic sounding data. This inversion formulation is based on Occam’s prin-
ciple, where “... among competing hypotheses that predict equally well, the one
with the fewest assumptions should be selected.”1 Constructing models from
electromagnetic sounding data is a difficult task due to several difficulties, in-
cluding non-uniqueness and ill-conditioning issues. Occam’s inversion attempts
to regularize the problem by seeking the smoothest model that best explains the
data, in order to avoid overfitting the data with unnecessary features in the esti-
mated parameters. Ideally the resultant smooth model will be a lower resolution
representative of the real model, reflecting the limited information inherent in
the data.

In the spirit of Occam’s inversion I propose a joint model-source inversion that
promotes “simplicity” in the source representation as the model parameters are
refined. In other words, higher order multipole terms will not be considered un-
less deemed necessary to fit the data. A two pronged approach is taken to promote

1From Wikipedia.
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a bias towards minimal-sources of low order multipole terms during the inver-
sion process. First, a regularization term is added to ΦOLS to better-condition the
source inversion step implicit in the definition of the VP objective function;

ΦOLS[f,m] =
1
2
‖G(m)f−d‖2 +

µ

2
‖f‖2

thus modifying ΦV P ,
ΦV P [m] = ΦOLS[f(m),m],

where f(m) now solves the normal equations[
G(m)TG(m) +µI

]
f(m) = G(m)Td.

Note that the regularization term will bias f(m) towards more minimal-sources,
i.e., complex sources with more multipole terms in the expansion will be penal-
ized. The second approach, and the key component of the algorithm, consist of
a strategy for gradually introducing complexity in the source representation if a
significantly better data fit can be achieved. I know give a sketch of the proposed
algorithm to better elucidate the minimal-source strategy.

Let GN (m) and fN denote the Green’s function matrix and source parameter vec-
tor as defined in Eq.(5), though now indexed by the highest multipole order N
from expansion in Eq.(3). For example, theN = 0 case only includes the monopole
terms in G0(m) and f0, while, sayN = 1, contains both monopole and dipole terms
in G1(m) and f1. The joint model and minimal-source inversion algorithm is given
below.

Algorithm 1. Joint model and minimal-source inversion:

1. Compute initial model m1

2. for k = 1,2, ...

2.1. for N = 0,1, ...
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• compute and assemble GN,k := GN (mk).
• solve normal equations for fN,k := fN (mk),[

(GN,k)TGN,k +µI
]
fN,k = (GN,k)Td.

• compute current misfit X2
N := ‖GN,kfN,k −d‖2, and ∆X2 :=

X2
N −X

2
N−1 for N ≥ 1.

• Stopping criteria for N -loop:
(i) if X2

N ≤ ε
2, then exit N -loop with N ∗ =N .

(ii) if N ≥ 1 and ∆X2 > 0, then exit N -loop with N ∗ =
N − 1.

(iii) if N ≥ 1 and −∆ < ∆X2 < 0, for some ∆ > 0, then
exit N -loop with N ∗ =N − 1.

end N -loop

2.2 Update model parameter mk→mk+1 from the reduced objective
function ΦV P , with G(m) = GN ∗(m).

2.3 Check stopping criteria for k-loop.

end k-loop

The for-loop over N in step 2.1 is the crucial component to minimal-source in-
version, it incrementally incorporates higher order multipole terms in the source
representation until any of the exiting if -statements are satisfied. The first if -
statement truncates the multipole expansion at the current value of N if the mis-
fit is smaller than some given tolerance ε2. In other words, if the data is fitted
well enough with an N -order multipole-point source adding higher order terms
would be unnecessary. Note that in the early iterations, as m is refined, it may
be difficult or simply not plausible to satisfy (i) for a reasonable N since the cur-
rent model mk may be far enough from the true model. If -statements (ii) and
(iii) alternatively give criteria in terms of relative improvement of misfit as higher
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order multipole terms are added. Namely, if the misfit increases in the next N -
iteration (∆X2 > 0 ⇐⇒ X2

N > X2
N−1), then the multipole expansion is truncated

at the previous step, i.e., N − 1. If however the next N -iteration yields a smaller
misfit (∆X2 < 0), but the improvement in misfit is too small (−∆ < ∆X2), then the
multipole expansion is still truncated at the previous step. To summarize, step 2.1
automates the process of gradually incorporating higher order multipole terms in
the source representation in such a manner that if the data can be fitted reason-
ably well, or if adding more terms does not reduce the misfit enough, then a lower
order source representation is preferred.

Multipole Point-Source Approximation

Formulating the source term f as a truncated series of multipole point-source
terms resulted in a forward map F [f,m], see Eq.(7), that is linear with respect
to source parameters f. Consequently, in order to evaluate the forward map,
or elements of Green’s function matrix G, one must solve a PDE with increas-
ingly singular source terms that involve derivatives of the spatial delta function,
Ds
ηηηδ(ηηη −ηηη∗). Errors from the discretization of singularities can have a detrimen-

tal effect on the overall simulated waves, in particular it can hamper the forward
solver’s convergence rate if special care is not taken. Waldén (1999) develops an
approximation to singular sources in a finite difference (FD) setting for the 1-D
Helmholtz equation: 

d2

dx2u + a2u = δ(s)(x − x∗),

a ∈ {z ∈C : Im(z) > 0},
x ∈R,

where δ(s) denotes the sth derivative of the delta function. He proofs that overall
the convergence rate of FD schemes can be preserved if the singular source terms
satisfies certain discrete moment conditions. In the following subsection I de-
rive the method for discretizing singular sources as proposed by Waldén (1999),
though I will follow some of the notation used by Tornberg and Engquist (2004).
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Approximation to 1-D δ(s)(x)

I first consider the 1-D case for approximating δ(s)(x) for s = 0 in order to introduce
some notation and key ideas. Let δε ∈ C0(R) denote an approximation to δ(x) such
that its support is contained in [−ε,ε].

Definition 1. Given an approximation δε, some uniform grid {xi |xi = ih, i ∈Z,h > 0},
and some x∗ ∈R, define Mr(δε,x

∗,h) as the discrete rth moment of δε:

Mr(δε,x
∗,h) := h

∑
i∈Z

δε(xi − x∗)(xi − x∗)r . (10)

Definition 2. Given a uniform grid {xi |xi = ih, i ∈ Z,h > 0}, and some q ∈N, define
the following subset of compact continuous functions on R denoted by Qq(h):

Qq(h) :=
{
φ ∈ C0(R)

∣∣∣∣Mr(φ,x
∗,h) = δr0,∀x∗ ∈R, 0 ≤ r < q

}
where δr0 is the Kronecker delta,

δr0 =
{

1, r = 0
0, r , 0

.

The space Qq(h) thus consists of continuous functions with compact support that
have unit mass and vanishing moments in a discrete sense with respect to some
uniform grid, mimicking the properties that define the distribution δ(x);∫

δ(x − x∗)f (x) dx = f (x∗),

which holds true for f ∈ Cn0 (R),∀n ∈N0. The number of vanishing moments that
are satisfied by the approximation δε will control the error in some sense as stated
in the following proposition.

Proposition 1. Suppose δε ∈Qq(h), for some q > 0, and that f ∈ Cq(R). Then

E :=
∣∣∣∣h∑
i∈Z

δε(xi − x∗)f (xi)−
∫
δ(x − x∗)f (x) dx

∣∣∣∣ ≤ Chq,
and E = 0 if f is constant.
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Ideally, one would be inclined to pick approximations δε with the smallest ε
width possible, however the following proposition states that ε is in actuality con-
strained by the desired order accuracy.

Proposition 2. There exists δε ∈Qq(h) if and only if 2ε ≥ qh.

Proofs of the aforementioned propositions are given in Tornberg and Engquist
(2004). I will extend and provide proofs for their more general counterparts based
on approximations of the distribution δ(s)(x), that is the sth derivative of the delta
function.

Definition 3. Given a uniform grid {xi |xi = ih, i ∈ Z,h > 0}, and some q ∈ N and
s ∈ {0} ∪N, define the following subset of compact continuous functions on R denoted
by Qsq(h):

Qsq(h) :=
{
φ ∈ C0(R)

∣∣∣∣Mr(φ,x
∗,h) = s!(−1)sδrs,∀x∗ ∈R, 0 ≤ r < q+ s

}
.

Theorem 1. Suppose δsε ∈Qsq(h), for some q > 0 and s ≥ 0, and that f ∈ Cq+s(R). Then

E :=
∣∣∣∣h∑
i∈Z

δsε(xi − x∗)f (xi)−
∫
δ(s)(x − x∗)f (x) dx

∣∣∣∣ ≤ Chq,
and E = 0 if f is constant.

Proof. The first thing to do is expand f (xi) by its Taylor series approximation;

f (xi) =
q+s−1∑
n=0

f (n)(x∗)
n!

(xi − x∗)n +R(xi),

where R(xi) is the remainder term. Using the formula above in the summation
term of E yields the following:

h
∑
i∈Z

δsε(xi − x∗)f (xi) = h
∑
i∈Z

δsε(xi − x∗)


q+s−1∑
n=0

f (n)(x∗)
n!

(xi − x∗)n +R(xi)

 ,
=

q+s−1∑
n=0

f (n)(x∗)
n!

h
∑
i∈Z

δsε(xi − x∗)(xi − x∗)n + h
∑
i∈Z

δsε(xi − x∗)R(xi),

=
q+s−1∑
n=0

f (n)(x∗)
n!

Mn(δsε,x
∗,h) + h

∑
i∈Z

δsε(xi − x∗)R(xi).
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Assuming that δsε ∈Qsq(h), then we have Mn(δsε,x
∗,h) = s!(−1)sδns, i.e.,

h
∑
i∈Z

δsε(xi − x∗)f (xi) = (−1)sf (s)(x∗) + h
∑
i∈Z

δsε(xi − x∗)R(xi),

=
∫
δs(x − x∗)f (x) dx+ h

∑
i∈Z

δsε(xi − x∗)R(xi).

Thus,

E =

∣∣∣∣∣∣∣h∑i∈Z δsε(xi − x∗)R(xi)

∣∣∣∣∣∣∣ .
Recall that δsε is of compact support, primarily supp δsε(x) ⊂ [−ε,ε]. Thus, there
exist a finite subset of integers {in}Nn=0 such that δsε(xi − x∗) = 0 if i < {in}Nn=0. More-
over, it is assumed that f ∈ Cq+s(R), thus there exists y such that

R(xi) =
f (s+q)(y)
(s+ q)!

(xi − x∗)s+q.

The error E takes the form

E =

∣∣∣∣∣∣∣h
N∑
n=0

δsε(xin − x
∗)
f (s+q)(y)
(s+ q)!

(xin − x
∗)s+q

∣∣∣∣∣∣∣ ,
≤

∣∣∣∣∣∣f (s+q)(y)
(s+ q)!

∣∣∣∣∣∣ max
n
|xin − x

∗|q
∣∣∣∣∣∣∣h

N∑
n=0

δsε(xin − x
∗)(xin − x

∗)s
∣∣∣∣∣∣∣ ,

≤ Chq|Ms(δ
s
ε,x
∗,h)|,

≤ Chq.

Theorem 2. There exists δsε ∈Qsq(h) if and only if 2ε ≥ (q+ s)h.

Proof. Note that 2ε ≥ (q + s)h implies that the support of δsε must contain at least
q + s grid points, in other words δsε(xi − x∗) is at the very least potentially nonzero
at s+q grid points. Suppose that the support of δsε contains N grid points indexed
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by {in}Nn=1. In order for δsε to belong to Qsq(h) it must satisfy q+ s conditions related
to its discrete moments, i.e.,

Mr(δ
s
ε,x
∗,h) = h

N∑
n=1

δsε(xin − x
∗)(xin − x

∗)r = s!(−1)sδrs.

These constraints can be written in matrix-vector form as Ad = b, with

{A}mn = (xin − x
∗)m−1, {d}n = δsε(xin − x

∗), {b}m = s!(−1)sδm−1,s,

for m = 1, ...,q + s and n = 1, ...,N . Thus, in order to have a solution d to the linear
system resulting from satisfying conditions on the moments Mr , the number of
unknownsN has to be greater than or equal to the number of constraints q+s.

Proposition ?? provides a measure of the error between the discrete behavior of
the approximation δsε and the analytic properties of the distribution δ(s) when ap-
plied to a smooth function f . A number of discrete moments must be constrained
in order to yield an approximation with desired rate of convergence. Moreover,
Proposition 2 states that δsε must be defined over enough grid points to be prop-
erly resolved.

Implementing 1-D Approximation

Given a source location x∗ only the values {δsε(xi − x∗) | i ∈ Z} are required for
implementation purposes regarding FD methods. As mentioned in the proof of
Proposition 2, δsε(xi − x∗) will take on (possibly) nonzero values at a subset of in-
dexes {in}Nn=1 ⊂Z. The grid points {xin}

N
n=1 are referred to as the stencil of δsε(x−x∗).

Let d ∈RN be a vector containing δsε(x − x∗) evaluated at stencil points {xin}
N
n=1,

dn := δsε(xin − x
∗).

In computing d, I will follow the same methodology given by Petersson and Sjo-
green (2010).

For a given x∗, let i∗ ∈ Z such that xi∗ ≤ x
∗ < xi∗+1, and let α := (x∗ − xi∗)/h ∈ [0,1).

Conditions on discreet moments Mr can be reformulated to yield an equivalent
subspace of C0(R) functions.
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Definition 4. Given a uniform grid {xi |xi = ih, i ∈ Z,h > 0}, and some q ∈ N and
s ∈ {0} ∪N, define the following subset of compact continuous functions on R:

Q̃sq(h) :=
{
φ ∈ C0(R)

∣∣∣∣Mr(φ,x
∗,h) = (−1)s

r!
(r − s)!

(x∗ − xi∗)
r−s,∀x∗ ∈R, 0 ≤ r < q+ s

}
.

Theorem 3. The two spaces Qsr(h) and Q̃sr(h) are equivalent.

The constraints on discrete momentsMr(δ
s
ε,x
∗,h), specified by membership of ap-

proximation δsε to Qsq(h), can be further simplified by taking advantage of the fact
that xi − xj = (i − j)h for all i, j ∈Z:

N∑
n=1

dn(in − i∗)q =


(−1)s

hs+1
r!

(r − s)!
αr−s, r − s ≥ 0

0, r − s < 0
, for r = 0,1, ...,q+ s − 1. (11)

Thus we have q + s equations and N unknowns. Approximation functions with
narrow widths are preferred in practice, and thus I will choose width ε such that
N = q+ s. I know reformulate Eq.(11) in matrix-vector form: Ad = b where

{A}mn = (in − i∗)m−1,

{d}n = δsε(xin − x
∗),

{b}m =


(−1)s

hs+1
(m− 1)!

(m− 1− s)!
αm−1−s, m− 1− s ≥ 0

0, m− 1− s < 0

for m,n = 1, ...,q + s. Note that the matrix A given above is independent of h and
α, and hence its inverse can be explicitly computed offline and stored to later
generate the vector d for the desired approximation δsε.

2-D and 3-D Approximations

The delta function, and its derivatives, in higher dimensions can be handled by
taking tensor products of the 1-D counterparts. For example, the 3-D multi-
derivative of the delta function is approximated as follows:

Dsδ(x) ≈
3∏
i=1

δ
(si )
εi (xi)

is a q-order approximation if δsiεi ∈Q
si
q (h) for each i = 1,2,3.
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PRELIMINARY RESULTS

The proposed model and minimal-source inversion algorithm is currently under
development as an IWAVE application. IWAVE is a software framework written
in C and C++ for time-dependent PDE solvers, mainly FD methods on uniform
grids. The Rice Vector Library (RVL) is another software package that provides the
underlying framework for inversion schemes based on Newton-like methods in
IWAVE. For more information on simulation based optimization via IWAVE and
RVL see the Rice Inversion Project (TRIP) technical report Symes et al. (2004), or
published works Padula et al. (2009), Symes et al. (2011).

Preliminary work shown here considers 2-D acoustic media as a starting point
for this project. In particular, the forward problem will consist of solving the 2D
acoustic equations, in velocity-pressure form, as given by the following system of
first order PDEs:

ρ(x)
∂
∂t
v1(x, t) +

∂
∂x1

p(x, t) = 0, (12a)

ρ(x)
∂
∂t
v2(x, t) +

∂
∂x2

p(x, t) = 0, (12b)

1
κ(x)

∂p

∂t
(x, t) +

∂
∂x1

v1(x, t) +
∂
∂x2

v2(x, t) = f (x, t), (12c)

where p is the pressure field, [v1,v2] is the particle velocity field, and [ρ,κ] are
medium parameters (density and bulk modulus respectively). The depth axis will
be assumed to be oriented along the x1-axis, while x2 corresponds to horizontal
displacement. Note that the source term f is a scalar and is injected in the pres-
sure equation. The forward problem will be solved by staggered grid FD methods
implemented in IWAVE based on the 2-2 and 2-4 order schemes originally de-
veloped for elasticity by Virieux (1986) and Levander (1988). The ‘2-4’ is used
to indicate the temporal and spatial discretization order of the time-space FD
method, i.e., 2-4 refers to 2nd-order in time and 4th-order in space. In this section
I present some preliminary results in the context of 2-D acoustic media: a conver-
gence study for FD methods used to solve the forward problem with the singular
source approximation and some preliminary joint model-source inversions for an
isotropic point-source.
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Convergence Rate Analysis for Point-Sources

The method of discretizing point sources as developed by Waldén (1999) has been
used in other works related to seismic wave propagation: Petersson and Sjogreen
(2010) make use of the method when solving the 1-D scalar wave equation, as well
as extend the approximation to 2-D and 3-D, demonstrating through numerical
examples that convergence rates of finite difference methods can be preserved.
With similar results, Geiser (2009) applies the singular source term approxima-
tion to wave propagation in elastic media. As proof of concept I offer a conver-
gence rate analysis for the FD methods considered here when applying the singu-
lar source discretization technique. In particular, I will be testing the 2nd and 4th

order approximations to δ(x1,x2), and
∂
∂x2

δ(x1,x2).

A homogeneous 2-D acoustic model, spanning 8km in depth and 8km horizon-
tally, is used throughout this study. Density and bulk modulus are set to 1g/cm3

and 16GP a respectively, resulting in a medium velocity of 4km/s. I have chosen
to use the same source time function considered in the numerical examples by
Geiser (2009), denoted by F(t);

F(t) =


exp

(
− 1
t(1− t)

)
, t ∈ [0,1]

0 , t ∈ (−∞,0)∪ (1,∞)

Note that F ∈ C∞0 (R).

Errors and Convergence Rates

Convergence rates are approximated by comparing seismic traces, that is time
series of computed pressure field p at a receiver location xr = (x1,r ,x2,r). Let ph
denote the numerical pressure field computed via a FD method with spatial grid
size h. The convergence rate at a particular receiver location xr is approximated
via the following formula:

R(xr) = log2

(
‖ph(xr , ·)− ph/2(xr , ·)‖
‖ph/2(xr , ·)− ph/4(xr , ·)‖

)
, (13)
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where the norm ‖ · ‖ is chosen to be either ‖ · ‖2 or ‖ · ‖∞ defined by

‖p(xr , ·)‖2 :=

√∑
k

|p(x, tk)|2,

‖p(xr , ·)‖∞ := max
k
|p(xr , tk)|.

Results for δ(x1,x2)

Convergence rates are first tested for both 2-2 and 2-4 staggered grid FD methods
with source term

f (x, t) = F(t)δ(x− x∗),

with x∗ = [−4,4]km. The 2-D delta function is approximated by the tensor product
of 1-D approximations, i.e., δ(x1,x2) ≈ δε1

(x1)δε2
(x2). Space-time discretization

choices for both 2-2 and 2-4 schemes are given in Tab.(1). The spatial grid size
are refined by factors of two in order to use Eq.(13) to approximate convergence
rates. The time step for each FD scheme, constant under h refinement, was chosen
to be several times smaller than the required size ∆tCFL from stability estimates
for the smallest h. Small enough time step ideally decreases O(∆t2) errors from
the temporal discretizing to help isolate the convergence rate associated with the
spatial discretization, essentially producing a semi-discrete solution.

h-refinement [m] time step [ms]
2-2 10, 20, 40 0.5
2-4 20, 40, 80 0.5

Table 1: Space-time discretization choices for convergence rate study with δ
source term.

Convergence rates are computed for seismic traces along a line of receivers at
depth −4km, using both ‖ · ‖2 and ‖ · ‖∞ norms, see Fig.(1) and Fig.(2). Indeed
convergence rate is preserved when using point source approximations of appro-
priate order for both 2-2 and 2-4 schemes, even at 2 grid points from the source
location.
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Results for
∂
∂x2

δ(x1,x2)

Convergence rates are are tested for both 2-2 and 2-4 staggered grid FD methods
with source term

f (x, t) = F(t)
∂
∂x2

δ(x− x∗),

with x∗ = [−4,4]km. The 2-D delta function is approximated by the tensor prod-
uct of 1-D approximations, i.e., δ(x1,x2) ≈ δε1

(x1)δ(1)
ε2 (x2). The same space-time

discretization choices given in Tab.(1) were chosen for this test. Approximate con-
vergence rates are shown in Fig.(3) and Fig.(4), with expected results. One thing
to notice is that as the derivative and approximation order increases, so does the
size of the point-source approximation stencil, and along with it the region of
grid points with affected convergence rate. As proof of concept, Fig.(5) shows
convergence rates for the 2-4 scheme when using a second order approximation
to point-source term. It is observe that the convergence rate drops from 4 to 2.

Preliminary Joint Model-Source Inversion

In this section I offer some preliminary results concerning joint model-source in-
version for a simple 2-D constant-density acoustic medium. Inversion results via
VP are compared against model-only inversions assuming known source.

The forward problem in this context consists of: computing time series of pressure
field at given receiver locations xr , that is p(xr , tk), where p(x, t) is the solution to
Eq.(12) for given model parameters [ρ,κ] and source term

f (x, t) = F(t)δ(x− x∗).

Source and model parameters [f,m] are given by discretized counter parts of F(t)
and κ(x) respectively. Let F [f,m]r,k = p(xr , tk), thus emphasizing the dependency
on source-model parameters [f,m].

Model inversion, with known source, is carried out here by solving the OLS prob-
lem: minimize OLS objection function ΦOLS with respect to model parameters
m,

ΦOLS(f̂,m) :=
1
2

∑
r

∑
k

∣∣∣F [f̂,m]r,k − d(xr , tk)
∣∣∣2 ,
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where f̂ denotes the true source parameters and d(xr , tk) is the observed data. Joint
model-source inversion is done using the VP method, that is minimize VP objec-
tive function ΦV P with respect to model parameters m, where

ΦV P [m] := ΦOLS[f(m),m], and f(m) := argmin
f

ΦOLS[f,m].

A gradient descent method, with a quadratic interpolation line search, is used
for the numerical minimization of the OLS and VP objective functions. More
sophisticated numerical optimization will of course be considered in future work.

Transmission Test Case

The first inversion test case considers the recovery of a smooth bulk modulus
anomaly using transmission data, as depicted in Fig.(6). The true source-time
function was chosen to be a Ricker wavelet with 15Hz peak frequency, centered
at 0.3s, see Fig.(7). A homogeneous bulk modulus model of 15MPa is used as the
starting model for the inversion process.

Recovered models are shown in Fig.(8a) for OLS with known source-time func-
tion and Fig.(8b) for joint source-model inversion via VP. Both inversions are able
to deduce a high bulk modulus anomaly, correctly centered in the horizontal di-
rection. On the other hand, both inversions effectively smear the anomaly in the
depth axis, not too surprising since the recorded data does not provide informa-
tion to penalize such artifacts. The resulting source time-function, given by f(m)
in the VP method, is shown in Fig.(9a) along with its deviation from the true
source, Fig.(9b). The recovered source is correctly centered at 0.3s with similar
waveform to that of the true source, deviating at most by 6% of max amplitude.
Lastly, Fig.(10) plots the relative data residual as the model is refined, showing
that the VP method produces a model with better fit. Gradient decent iteration
terminates when model update is too small.

CONCLUSIONS

Solving the forward problem accurately and efficiently is of upmost importance to
the inverse problem, “quality of the results of any inverse problem depends heav-
ily on the realism of the forward modeling,” Gauthier et al. (1986). The forward
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problem, for the inversion algorithm proposed here, will consist of solving the
elasticity (or acoustics) equations with singular source terms in the form of mul-
tipole point-sources. Numerical results demonstrate that convergence rates of FD
methods, particularly the 2-2 and 2-4 staggered grid FD methods for acoustics,
can be preserved away from the source when approximating appropriately source

terms of the form f (x, t) = F(t)
∂s

∂xs
δ(x − x∗), particularly for s = 0,1. The main

idea is to approximate the 1-D distribution
∂s

∂xs
δ(x)s by a C0(R) function δ

(s)
ε (x)

that satisfies a number of discrete moment conditions to yield a desired accuracy,
Waldén (1999).

Some preliminary joint-source model inversions were presented for simple 2-D
constant-density acoustic models with assumed isotropic source term. In partic-
ular, the joint model-source inversion via the VP method was compared against
model-only inversion with correct source. Results for both transmission test case
analyzed here demonstrate similar recovered model parameters, localizing the the
presence of anomaly in the horizontal direction, though creating artifacts in the
depth axis possibly due inadequacy of data and inversion formulation. Moreover,
accurate source-time function from the VP method was also recovered. It was
also observed that the VP inversion lead to a smaller objective function value, i.e.,
better fit to data. These results further validate the use of VP for dealing with the
source estimation aspect of joint model-source inversion.

FUTURE WORKS

The proposed joint model and minimal-source inversion algorithm is designed
to tackle the problem of model inversion under unknown general anisotropic
sources. A key component of the method is the multipole point-source represen-
tation of anisotropic sources, resulting in a parametrization yielding an inverse
problem that lends itself to reducible nonlinear programming method, in par-
ticular the VP method. Preliminary results given here demonstrate the ability for
dealing with the singularity of multipole point source terms when solving the for-
ward problem, as well as further validate the use of VP for in joint model-source
inversion.

The pseudo code for the proposed joint model and minimal souce inversion served
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well as an instructive tool to elucidate the essence of model and minimal-source
inversion. I now highlight some of the details that will play a vital role in the
success of the overall algorithm and entail future work:

• Solving for fN,k:
Computing source parameters involves solving the regularized normal equa-
tions. A unique fN,k should be recoverable in theory, however ill-conditioning
of GN,k may creep in as N is increased. Thus, solving normal equations
should be done is a robust and efficient manner, as well as choosing µwisely.

• Choosing ε2 and ∆:
Should ε2 and ∆ be dependent on iteration? How should they be chosen?
Also, if not enough statistical information is known about the errors in the
sampled data can a reasonable ε2 still be chosen?

• Updating mk→mk+1 from ΦV P [m]:
This step is perhaps one of the more difficult ones. More sophisticated nu-
merical optimization schemes will need to be incorporated for updating the
model when minimizing reduced objective function ΦV P [m].

I plan on testing the model and minimal-source inversion algorithm primarily
in two scenarios to analyze the influence of source and its impact on recovered
medium parameters. The first case will consider an acoustic medium with an ef-
fective source modeled after the physics of air-gun arrays in order to test the both
the recoverability of medium parameters and the influence of anisotropy from a
realistic source. Lastly, the interplay between source and medium anisotropy will
be explored in the inversion of VTI elastic medium parameters.
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Figure 1: Rates for 2-2 staggered grid scheme with δ(x) source term and approxi-
mation δ0

ε(x1)δ0
ε(x2) ∈Q0

2(h)×Q0
2(h).
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Figure 2: Rates for 2-4 staggered grid scheme with δ(x) source term and approxi-
mation δ0

ε(x1)δ0
ε(x2) ∈Q0

4(h)×Q0
4(h).

Figure 3: Rates for 2-2 staggered grid scheme with
∂
∂x2

δ(x) source term and ap-

proximation δ0
ε1

(x1)δ1
ε2

(x2) ∈Q0
2(h)×Q1

2(h).
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Figure 4: Rates for 2-4 staggered grid scheme with
∂
∂x2

δ(x) source term and ap-

proximation δ0
ε1

(x1)δ1
ε2

(x2) ∈Q0
4(h)×Q1

4(h).

Figure 5: Rates for 2-4 staggered grid scheme with
∂
∂x2

δ(x) source term and ap-

proximation δ0
ε1

(x1)δ1
ε2

(x2) ∈Q0
2(h)×Q1

2(h).
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Figure 6: True bulk modulus model and source-receiver configuration; ∗-source,
∨-receiver.
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Figure 7: True source-time function.
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Figure 8: Recovered bulk modulus model for transmission test case via OLS in-
version with known source (a) and VP inversion (b).
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Figure 9: Recovered source-time function from VP (a) and its error (b).
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Figure 10: Relative data residual per iteration for transmission test case.
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Stable Composite Staggered Grid Finite Difference
Scheme for Anisotropic Elastic Wave Simulations

Muhong Zhou

ABSTRACT
Based on the energy method, this paper proposes a stable composite staggered
grid scheme for anisotropic (up to orthorhombic) elastic wave simulations.
To conserve the energy and agree with the transmission condition, the paper
derive a rule to update the ghost data at the grid refinement interface. The
paper also derive an upper bound for the time step size and show that with the
energy-conserving ghost data update rule, the scheme is stable. 1D numerical
results demonstrate that both energy-conserving ghost data update rule and
the upper bound imposed on the time step size are indispensable to achieve
stability.

INTRODUCTION

Many seismic imaging applications used for oil and gas explorations need a fast
and stable wave simulation solver. Staggered grid finite difference scheme (Virieux,
1986; Levander, 1988) is often chosen to simulate wave propagations because it is
easy to implement and cost effective. Since finite difference step sizes, both spa-
tially and temporally, are restricted by the shortest wavelength in the computing
domain, when the simulation domain is composed of subdomains having different
characteristic wavelengths, it is desirable to use a composite grid scheme (Gustafs-
son and Mossberg, 2004; Rodrı́guez, 2008; Petersson and Sjögreen, 2010; Kristek
et al., 2010), i.e., coarser grid for subdomain with longer wavelength (or faster
wave propagation speed) and finer grid for subdomain with shorter wavelength
(or slower wave speed). A practical example of such domain is in the marine seis-
mic explorations, the P-wave in the water is around 1500m/s, but the S-wave near
the ocean bottom can be as low as 100m/s (Fehler, 2012). Another application of
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using these composite grid schemes is to resolve local fine-scale diffraction pat-
terns (Rodrı́guez, 2008). In this paper, I focus on building a composite staggered
grid finite difference scheme that is based on first-order hyperbolic wave equation
and numerically stable.

My work is mainly based on Petersson and Sjögreen (2010)’s work where they use
the energy method to propose a stable composite collocated grid finite difference
scheme based on isotropic elastic wave equation in second-order displacement
form. They derive a rule to update the interface ghost data by conserving the
discrete energy of the scheme over time and by aligning with the transmission
condition across the refinement interface. With this rule, they claim that their
scheme is stable; however, as I will show later, energy conservation along does
not lead to a stable scheme, it needs to meet another stability qualification that I
call boundedness and this qualification sets an upper bound for the time step size.
Their paper (Petersson and Sjögreen, 2010) does not mention how they choose the
time step size, but in a previous paper (Petersson and Sjögreen, 2009) they gave an
upper bound for the time step size for a uniform collocated grid finite difference
scheme; nevertheless how to extend this uniform grid bound to the composite
grid case is not clear to me. My work extends their energy-conserving ghost data
update rule based on a composite collocated grid finite difference scheme to the
composite staggered grid finite difference scheme. Compared with the former
scheme, which is based on the isotropic elastic wave equation in second-order
displacement form, the latter scheme not only builds upon staggered grids but
also is based on the anisotropic (up to orthorhombic) elastic wave equation in
first-order hyperbolic form expressed in terms of velocities and stresses; therefore
the latter scheme needs a different and more complex discrete energy formulation
and a new rule to update the interface ghost data.

To formulate this new discrete energy, I consult Rodrı́guez (2008)’s work where
they build a discrete energy for a composite grid mass-lumping finite element
scheme based on the wave equation in first-order hyperbolic form. By conserv-
ing this discrete energy they derive an interface condition imposed on traces of
velocities and stresses on the interface. They also prove that their scheme will be
stable if the time step size satisfies a certain condition. Since they work with a
finite element scheme, I re-formulate their discrete energy to suit finite difference
scheme via using quadrature rules as they were used in Petersson and Sjögreen
(2010) for collocated grid finite difference scheme.

The rest of the paper is organized as follows: in section two I use the energy
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method to identify two stability qualifications for the 1D composite staggered
grid finite difference scheme based on acoustic wave equation, which yield the
energy-conserving interpolation to update the ghost data and pose an upper limit
for the time step size respectively; in section three, I obtain a stable 3D composite
grid scheme by generalizing the energy-conserving ghost data interpolation and
the upper bound for time step size from 1D to 3D case; section four contains 1D
numerical results which show that both the energy-conserving ghost data inter-
polation and restricting the time step size are indispensable to obtain stability; in
the last section, I conclude this paper and discuss the future work.

1D STABLE COMPOSITE GRID SCHEME

1D acoustic wave propagation along the x direction is governed by the following
equation system: ρ(x)vt(x, t) = px(x, t) + s(x, t)

pt(x, t) = κ(x)vx(x, t)
(1)

where v is the particle velocity, p is the pressure, ρ is the density, κ is the bulk
modulus and s is the source function.

Consider a hypothetical situation when there exists a material discontinuity along
the x direction as shown in Fig.(1): the wave propagation speed is faster in the
right subdomain. Accordingly, I construct a composite staggered grid scheme
with spacing h for the left half-line and H(> h) for the right: that isv((i −Ni)h, (n+

1
2

)∆t) 7→ v
n+ 1

2
i for i = 0, ...,Ni ,

v(iH, (n+
1
2

)∆t) 7→ V
n+ 1

2
i for i = 0, ...,NI

(2)

Pressures live on the dual grid at integer times:
p((i +

1
2
−Ni)h,n∆t) 7→ pn

i+ 1
2

for i = 0, ...,Ni − 1,

p((i +
1
2

)H,n∆t) 7→ P n
i+ 1

2
for i = 0, ...,NI − 1.

(3)

Source function and densities are configured on the same grid locations as veloc-
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ities, and moduli are with pressures:ρ((i −Ni)h) 7→ ρ−i , s((i −Ni)h, (n+
1
2

)∆t) 7→ s
n+ 1

2
i for i = 0, ...,Ni ,

ρ(iH) 7→ ρ+
i , s(iH, (n+

1
2

)∆t) 7→ S
n+ 1

2
i for i = 0, ...,NI

(4)


κ((i +

1
2
−Ni)h) 7→ κ−

i+ 1
2

for i = 0, ...,Ni − 1,

κ((i +
1
2

)H) 7→ κ+
i+ 1

2
for i = 0, ...,NI − 1.

(5)

Hence the grid refinement interface coincides with the grid location with veloci-

ties (v
n+ 1

2
Ni

, V
n+ 1

2
0 ), and two ends of the composite grid also coincide with the veloc-

ity locations (v
n+ 1

2
0 , V

n+ 1
2

NI
); whereas all the pressure data live on the interior points

of each grid. This design eases the implementation of the homogeneous Dirichlet
boundary condition which requires zero velocities on the boundary:

v
n+ 1

2
0 = V

n+ 1
2

NI
= 0. (6)

pn
Ni+

1
2

v
n+ 1

2
Ni

pn
Ni− 1

2v
n+ 1

2
0 = 0

P n− 1
2 V

n+ 1
2

0
P n1

2 V
n+ 1

2
NI

= 0

Grid Interface

Slow Subdomain
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Figure 1: A composite staggered grid finite difference scheme (H=2h) in the pres-
ence of material discontinuity. Slow/fast Subdomain denotes the subdomain in
which the wave propagation speed is slow/fast. The region of each subdomain
is marked by the blue/gray shade. Blue/grey circles and diamonds represent lo-
cations of fine/coarse grid variables with variable names besides them. The red
line delineates the grid refinement interface, which is placed inside the fast sub-
domain. Two white dashed diamonds denote the ghost data.
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On the fine grid, the 2-2 (second-order accurate in both time and space) finite
difference scheme for this equation system is:

ρ−i D−,tv
n+ 1

2
i =D−,xp

n
i+ 1

2
+ sni

D+,tp
n
i+ 1

2
= κ−

i+ 1
2
D+,xv

n+ 1
2

i

(1D.FDM)

where D+,·/D−,· is the second-order forward/backward finite difference operator
along a particular direction, e.g.,

D+,tp
n
i+ 1

2
=
pn+1
i+ 1

2
− pn

i+ 1
2

∆t

D−,tv
n+ 1

2
i =

v
n+ 1

2
i − vn−

1
2

i

∆t

,


D−,xp

n
i+ 1

2
=
pn
i+ 1

2
− pn

i− 1
2

h

D+,xv
n+ 1

2
i =

v
n+ 1

2
i+1 − v

n+ 1
2

i

h

(7)

The 2-2 scheme on the coarse grid is built similarly.

To see how this scheme iterates over time, first suppose all velocities are updated

to time level n +
1
2

, pressures to time level n − 1. Subsequently, pressures can be

updated to time level n uisng Eq.(1D.FDM). However, when using Eq.(1D.FDM)

to update velocities from time level n +
1
2

to time level n +
3
2

, updating interface

velocities (v
n+ 1

2
Ni

, V
n+ 1

2
0 ) requires p(

1
2
h,n∆t) and p(−1

2
H,n∆t), therefore I construct

two ghost pressure data near the interface:

p(
1
2
h,n∆t) 7→ pn

Ni+
1
2
, p(−1

2
H,n∆t) 7→ P n− 1

2
. (8)

Once we know these ghost data values, interface velocities can be updated using
the same finite difference scheme as it is used to update interior velocities and
then the iteration can proceed.

An intuitive approach to update these ghost data is by interpolation from existing
pressure values in the neighborhood, for example when H = 2h, P n− 1

2
= 0.5(pn

Ni− 3
2

+ pn
Ni− 1

2
)

pn
Ni+

1
2

= 0.15625P n− 1
2

+ 0.9375P n1
2
− 0.09375P n3

2

(9)

Above two equations have to be executed in sequence since the input to the sec-
ond equation relies on the output from the first one. When the solution is smooth
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near the interface, according to the Taylor’s Theorem these equations are at least
second-order accurate to the true solution at these locations. In this paper, I call
the composite grid scheme using this intuitive ghost data update rule as the intu-
itive composite grid scheme.

As shown in Fig.(1), the grid refinement interface is placed inside the fast mate-
rial. If the interface is aligned with the material continuity, then the ghost data
will be interpolated from pressure data attributed to a different subdomain. For
example, P n− 1

2
for the fast subdomain will be updated using pn

Ni− 3
2
,pn
Ni− 1

2
from the

slow subdomain. Since the fine grid can handle both subdomains whereas the
coarse grid can handle the fast subdomain only, it is better to place the interface
inside the fast material so that each ghost data comes from the same subdomain
as its interpolation source.

However, notice that this intuitive composite grid scheme has two defects:

• First of all, even if the solution is smooth near the interface and the intuitive
interpolation approach gives a good approximation to the ghost data, it is
hard to analyze the stability of the scheme.

• Second, the intuitive composite grid scheme may not be consistent with the
physical transmission condition which requires the velocity and pressure
are continuous across the interface.

In the rest of this section, I will first present the energy method in the 1D contin-
uous case and identify two qualifications of the energy that contribute to stabil-
ity. Then I will use the 1D energy formulated in the continuous case as a guide
to formulate a discrete energy on the composite staggered grid, and show that
this discrete energy will have those two stability qualifications if (1) updating the
ghost data by conserving the energy and meanwhile aligning with the transmis-
sion condition, and (2) setting an upper limit for the time step size.

Energy Method in 1D Continuous Case

Consider solving problem Eq.(1) on v(x, t),p(x, t) ∈ C1(R×[0,∞)) and suppose they
vanish as x goes to infinity. The energy E of this acoustic wave equation system at
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time t is often formulated as:

E[v,p](t) =
1
2

∫
R

ρ(x)v2(x, t)dx+
1
2

∫
R

1
κ(x)

p2(x, t)dx (10)

The first term of this formula is often called the kinetic energy, and the second is
called the strain energy. Since ρ(x),κ(x) > 0, there exist constants c1(ρ,κ), c2(ρ,κ),C1(ρ,κ),C2(ρ,κ) >
0 so that

c1‖v(x, t)‖+ c2‖p(x, t)‖ ≤ E[v,p](t) ≤ C1‖v(x, t)‖+C2‖p(x, t)‖ (boundedness)

where the L2-norm ‖ · ‖ is evaluated in the x-domain. Boundedness refers to grid
functions and the energy are mutually controlled by each other.

If Eq.(1) is in its homogeneous form, i.e., when s(x, t) = 0,

dE[v,p](t)
dt

=
∫
R

ρ(x)v(x, t)vt(x, t)dx+
∫
R

1
κ(x)

p(x, t)pt(x, t)dx

Eq.(1)
=

∫
R

v(x, t)px(x, t)dx+
∫
R

p(x, t)vx(x, t)dx
IBP= 0

(conservation)

where IBP is short for “integration by parts”. Conservation means that the scheme
maintains a constant energy over time.

If perturb the initial solution (v(x,0),p(x,0)) by a small amount, and denote the
new initial solution by (v̂(x,0), p̂(x,0)). If both of them are subject to the same
source term and boundary condition, then the error in the later solution ((v̂ −
v)(x, t), (p̂ − p)(x, t)) satisfies the homogeneous form of Eq.(1), and consequently
Eq.(boundedness) and Eq.(conservation) together yield that

c1‖(v̂ − v)(x, t)‖+ c2‖(p̂ − p)(x, t)‖ ≤ C1‖(v̂ − v)(x,0)‖+C2‖(p̂ − p)(x,0)‖ (11)

i.e., the error in the later solution will be controlled by the initial data perturba-
tion; hence Eq.(1) is stable.

Therefore in the 1D continuous case, boundedness and conservation together lead
to stability. Note that when deriving stability we assume that two solutions are
subject to the same source term and boundary condition, so we are looking for
these two stability qualifications only for equation or scheme in its homogeneous
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form; however, the conditions leading to these qualifications may be imposed on
non-homogeneous scheme.

Lastly, above analysis can be applied to 3D case and it is easy to see that stability
qualifications in the 3D case are the same as those in the 1D case.

Formulate Discrete Energy on the 1D Composite Grid

Unlike the continuous case, the composite grid scheme works on a truncated do-
main, and different grid functions are defined on different time levels. To accom-
modate these facts, I combine features from the energy formulated for composite
grid finite element scheme based on wave equation in first-order hyperbolic form
(Bécache et al., 2001) and the one for composite collocated grid finite difference
scheme based on wave equation in second-order displacement form (Petersson
and Sjögreen, 2010), and come up with a new energy formulation for the compos-
ite staggered grid finite difference scheme based on wave equation in first-order
hyperbolic form.

Define the discrete kinetic energy K and strain energy S on the fine grid at time
level n as:

Knf [v] =
1
2

Ni∑
i=0

αihρ
−
i v

n+ 1
2

i v
n− 1

2
i ≈

∫ 0

−Nih
ρ(x)v(x, (n+

1
2

)∆t)v(x, (n− 1
2

)∆t)dx (12)

Snf [p] =
1
2

Ni−1∑
i=0

h
1
κ−
i+ 1

2

(pn
i+ 1

2
)2 ≈

∫ 0

−Nih

1
κ(x)

p2(x,n∆t)dx (13)

where the subscript “f ” by the energies is short for “fine grid”, and the quadrature
weights are defined as follows:

αih =


1
2
h, i = 0,Ni

h, 0 < i < Ni
(14)

so Eq.(12) approximates the integral on the right using exactly the Trapezoid Rule,
and Eq.(13) uses the Midpoint Rule.

The sum of these two energies defines the discrete total energy E on the fine grid.
Define the kinetic, strain and total energy on the coarse grid in a similar way,
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then the sum of the total energies on both grids defines the total energy on the
composite grid:

Enc [v,p,V ,P ] = Enf [v,p] + Enr [V ,P ] (15)

where “c” stands for composite grid, “r” for coarse grid.

Qualify for Conservation

In the discrete case, conservation means

Enc [v,p,V ,P ] = En−1
c [v,p,V ,P ] (16)

So next I will show how to update the ghost data in order to achieve this stability
qualification.

To simplify derivations afterwards, first I will define some notations. On the fine
grid, define the following 1D scalar inner product and norm for grid functions
u,v defined on the primary grid:

〈v,u〉f p =
1
2

Ni∑
i=0

αihviui (17)

‖v‖f p = [
1
2

Ni∑
i=0

αih(ui)
2]

1
2 (18)

where the subscript “fp” is the shorthand of “the primary grid of the fine stag-
gered grid”.

Similarly, the inner product and norm for grid functions p,q defined on the dual
grid are:

〈p,q〉f d =
1
2

Ni−1∑
i=0

hpi+ 1
2
qi+ 1

2
(19)

‖p‖f d = [
1
2

Ni−1∑
i=0

h(pi+ 1
2
)2]

1
2 (20)
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Analogous to the IBP property in the continuous case, these discrete inner prod-
ucts satisfy the following summation by parts (SBP) property:

〈v,D−,xp〉f p + 〈D+,xv,p〉f d = vNipNi − v0p0 (1D.SBP)

for v on primary grid, p on dual grid, pNi being
1
2

(pNi+ 1
2

+ pNi− 1
2
), p0 being

1
2

(p 1
2

+

p− 1
2
).

Consequently, for a homogeneous scheme (i.e., source term is zero) imposed with

the homogeneous Dirichlet boundary condition (i.e, v
n+ 1

2
0 = 0), we have

Knf [v]−Kn−1
f [v] = 〈ρ−vn+ 1

2 ,vn−
1
2 〉f p − 〈ρ−vn−

1
2 ,vn−

3
2 〉f p

= ∆t〈vn−
1
2 ,ρ−D−,t(v

n+ 1
2 + vn−

1
2 )〉f p

Eq.(1D.FDM)
= ∆t〈vn−

1
2 ,D−,x(p

n + pn−1)〉f p
SBP= −∆t〈D+,xv

n− 1
2 ,pn + pn−1〉f d +∆tv

n− 1
2

Ni
(pnNi + pn−1

Ni
)

Eq.(1D.FDM)
= −〈 1

κ−
(pn − pn−1),pn + pn−1〉f d +∆tv

n− 1
2

Ni
(pnNi + pn−1

Ni
)

= Sn−1
f [p]−Snf [p] +∆tv

n− 1
2

Ni
(pnNi + pn−1

Ni
)

(21)
i.e.

Enf [v,p]−En−1
f [v,p] = ∆tv

n− 1
2

Ni
(pnNi + pn−1

Ni
) (22)

On the coarse grid I establish a similar result:

Enr [V ,P ]−En−1
r [V ,P ] = −∆tV n− 1

2
0 (P n0 + P n−1

0 ) (23)

Therefore, the total energy difference between adjacent time levels are:

Enc [v,pV ,P ]−En−1
c [v,p,V ,P ] = ∆tv

n− 1
2

Ni
(pnNi + pn−1

Ni
)−∆tV n− 1

2
0 (P n0 + P n−1

0 ) (24)

From the above equation, one may observe that if the interface velocities and the
averaged interface pressures meet the following condition for arbitrary nonnega-
tive m,n, then the energy will be conserved over time.

∆tv
n− 1

2
Ni

pmNi = ∆tV
n− 1

2
0 Pm0 (1D.ECI)
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The transmission condition requires the velocity is continuous across the inter-
face, which leads to the first condition:

v
n+ 1

2
Ni

= V
n+ 1

2
0 , n ≥ 0 (1D.ECI.a)

Substituting this equation back into (1D.ECI) leads to another equation

pmNi = Pm0 , n ≥ 0 (1D.ECI.b)

Interestingly, this second condition is consistent with the other requirement of
the transmission condition that the pressure has to be continuous across the re-
finement interface.

Note that although Eq.(1D.ECI.a) and Eq.(1D.ECI.b) are derived on homogeneous
scheme, they can be imposed on non-homogeneous scheme as well. Once a non-
homogeneous scheme satisfies these two conditions, then its homogeneous coun-
terpart automatically satisfies these two conditions which in turn leads to the first
stability qualification: conservation.

Eq.(1D.ECI.a) and (1D.ECI.b) together provide a linear equation system solving
for the ghost data at any time level. For example, to solve P n− 1

2
and pn

Ni+
1
2
, note

that Eq.(1D.ECI.b) explicitly depends on them when m = n. On the other hand,
according to Eq.(1D.FDM), Eq.(1D.ECI.a) is equivalent to

v
n− 1

2
Ni

+
∆t
ρ−Ni

(D−,xp
n
Ni+

1
2

+ s
n− 1

2
Ni

) = V
n− 1

2
0 +

∆t

ρ+
0

(D−,xP
n
1
2

+ S
n− 1

2
0 ). (25)

Thus the coefficient matrix of this linear equation system is
1
2

−1
2

∆t
hρ−Ni

∆t

Hρ+
0

 (26)

Its determinant is positive, so the system is solvable.

In this paper, the ghost data update rule provided by Eq.(1D.ECI.a) and Eq.(1D.ECI.b)
is called energy conserving interpolation, and the composite grid scheme using this
ghost data update rule is called stable composite grid scheme.
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Qualify for Boundedness

Now the stable composite grid scheme is not necessarily stable: boundedness has not
been guaranteed yet. To achieve boundedness, note that

Knc [v,V ] =〈ρ−vn−
1
2 ,vn+ 1

2 〉f p + 〈ρ+V n− 1
2 ,V n+ 1

2 〉rp
=〈ρ−vn−

1
2 ,vn+ 1

2 − vn−
1
2 〉f p + 〈ρ+V n− 1

2 ,V n+ 1
2 −V n− 1

2 〉rp
+ 〈ρ−vn−

1
2 ,vn−

1
2 〉f p + 〈ρ+V n− 1

2 ,V n− 1
2 〉rp

(27)

where

|〈ρ−vn−
1
2 ,vn+ 1

2 − vn−
1
2 〉f p + 〈ρ+V n− 1

2 ,V n+ 1
2 −V n− 1

2 〉rp|
Eq.(1D.FDM)

= |∆t〈vn−
1
2 ,D−,xp

n〉f p +∆t〈V n− 1
2 ,D−,xP

n〉rp|
(1D.SBP),

(1D.ECI.a),(1D.ECI.b)
= | −∆t〈D+,xv

n− 1
2 ,pn〉f d −∆t〈D+,xV

n− 1
2 , P n〉rd |

≤∆t
h

(γ1‖pn‖2f d +
1
γ1
‖vn−

1
2 ‖2f p) +

∆t
H

(γ2‖P n‖2rd +
1
γ2
‖V n− 1

2 ‖2rp)

(28)

for any γ1,γ2 > 0 and their optimal values are left to be determined afterwards.

As a result,

Enc [v,p,V ,P ] ≤
(
〈 1
κ−
pn,pn〉f d +

γ1∆t

h
‖pn‖2f d

)
+
(
〈 1
κ+P

n, P n〉rd +
γ2∆t

H
‖P n‖2rd

)
+
(
〈ρ−vn−

1
2 ,vn−

1
2 〉f p +

∆t
hγ1
‖vn−

1
2 ‖2f p

)
+
(
〈ρ+V n− 1

2 ,V n− 1
2 〉rp +

∆t
Hγ2
‖V n− 1

2 ‖2rp

) (29)

and

Enc [v,p,V ,P ] ≥
(
〈 1
κ−
pn,pn〉f d −

γ1∆t

h
‖pn‖2f d

)
+
(
〈 1
κ+P

n, P n〉rd −
γ2∆t

H
‖P n‖2rd

)
+
(
〈ρ−vn−

1
2 ,vn−

1
2 〉f p −

∆t
hγ1
‖vn−

1
2 ‖2f p

)
+
(
〈ρ+V n− 1

2 ,V n− 1
2 〉rp −

∆t
Hγ2
‖V n− 1

2 ‖2rp

) (30)

Eq.(29) implies the energy is controlled by the grid functions:

Enc [v,p,V ,P ] ≤ Cp‖pn‖2f d +CP ‖P n‖2rd +Cv‖vn−
1
2 ‖2f p +CV ‖V n− 1

2 ‖2rp (31)
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for some constants Cp,CP ,Cv ,CV > 0, which are only determined by the densities,
moduli, ∆t, h, γ1 and γ2.

Let κ−max = max
0≤i≤Ni

κ−i , and κ+
max, ρ−min, ρ+

min are defined similarly. If the time step

size satisfies

∆t <min
{

h
κ−maxγ1

,
H

κ+
maxγ2

,γ1ρ
−
minh,γ2ρ

+
minH

}
(1D.dt)

then the term in every parenthesis of Eq.(30) will be greater than a grid function
norm multiplied by a constant factor, i.e.,

Enc [v,p,V ,P ] ≥ cp‖pn‖2f d + cP ‖P n‖2rd + cv‖vn−
1
2 ‖2f p + cV ‖V n− 1

2 ‖2rp (32)

for some constants cp, cP , cv , cV > 0, which are only determined by the densities,
moduli, ∆t, h, γ1 and γ2; hence the grid functions are controlled by the energy.

With conservation and boundedness (Eq.(31) and Eq.(32)), for any initial perturba-
tion: (v−

1
2 ,p0,V −

1
2 , P 0)→ (v̂−

1
2 , p̂0, V̂ −

1
2 , P̂ 0), we have

cp‖pn − p̂n‖2f d + cP ‖P n − P̂ n‖2rd + cv‖vn−
1
2 − v̂n−

1
2 ‖2f p + cV ‖V n− 1

2 − V̂ n− 1
2 ‖2rp ≤

Cp‖p0 − p̂0‖2f d +CP ‖P 0 − P̂ 0‖2rd +Cv‖v−
1
2 − v̂−

1
2 ‖2f p +CV ‖V −

1
2 − V̂ −

1
2 ‖2rp

(33)

Hence the scheme is stable if ghost data are updated according to Eq.(1D.ECI.a)
and Eq.(1D.ECI.b), and the time step size is constrained by Eq.(1D.dt).

Finally, to reduce computing time, γ1,γ2 should be selected to make ∆t as large
as possible.

3D STABLE COMPOSITE GRID SCHEME

Elastic wave propagation in a 3D anisotropic material is governed by two equa-
tions:

Conservation of Momentum: ρ(x)vt(x, t) = ∇ · σ (x, t) + s(x, t)
Constitutive Law: σt(x, t) = c(x) :: ε(x, t)

(34)

where the simulation variables are particle velocity v = (vi)i=1,2,3 and stress tensor
σ = (σij)i,j=1,2,3. The material is characterized by density ρ and stiffness tensor
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c = (cijkl)i,j,k,l=1,2,3. ε = (εij)i,j=1,2,3 is the strain rate tensor defined by
1
2

[∇v+(∇v)T ].

s is the source function; however, as one might observe in 1D case that stability
qualifications are obtained on homogeneous form, I will assume the source term
is zero in the rest of the section.

Both stress and strain tensors are symmetric, and the stiffness tensor c satisfies
cijkl = cklij = cjikl , so the second equation in Eq.(34) is often expressed in Voigt
notation or Kelvin notation (Helbig, 1996). In this paper I adopt Kelvin notation
as it will simplify the later derivation for the energy. Eq.(35) shows the Kelvin
notation:

∂
∂t



σ11
σ22
σ33√
2σ23√
2σ13√
2σ12


=



c1111 c1122 c1133

√
2c1123

√
2c1113

√
2c1112

c2211 c2222 c2233

√
2c2223

√
2c2213

√
2c2212

c3311 c3322 c3333

√
2c3323

√
2c3313

√
2c3312√

2c2311

√
2c2322

√
2c2333 2c2323 2c2313 2c2312√

2c1311

√
2c1322

√
2c1333 2c1323 2c1313 2c1312√

2c1211

√
2c1222

√
2c1233 2c1223 2c1213 2c1212





ε11
ε22
ε33√
2ε23√
2ε13√
2ε12


(35)

Denote stress, strain rate and stiffness tensors in Kelvin notation by σ,c, ε respec-
tively, then Eq.(35) can be written as:

σ t(x, t) = c(x)ε(x, t) (36)

To save subscripts for grid indices, let (u,v,w) denote three components of the ve-
locity, (txx, tyy, tzz, tyz, txz, txy) denote stress tensor components (σ11,σ22,σ33,σ23,σ13,σ12),
and (cij)i,j=1,...,6 denote c

ij
.

In this work, I use the classical finite difference staggered grid scheme proposed
by Virieux (1986) to simulate the wave propagation. Fig.2 shows the configuration

of a grid cell of this staggered grid scheme. If the index tuple [i, j,k,n +
1
2

] is

mapped from [ih, jh,kh, (n +
1
2

)∆t], then the tuple [i +
1
2
, j,k,n] is mapped from

[(i +
1
2

)h, jh,kh,n∆t] and so forth. Notice that in each cell, normal stresses locate

on the same grid position; velocity components are diagonal to each other, so
are the stress components if viewing the normal stresses (txx, tyy, tzz) as a single
component. This configuration can handle schemes with (cij)6×6 confined to the
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following pattern:

(cij)6×6 =



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66


(37)

which represents a material that is orthorhombic or more symmetric, e.g., trans-
versely isotropic, and these two types of anisotropies are common for fractured
shales (Tsvankin, 1997). Handling wave simulations in more general anisotropic
material requires a fully staggered grid, or Lebedev grid scheme (Bernth and
Chapman, 2011; Rubio et al., 2014), which stores far more variables per grid cell
than the classical staggered grid scheme does; therefore if the material is not pre-
senting strong anisotropy, it is better to use the classical scheme which computes
faster and requires less memory.

txzn
i,j,k+ 1

2
w
n+ 1

2

i+ 1
2 ,j,k+ 1

2

u
n+ 1

2
i,j,k

void

txx, tyy, tzzn
i+ 1

2 ,j,k
,

tyzn
i+ 1

2 ,j+
1
2 ,k+ 1

2

v
n+ 1

2

i+ 1
2 ,j+

1
2 ,k

txyn
i,j+ 1

2 ,k

Figure 2: An unit grid cell of the classical staggered grid finite difference scheme.

With the above grid configuration, the classical finite difference scheme for Eq.(34)
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is:


ρi,j,kD−,tu

n+ 1
2

i,j,k =D−,xtxx
n
i+ 1

2 ,j,k
+D−,ytxy

n
i,j+ 1

2 ,k
+D−,ztxz

n
i,j,k+ 1

2

ρi+ 1
2 ,j+

1
2 ,k
D−,tv

n+ 1
2

i+ 1
2 ,j+

1
2 ,k

=D+,xtxy
n
i,j+ 1

2 ,k
+D+,ytyy

n
i+ 1

2 ,j,k
+D−,ztyz

n
i+ 1

2 ,j+
1
2 ,k+ 1

2

ρi+ 1
2 ,j,k+ 1

2
D−,tw

n+ 1
2

i+ 1
2 ,j,k+ 1

2
=D+,xtxz

n
i,j,k+ 1

2
+D−,ytyz

n
i+ 1

2 ,j+
1
2 ,k+ 1

2
+D+,ztzz

n
i+ 1

2 ,j,k

(3D.FDM.a)
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2 ,j,k
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2 ,j,k
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2 ,j,k

c12i+ 1
2 ,j,k

c22i+ 1
2 ,j,k

c23i+ 1
2 ,j,k

c13i+ 1
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D+,xu
n+ 1

2
i,j,k
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2

i+ 1
2 ,j+

1
2 ,k

D−,zw
n+ 1

2

i+ 1
2 ,j,k+ 1

2


D+,ttyz

n
i+ 1

2 ,j+
1
2 ,k+ 1

2
=

1
2
c44i+ 1

2 ,j+
1
2 ,k+ 1

2
(D+,zv

n+ 1
2

i+ 1
2 ,j+

1
2 ,k

+D+,yw
n+ 1

2

i+ 1
2 ,j,k+ 1

2
)

D+,ttxz
n
i,j,k+ 1

2
=

1
2
c55i,j,k+ 1

2
(D+,zu

n+ 1
2

i,j,k +D−,xw
n+ 1

2

i+ 1
2 ,j,k+ 1

2
)

D+,ttxy
n
i,j+ 1

2 ,k
=

1
2
c66i,j+ 1

2 ,k
(D+,yu

n+ 1
2

i,j,k +D−,xv
n+ 1

2

i+ 1
2 ,j+

1
2 ,k

)

(3D.FDM.b)

To model a material with a flat discontinuity along the z direction, I concatenate
two uniform staggered grids having grid spacings of h and H(> h) respectively,
and place their interface inside the fast material. I will employ same notation
rules as those used in the 1D case: lowercase notations are for simulation vari-
ables on the fine grid, whereas uppercase notations denote coarse grid simulation
variables; fine grid coefficients are appended with “-”, and coarse grid coefficients
with “+”.

Fig.3 demonstrates my 3D composite grid scheme when H = 2h. The wave prop-
agation speed is slower in the top material than in the bottom material, which is
consistent with the fact that the wave propagation speed generally increases with
depth in the subsurface of the earth. Hence a fine grid is used for the top area.
Both grids are rectangular. Their boundary faces are aligned with colored faces
shown in Fig.2, and the grid refinement interface is also aligned with the red face.
Table.1 details the grid location and index range of each grid function. To allow
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two staggered grids connect seamlessly, I assumeNih =NIH
Njh =NJH.

(38)

U

TXZ

TXX,T YY ,T ZZ

W

u

txz

txx, tyy, tzz

w

Grid Interface

W n
1
2 ,0,

1
2

W n
− 1

2 ,0,
1
2

x

z

Slow Material

Fast Material

Figure 3: A x − z cross-section of the 3D composite staggered grid (H=2h) imple-
mented with the homogeneous Dirichlet boundary condition. Smaller blue cells
represent fine grid variables, bigger gray cells being variables on the coarse grid
and white dashed cells being the ghost data. The thick red line denotes the grid
refinement interface which is again placed inside the fast material.

To impose homogeneous Dirichlet boundary conditions on all boundary faces, if
a velocity locates on some boundary face, e.g. un0,0,Nk is on z = −Nkh, then it is set
to 0; otherwise construct a ghost data at the symmetric grid point of the velocity
with respect to the boundary face, and select its value so that their average on the
boundary equal to 0. For example, W n

1
2 ,0,

1
2

(labelled in Fig.3) is only half grid size
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Var Fine Grid Function Range of (i, j,k)

v1 u
n+ 1

2
i,j,k [0,Ni]× [0,Nj]× [0,Nk]

v2 v
n+ 1

2

i+ 1
2 ,j+

1
2 ,k

[0,Ni − 1]× [0,Nj − 1]× [0,Nk]

v3 w
n+ 1

2

i+ 1
2 ,j,k+ 1

2
[0,Ni − 1]× [0,Nj]× [0,Nk − 1]

σ11 txxn
i+ 1

2 ,j,k
[0,Ni − 1]× [0,Nj]× [0,Nk]

σ23 tyzn
i+ 1

2 ,j+
1
2 ,k+ 1

2
[0,Ni − 1]× [0,Nj − 1]× [0,Nk − 1]

σ13 txzn
i,j,k+ 1

2
[0,Ni]× [0,Nj]× [0,Nk − 1]

σ12 txyn
i,j+ 1

2 ,k
[0,Ni]× [0,Nj − 1]× [0,Nk]

Table 1: The table shows locations and ranges of fine grid functions. The fine grid

domain is [0,Nih]× [0,Njh]× [−Nkh,0], where v1(ih, jh, (k−Nk)h, (n+
1
2

)∆t) 7→ u
n+ 1

2
i,j,k

and v2((i +
1
2

)h, (j +
1
2

)h, (k −Nk)h, (n+
1
2

)∆t) 7→ v
n+ 1

2

i+ 1
2 ,j+

1
2 ,k

and so forth. Notice that

along any direction the number of points on the dual grid is always one less than
it on the primary grid. The coarse grid is defined on [0,NIh] × [0,NJh] × [0,NKh]

(not shown) and v1(ih, jh,kh, (n+
1
2

)∆t) 7→U
n+ 1

2
i,j,k and so forth.

close to the boundary face x = 0, then W n
− 1

2 ,0,
1
2

is built at the symmetric location

and select its value so that

W n
0,0, 12

=
1
2

(W n
1
2 ,0,

1
2

+W n
− 1

2 ,0,
1
2
) = 0. (39)

Similar to the 1D case, I built two layers of interface ghost data whose value are
determined by the following stability analyses. Since the interface velocities are
set to zero on the boundary due to the homogeneous Dirichlet boundary condi-
tion, the ghost data is only needed in the interior grid points.

Formulate Discrete Energy on the 3D Composite Grid

Before defining the discrete energy, I will formulate the energy in the continuous
case, with variables vanishing in the infinity. I will show that this energy owns two
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stability qualifications; therefore, the energy definition in the continuous case can
serve as a reference when defining discrete energies on the composite staggered
grid.

If c is invertible, which is true in orthorhombic material, define the total energy
as follows:

E[v,σ ](t) =
1
2

$
R

3

ρ(x)v2(x, t)dx +
1
2

$
R

3

(c−1(x)σ (x, t)) · σ (x, t)dx (40)

Since density and stiffness tensor are nonnegative, this energy qualifies for bound-
edness. On the other hand, take its derivative over time:

dE[v,σ ](t)
dt

=
$
R

3

ρ(x)vt(x, t) · v(x, t)dx +
$
R

3

(c−1(x)σ t(x, t)) · σ (x, t)dx

Eq.(34),(36)
=

$
R

3

(∇ · σ (x, t)) · v(x, t)dx +
$
R

3

ε(x, t) · σ (x, t)dx

=
$
R

3

(∇ · σ (x, t)) · v(x, t)dx +
$
R

3

ε(x, t) ◦ σ (x, t)dx

=
$
R

3

σij,j(x, t))vj(x, t)dx +
$
R

3

1
2

(vj,i(x, t) + vi,j(x, t))σij(x, t)dx IBP= 0

(41)
where the third equality reveals the advantage of using Kelvin notation that the
inner product of ε and σ equals the Hadamard product of ε and σ . The last line
is written in Einstein summation notation. This equation shows that the energy
qualifies for conservation.

Towards the discrete case, I will first define some inner products, which can sim-
plify energy definitions and stability analyses afterwards. Table 2 shows a series
of inner products defined on the fine grid for different grid functions. Each inner
product approximates the product of two grid functions integrated on the fine
grid domain [0,Nih]× [0,Njh]× [−Nkh,0], and it also naturally induces a norm by
the same name. The inner products on the coarse grid can be defined similarly.

With these inner products and their induced norms, define the kinetic energy on
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Fine Grid Function Inner Products

ui,j,k 〈u,u〉u =
1
2

Ni∑
i=0

Nj∑
j=0

Nk∑
k=0

αiαjαkui,j,kui,j,k

vi+ 1
2 ,j+

1
2 ,k

〈v,v〉v =
1
2

Ni−1∑
i=0

Nj−1∑
j=0

Nk∑
k=0

αkvi+ 1
2 ,j+

1
2 ,k
vi+ 1

2 ,j+
1
2 ,k

wi+ 1
2 ,j,k+ 1

2
〈w,w〉w =

1
2

Ni−1∑
i=0

Nj∑
j=0

Nk−1∑
k=0

αjwi+ 1
2 ,j,k+ 1

2
wi+ 1

2 ,j,k+ 1
2

txxi+ 1
2 ,j,k

〈txx, txx〉txx =
1
2

Ni−1∑
i=0

Nj∑
j=0

Nk∑
k=0

αjαk(txxi+ 1
2 ,j,k

)2

tyzi+ 1
2 ,j+

1
2 ,k+ 1

2
〈tyz, tyz〉tyz =

1
2

Ni−1∑
i=0

Nj−1∑
j=0

Nk−1∑
k=0

(tyzi+ 1
2 ,j+

1
2 ,k+ 1

2
)2

txzi,j,k+ 1
2

〈txz, txz〉txz =
1
2

Ni∑
i=0

Nj∑
j=0

Nk−1∑
k=0

αiαj(txzi,j,k+ 1
2
)2

txyi,j+ 1
2 ,k

〈txy, txy〉txy =
1
2

Ni∑
i=0

Nj−1∑
j=0

Nk∑
k=0

αiαk(txzi,j+ 1
2 ,k

)2

Table 2: Inner products defined for different grid functions on the fine grid, where

αi is
1
2

at 0 or Ni and is 1 elsewhere; αj is
1
2

at 0 or Nj and is 1 elsewhere; αk is
1
2

at 0 or Nk and is 1 elsewhere.

the fine grid as:

Knf = 〈ρ−un+ 1
2 ,un−

1
2 〉u + 〈ρ−vn+ 1

2 ,vn−
1
2 〉v + 〈ρ−wn+ 1

2 ,wn−
1
2 〉w

≈ 1
2

∫ Nih

0

∫ Njh

0

∫ 0

−Nkh
ρ(x)v(x, (n+

1
2

)∆t)v(x, (n− 1
2

)∆t)dx
(42)
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The strain energy on the fine grid is defined as:

Snf =
1
2

Ni−1∑
i=0

Nj∑
j=0

Nk∑
k=0

αjαkh
3

txx
n

tyyn

tzzn


T c11− c12− c13−

c12− c22− c23−

c13− c23− c33−


−1 txx

n

tyyn

tzzn

 |i+ 1
2 ,j,k

+ 2〈 1
c44−

tyzn, tyzn〉tyz + 2〈 1
c55−

txzn, txzn〉txz + 2〈 1
c66−

txyn, txyn〉txy

≈1
2

∫ Nih

0

∫ Njh

0

∫ 0

−Nkh
(c−1(x,n∆t)σ (x,n∆t)) · σ (x,n∆t)dx

(43)

where the first line means all grid functions in that term are evaluated at (i +
1
2
, j,k), and certainly it can be written in 〈·, ·〉txx notation, but keeping the coeffi-

cient matrix eases derivations afterwards.

Then the sum of Snf and Knf is defined as the total energy on the fine grid Enf . The
energies on the coarse grid can be defined in a similar way, and the total energy
on the composite grid Enc is then the sum of Enf and Enr .

The rest of the section will present how to update ghost data and restrict time
step size in order to qualify Enc for stability.

Qualify for Conservation

In 1D stability analyses, (1D.SBP) property is used extensively. This property
leads to a list of 3D SBP properties (Eq.(3D.SBP)) and they will be used many
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times in the 3D numerical stability analyses.

〈u,D−,xtxx〉u + 〈D+,xu,txx〉txx =
Nj∑
j=0

Nk∑
k=0

αjαkh
2(uNi ,j,ktxxNi ,j,k −u0,j,ktxx0,j,k)

〈u,D−,ytxy〉u + 〈D+,yu,txy〉txy =
Ni∑
i=0

Nk∑
k=0

αiαkh
2(ui,Nj ,ktxyi,Nj ,k −ui,0,ktxyi,0,k)

...

〈w,D+,ztzz〉w + 〈D−,zw,tzz〉tzz =
Ni−1∑
i=0

Nj∑
j=0

αjh
2(wi+ 1

2 ,j,Nk
tzzi+ 1

2 ,j,Nk
−wi+ 1

2 ,j,0
tzzi+ 1

2 ,j,0
)

(3D.SBP)

Proposition 3. With the Dirichlet homogeneous boundary condition and Eq.(3D.SBP)
, the total energy difference over time on the fine grid comes down to:

Enf −E
n−1
f =h2∆t[

Ni−1∑
i=1

Nj−1∑
j=1

u
n− 1

2
i,j,Nk

(txzni,j,Nk + txzn−1
i,j,Nk

)

+
Ni−1∑
i=0

Nj−1∑
j=0

v
n− 1

2

i+ 1
2 ,j+

1
2 ,Nk

(tyzn
i+ 1

2 ,j+
1
2 ,Nk

+ tyzn−1
i+ 1

2 ,j+
1
2 ,Nk

)

+
Ni−1∑
i=0

Nj−1∑
j=1

w
n− 1

2

i+ 1
2 ,j,Nk

(tzzn
i+ 1

2 ,j,Nk
+ tzzn−1

i+ 1
2 ,j,Nk

)]

(44)

Proof. The total energy difference over time is the sum of strain energy difference
and kinetic energy difference.

Apply the trick: XTAX−Y TAY = (X+Y )TA(X−Y ), and the strain energy difference
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over time on the fine grid is:

Snf −S
n−1
f

(3D.FDM.b)
=

1
2
∆t

Ni−1∑
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Nj∑
j=0

Nk∑
k=0

αjαkh
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txxn
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2 ,j,k

+ txxn−1
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tyyn
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T
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2
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D−,yv
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2

i+ 1
2 ,j+

1
2 ,k

D−,zw
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2

i+ 1
2 ,j,k+ 1

2
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n+ 1
2 +D+,yw

n+ 1
2 〉tyz
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n+ 1

2 〉txz
+∆t〈txyn + txyn−1,D+,yu

n+ 1
2 +D−,xv

n+ 1
2 〉txy

(45)

On the other hand, the kinetic energy difference over time on the fine grid is:

Knf −K
n−1
f = 〈ρ−un−

1
2 ,un+ 1

2 −un−
3
2 〉u+〈ρ−vn−

1
2 ,vn+ 1

2 −vn−
3
2 〉v+〈ρ−wn−

1
2 ,wn+ 1

2 −wn−
3
2 〉w

(46)

Note that

〈ρ−un−
1
2 ,un+ 1

2 −un−
3
2 〉u

(3D.FDM.a)
= ∆t〈un−

1
2 ,D−,x(txx

n + txxn−1) +D−,y(txyn + txyn−1) +D−,z(txz
n + txzn−1)〉u

(3D.SBP)
= ∆t〈D+,xu

n− 1
2 , txxn + txxn−1〉txx +∆t〈D+,yu

n− 1
2 , txyn + txyn−1〉txy

+∆t〈D+,zu
n− 1

2 , txzn + txzn−1〉txz + h2∆t
Ni−1∑
i=1

Nj−1∑
j=1

u
n− 1

2
i,j,Nk

(txzni,j,Nk + txzn−1
i,j,Nk

)

(47)
where the second equation also uses the homogeneous Dirichlet boundary condi-
tion. Notice that the result of this equation already cancels some terms in Eq.(45).
Apply similar procedures to other terms in the kinetic energy difference, then it
yields that the remaining part would be equal to Eq.(44).
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On the coarse grid I obtain a similar result:

Enr −En−1
r =−H2∆t[

NI−1∑
i=1

NJ−1∑
j=1

U
n− 1

2
i,j,0 (TXZni,j,0 + TXZn−1

i,j,0)

+
NI−1∑
i=0

NJ−1∑
j=0

V
n− 1

2
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2 ,j+

1
2 ,0

(T YZn
i+ 1

2 ,j+
1
2 ,0

+ T YZn−1
i+ 1

2 ,j+
1
2 ,0

)

+
NI−1∑
i=0

NJ−1∑
j=1

W
n− 1

2

i+ 1
2 ,j,0

(TZZn
i+ 1

2 ,j,0
+ TZZn−1

i+ 1
2 ,j,0

)],

(48)

Comparing Eq.(44) with (48) yields that the energy is conserved if velocities and
stresses satisfy following equations for any nonnegative n and m.

h2
Ni−1∑
i=1

Nj−1∑
j=1

u
n− 1

2
i,j,Nk

txzmi,j,Nk =H2
NI−1∑
i=1

NJ−1∑
j=1

u
n− 1

2
i,j,0TXZ

m
i,j,0

h2
Ni−1∑
i=0

Nj−1∑
j=0

v
n− 1

2

i+ 1
2 ,j+

1
2 ,Nk

tyzm
i+ 1

2 ,j+
1
2 ,Nk

=H2
NI−1∑
i=0

NJ−1∑
j=0

v
n− 1

2

i+ 1
2 ,j+

1
2 ,Nk

T YZm
i+ 1

2 ,j+
1
2 ,NK

h2
Ni−1∑
i=0

Nj−1∑
j=1

w
n− 1

2

i+ 1
2 ,j,Nk

tzzm
i+ 1

2 ,j,Nk
=H2

NI−1∑
i=0

NJ−1∑
j=1

W
n− 1

2

i+ 1
2 ,j,NK

TZZm
i+ 1

2 ,j,NK

(3D.ECI)

These equations are analogous to Eq.(1D.ECI) in 1D case. If the ghost data are
selected to validate these equations, then the energy is conserved.

However, solving for ghost data certainly requires more equations than the ones
provided in Eq.(3D.ECI). Like in the 1D case, I use the transmission condition to
create more equations out of Eq.(3D.ECI).

For example, suppose H = 2h, then Ni = 2NI , and solving for TXZn
i,j,− 1

2
on (i, j) ∈

[1,NI −1]× [1,NJ −1] and txzn
i,j,Nk+ 1

2
on (i, j) ∈ [1,Ni −1]× [1,Nj −1] needs 5NiNj −

3Ni−3Nj+2 independent equations. Note that the coarse grid point [i, j,0] locates
on (iH, jH,0) on the spatial domain, so does fine grid point [2i,2j,Nk]; fine grid
point [2i+1,2j,Nk] locates in the middle of [i, j,0] and [i+1, j,0] on the coarse grid
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and so on. The transmission condition asks for stress continuity which implies the
following conditions:

txzm2i,2j,Nk = TXZmi,j,0 on [1,NI − 1]× [1,NJ − 1]

txzm2i+1,2j,Nk
=

1
2

(TXZmi,j,0 + TXZmi+1,j,0) on [0,NI − 1]× [1,NJ − 1]

txzm2i,2j+1,Nk
=

1
2

(TXZmi,j,0 + TXZmi,j+1,0) on [1,NI − 1]× [0,NJ − 1]

txzm2i+1,2j+1,Nk
=

1
4

(TXZmi,j,0 + TXZmi+1,j,0 + TXZmi,j+1,0 + TXZmi+1,j+1,0) on [0,NI − 1]× [0,NJ − 1]

(3D.ECI.txz.a)
Substituting these equations back into the first equation of Eq.(3D.ECI) yields the
following condition on (i, j) ∈ [1,NI − 1]× [1,NJ − 1]:

16U
n+ 1

2
i,j,0 =4u

n+ 1
2

2i,2j,Nk
+ 2(u

n+ 1
2

2i+1,2j,Nk
+u

n+ 1
2

2i−1,2j,Nk
+u

n+ 1
2

2i,2j+1,Nk
+u

n+ 1
2

2i,2j−1,Nk
)

+ (u
n+ 1

2
2i+1,2i+1,Nk

+u
n+ 1

2
2i−1,2j+1,Nk

+u
n+ 1

2
2i+1,2j−1,Nk

+u
n+ 1

2
2i−1,2j−1,Nk

)
(3D.ECI.txz.b)

Note that this condition happens to be consistent with the velocity continuity re-
quired in the transmission condition. Letm = n, then (3D.ECI.txz.a) and (3D.ECI.txz.b)
together provide 5NiNj −3Ni −3Nj +2 equations for TXZn

i,j,− 1
2

and txzn
i,j,Nk+ 1

2
. The

following proposition proves that this equation system is solvable under some
mild conditions, and then the problem becomes how to solve it efficiently, which
will be part of the future work.

Proposition 4. If interface densities satisfy Eq.(52) on (i, j) ∈ [1,NI − 1]× [1,NJ − 1],
then the solution of the equation system provided by (3D.ECI.txz.a)(when m = n) and
(3D.ECI.txz.b) exists and is unique.

Proof. By (3D.FDM.a), (3D.ECI.txz.b) can be transformed into an equation of TXZn
i,j,− 1

2
and txzn

i,j,Nk+ 1
2
. Now replace txzn

i,j,Nk+ 1
2

with TXZn
i,j,− 1

2
using (3D.ECI.txz.a), then

the previous equation contains only TXZn
i,j,− 1

2
, and is in the following form:

Ai−1,j−1TXZ
n
i−1,j−1,− 1

2
+Ai−1,jTXZ

n
i−1,j,− 1

2
+Ai−1,j+1TXZ

n
i−1,j+1,− 1

2

+Ai,j−1TXZ
n
i,j−1,− 1

2
+Ai,jTXZ

n
i,j,− 1

2
+Ai,j+1TXZ

n
i,j+1,− 1

2

+Ai+1,j−1TXZ
n
i+1,j−1,− 1

2
+Ai+1,jTXZ

n
i+1,j,− 1

2
+Ai+1,j+1TXZ

n
i+1,j+1,− 1

2
= Bi,j

(49)
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where
Ai−1,j−1 =

1
4ρ−2i−1,2j−1,Nk

> 0, Ai−1,j+1 =
1

4ρ−2i−1,2j+1,Nk

> 0

Ai+1,j−1 =
1

4ρ−2i+1,2j−1,Nk

> 0, Ai+1,j+1 =
1

4ρ−2i+1,2j+1,Nk

> 0

Ai−1,j =
1

ρ−2i−1,2j,Nk

+
1

4ρ−2i−1,2j+1,Nk

+
1

4ρ−2i−1,2j−1,Nk

> 0

Ai,j−1 =
1

ρ−2i,2j−1,Nk

+
1

4ρ−2i+1,2j−1,Nk

+
1

4ρ−2i−1,2j−1,Nk

> 0

Ai+1,j =
1

ρ−2i+1,2j,Nk

+
1

4ρ−2i+1,2j+1,Nk

+
1

4ρ−2i+1,2j−1,Nk

> 0

Ai,j+1 =
1

ρ−2i,2j+1,Nk

+
1

4ρ−2i+1,2j+1,Nk

+
1

4ρ−2i−1,2j+1,Nk

> 0

(50)

Ai,j =Ai−1,j−1 +Ai−1,j +Ai−1,j+1 +Ai,j−1 +Ai,j+1 +Ai+1,j−1 +Ai+1,j +Ai+1,j+1

+
8

ρ+
i,j,0

+
4

ρ−2i,2j,Nk
− 1

2ρ−2i+1,2j+1,Nk

− 1
2ρ−2i−1,2j+1,Nk

− 1
2ρ−2i+1,2j−1,Nk

− 1
2ρ−2I−1,2J−1,Nk

(51)
and Bi,j is the remaining part that does not involve any ghost data but only known
data.

View Eq.(49) as a linear equation system ÂX = B̂ solving for the unknown vector
X = (TXZn1,1,0, ...,T XZ

n
1,NI−1,0,T XZ

n
2,1,0, ...,T XZ

n
2,NI−1,0, ...,T XZ

n
NI−1,1,0, ...,T XZ

n
NI−1,NJ−1,0)T ,

and A,B are mapped to Â, B̂ in a similar way.

If density functions satisfy the following inequality on (i, j) ∈ [1,NI −1]× [1,NJ −1]

8
ρ+
i,j,0

+
4

ρ−2i,2j,Nk
− 1

2ρ−2i+1,2j+1,Nk

− 1
2ρ−2i−1,2j+1,Nk

− 1
2ρ−2i+1,2j−1,Nk

− 1
2ρ−2I−1,2J−1,Nk

> 0.

(52)
then Â is strictly diagonally dominant, and hence it is non-singular. As a result,
X is uniquely determined, and substituting X back to (3D.ECI.txz.a) uniquely
determines txzn

i,j,Nk+ 1
2
.

The inequality Eq.(52) imposed on density is considered mild because when the
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density is locally smooth enough, i.e., densities involved in Eq.(52) are nearly
identical, then the inequality is satisfied.

Here I list two groups of equations to compute the remaining ghost data but omit
the derivation process for brevity. Similar to Proposition 4, it is easy to prove
that they are solvable because of having strictly diagonally dominant coefficient
matrices; but unlike Proposition 4, when solving for these ghost data, achieving
strictly diagonally dominance poses no restriction on density or whatever.

Equations below are solved for T YZn
i+ 1

2 ,j+
1
2 ,0

on [0,NI−1]×[0,NJ−1], and tyzn
i+ 1

2 ,j+
1
2 ,Nk

on [0,Ni − 1]× [0,Nj − 1]:4V
n+ 1

2

i+ 1
2 ,j+

1
2 ,0

= v
n+ 1

2

2i+ 1
2 ,2j+

1
2 ,Nk

+ v
n+ 1

2

2I+ 3
2 ,2j+

1
2 ,Nk

+ v
n+ 1

2

2i+ 1
2 ,2j+

3
2 ,Nk

+ v
n+ 1

2

2i+ 3
2 ,2j+

3
2 ,Nk

T YZn
i+ 1

2 ,j+
1
2 ,0

= tyzn
2i+ 1

2 ,2j+
1
2 ,Nk

= tyzn
2i+ 3

2 ,2j+
1
2 ,Nk

= tyzn
2i+ 1

2 ,2j+
3
2 ,Nk

= tyzn
2i+ 3

2 ,2j+
3
2 ,Nk

(3D.ECI.tyz)
The following group of equations are solved for wn

i+ 1
2 ,j,Nk

on [0,NI −1]× [1,NJ −1],

W n
i+ 1

2 ,j,0
on [0,Ni − 1]× [1,Nj − 1]:

8TZZn+1
i+ 1

2 ,j,0
= 2tzzn+1

2i+ 1
2 ,2j,Nk

+ 2tzzn+1
2i+ 3

2 ,2j,Nk
+ tzzn+1

2i+ 1
2 ,2j±1,Nk

+ tzzn+1
2i+ 3

2 ,2j±1,Nk

W
n+ 1

2

i+ 1
2 ,j,0

= w
n+ 1

2

2i+ 1
2 ,2j,Nk

= w
n+ 1

2

2i+ 3
2 ,2j,Nk

w
n+ 1

2

2i+ 1
2 ,2j+1,Nk

= w2i+ 3
2 ,2j+1,Nk

=
1
2

(W
n+ 1

2

i+ 1
2 ,j,0

+W
n+ 1

2

i+ 1
2 ,j+1,0

).

(3D.ECI.w)

Qualify for Boundedness

Denote the maximum and minimum eigenvalue of the inverse matrix ofc11− c12− c13−

c12− c22− c23−

c13− c23− c33−

 |i+ 1
2 ,j,k

by e−
i+ 1

2 ,j,k
and E−

i+ 1
2 ,j,k

. Since all the elements in this matrix are positive, its eigen-

values must be positive, and then emaxi+ 1
2 ,j,k

, emini+ 1
2 ,j,k

> 0. Consequently, the
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strain energy on the fine grid satisfies:

Snf



≤ 〈E− txxn, txxn〉+ 〈E− tyyn, tyyn〉+ 〈E− tzzn, tzzn〉

+2〈 1
c44−

tyzn, tyzn〉tyz + 2〈 1
c55−

txzn, txzn〉txz + 2〈 1
c66−

txyn, txyn〉txy
≥ 〈e− txxn, txxn〉+ 〈e− tyyn, tyyn〉+ 〈e− tzzn, tzzn〉

+2〈 1
c44−

tyzn, tyzn〉tyz + 2〈 1
c55−

txzn, txzn〉txz + 2〈 1
c66−

txyn, txyn〉txy

(53)

On the coarse grid a similar result can be obtained.

On the other hand, for the fine grid kinetic energy

〈ρ−un+ 1
2 ,un−

1
2 〉u + 〈ρ+Un+ 1

2 ,Un− 1
2 〉U

(3D.FDM.a)
= ∆t〈un−

1
2 ,D−,xtxx

n +D−,ytxy
n +D−,ztxz

n〉u + 〈ρ−un−
1
2 ,un−

1
2 〉u

+∆t〈Un− 1
2 ,D−,xTXX

n +D−,yTXY
n +D−,zTXZ

n〉U + 〈ρ+Un− 1
2 ,Un− 1

2 〉U
(3D.ECI)

= −∆t
(
〈D+,xu

n− 1
2 , txxn〉txx + 〈D+,yu

n− 1
2 , txyn〉txy + 〈D+,zu

n− 1
2 , txzn〉u

+ 〈D+,xU
n− 1

2 ,T XXn〉TXX + 〈D+,yU
n− 1

2 ,T XY n〉TXY + 〈D+,zU
n− 1

2 ,T XZn〉TXZ
)

+ 〈ρ−un−
1
2 ,un−

1
2 〉u + 〈ρ+Un− 1

2 ,Un− 1
2 〉U

(54)
where every inner product is bounded by the norm of vectors, for example,

|〈D+,xu
n− 1

2 , txxn〉txx| ≤
1
h

(γux‖un−
1
2 ‖2u +

1
γux
‖txxn‖2txx) (55)
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Therefore, let

β1 =〈ρ−un−
1
2 ,un−

1
2 〉u + 〈ρ+Un− 1

2 ,Un− 1
2 〉U + 〈ρ−vn−

1
2 ,vn−

1
2 〉v + 〈ρ+V n− 1

2 ,V n− 1
2 〉V

+ 〈ρ−wn−
1
2 ,wn−

1
2 〉w + 〈ρ+W n− 1

2 ,W n− 1
2 〉W

β2 =
∆t(γux +γuy +γuz)

h
‖un−

1
2 ‖2u +

∆t(γUx +γUy +γUz)

h
‖Un− 1

2 ‖2U

+
∆t(γvx +γvy +γvz)

h
‖vn−

1
2 ‖2v +

∆t(γV x +γV y +γV z)

h
‖V n− 1

2 ‖2V

+
∆t(γwx +γwy +γwz)

h
‖wn−

1
2 ‖2w +

∆t(γWx +γWy +γWz)

h
‖W n− 1

2 ‖2W

+
∆t
hγux

‖txxn‖2txx +
∆t
hγvy

‖tyyn‖2tyy +
∆t
hγwz

‖tzzn‖2tzz

+ (
∆t
hγuy

+
∆t
hγvx

)‖txyn‖2txy + (
∆t
hγuz

+
∆t
hγwx

)‖txzn‖2txz + (
∆t
hγvz

+
∆t
hγwy

)‖tyzn‖2tyz

+
∆t

HγUx
‖TXXn‖2TXX +

∆t
HγV y

‖T YY n‖2T YY +
∆t

HγWz
‖TZZn‖2TZZ

+ (
∆t

HγUy
+

∆t
HγV x

)‖TXY n‖2TXY + (
∆t

HγUz
+

∆t
HγWx

)‖TXZn‖2TXZ + (
∆t
HγV z

+
∆t

HγWy
)‖T YZn‖2T YZ

(56)
where γux,γuy , ...,γWz > 0 are coefficients left to be optimized later on, then

Knc

≤ β1 + β2

≥ β1 − β2
(57)

Eq.(53) and (57) imply that the total discrete energy on the composite grid is
bounded above by a weighted sum of grid function norms, and it is also bounded
blow by a weighted sum of grid function norms if the coefficient before the norm
square of each grid function in (Snc +β1 −β2) is positive, i.e. the time step size has
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to satisfy

∆t <min
{

hminρ−

γux +γuy +γuz
,

Hminρ+

γUx +γUy +γUz
,

hminρ−

γvx +γvy +γvz
,

Hminρ+

γV x +γV y +γV z
,

hminρ−

γwx +γwy +γwz
,

Hminρ+

γWx +γWy +γWz
,

hmin{γux,γvy ,γwz}mine−,Hmin{γUx,γV y ,γWz}mine+,

2hγwyγvz
maxc44−(γwy +γvz)

,
2hγwxγuz

maxc55−(γwx +γuz)
,

2hγuyγvx
maxc66−(γuy +γvx)

,

2HγWyγV z
maxc44+(γWy +γV z)

,
2HγWxγUz

maxc55+(γWx +γUz)
,

2HγUyγV x
maxc66+(γUy +γV x)

}

(3D.dt)

where minρ− denote the minimum density on the fine grid, and meanings of other
similar notations are straightforward. Therefore, once the time step size satisfies
Eq.(3D.dt), the scheme qualifies for boundedness.

To compute as fast as possible, γux,γuy , ...,γWz > 0 are then optimized to maximize
the time step size.

1D NUMERICAL TESTS

In this section, I perform two series of experiments to numerically verify that
in the 1D case both conservation and boundedness are indispensable to achieve a
stable composite staggered grid scheme.

1D Wave Propagation Problem, Exact Solutions and Composite
Grid Schemes

I consider the same 1D wave propagation problem as the one used in Petersson
and Sjögreen (2010), except that they formulate the problem in terms of displace-
ment and simulate it using the composite collocated grid scheme. The problem is
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defined on x ∈ [0,1] and formulated as:vt(x, t) = c2px(x, t) + g(t)δ′(x − x∗)
pt(x, t) = vx(x, t)

(58)

where x∗ is the source location; δ′(x) is the first derivative to the Dirac delta func-
tion; c = 1 represents the propagation speed over [0,1], and hence there is no
material discontinuity in this case; the time function is polynomial:

g(t) =

−20t7 + 70t6 − 84t5 + 35t4, 0 ≤ t < 1
1, t > 1

(59)

which is a smooth function with vanishing derivatives at t = 0,1. Homogeneous
Dirichlet boundary condition is imposed on two ends.

When g(t) = tn and n ≥ 2, following derivations in Petersson and Sjögreen (2010),
I obtain the exact solution for the velocity:

v(x, t) =
n(ct + x − x∗)n−1

2cn+1 H(x − x∗ + ct) +
n(ct − x+ x∗)n−1

2cn+1 H(x − x∗ − ct)

− n(ct + x − x∗)n−1 +n(ct − x+ x∗)n−1

2cn+1 H(x − x∗)
(60)

whereH is the Heaviside step function and t is chosen such that the wave does not
hit the boundary because otherwise the solution will be more complex (actually
I don’t know how to give an analytical expression in this case). Note that v(x, t)
is discontinuous only at x∗: the presence of Heaviside step functions indicate that
the only possible discontinuous locations are at x∗− ct, x∗+ ct and x∗; however, the
polynomial term before H(x − x∗ + ct) goes to 0 as x goes to x∗ − ct, therefore the
function is continuous at x∗ − ct, and similarly, the function is also continuous at
x∗ + ct.

When g(t) = tn and n ≥ 2, the exact solution for the pressure is

p(x, t) =
n(ct + x − x∗)n−1

2cn+2 H(x − x∗ + ct)−
n(ct − x+ x∗)n−1

2cn+2 H(x − x∗ − ct)

+
n(ct − x+ x∗)n−1 −n(ct + x − x∗)n−1

2cn+2 H(x − x∗)−
tn

c2δ(x − x∗)
(61)

Similar to the discontinuity arguments developed for the velocity, the pressure
is also discontinuous only at x∗, but in this case the discontinuity is caused not
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only by H(x − x∗) but also by δ(x − x∗), so the numerical solution goes to infinity
when x goes to x∗, which flattens out solutions at other positions in the same plot
frame. Therefore, to have a clear overall comparison between the exact solution
and the numerical solution, I muted the pressure values for both numerical and
exact solution near x∗ in plots shown later.

The fine grid of the composite grid is on [0,0.5] and coarse grid on [0.5,1]. The
coarse grid size H = 0.0125 is twice as large as the fine grid size h. The intuitive
scheme uses ghost data interpolation given by Eq.(9), whereas the stable scheme
uses ghost data interpolation determined by the linear equation system given by
Eq.(1D.ECI.a) and Eq.(1D.ECI.b). According to Eq.(1D.dt), the maximal time step
size to maintain stability for the stable composite grid scheme is

∆tmax = min
{
h
γ1
,
H
γ2
,γ1h,γ2H

}
(62)

When γ1 = γ2 = 1, ∆tmax is maximized to attain h. In later experiments, I use

∆t =
1
2
h.

Dirac Source Discretization

To approximate the source term δ′(x), I adopt the stencil approach as suggested
by Petersson and Sjögreen (2010). Denote the grid function corresponding to δ′(x)
by sni on the fine grid and Sni on the coarse grid. The nonzero elements of the
grid function (sni ,S

n
i ) are aggregated only within a neighborhood of x∗, and they

constitute a stencil that satisfies

〈sni , P
(q),−
i 〉sp + 〈Sni , P

(q),+
i 〉rp = −P ′(q)(x∗), q = 0, ...,Q (63)

where P (q)(x) is any polynomial in x of degree q, P ′(q)(x) is its first derivative, and

the grid function of P (q)(x) is denoted by (P (q),−
i , P

(q),+
i ).

Since the finite difference scheme is second order accurate in both time and space,
the source approximation should be at least second order accurate in both time
and space otherwise the accuracy of the finite difference scheme would be wasted.
Waldén (1999) showed that Q has to be at least l to obtain overall l-th order
convergence. Therefore in this paper, I choose Q = 3, and then Eq.(63) yields a
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nonzero stencil that is 4-point wide. Fig. 4 shows that the nonzero stencil loca-
tions vary with different x∗. When x∗ locates on either grid but is not close to
the interface, the nonzero stencil points are entirely on one grid, as demonstrated
in the first and the last case in Fig. 4; however, when x∗ is close to the interface,
the nonzero stencil is distributed on both grids as shown in the remaining cases
in Fig. 4. Suppose the overlapping point, or the interface point is assigned with
a weight of I as solved by Eq.(63), then as suggested in Petersson and Sjögreen

(2010) I assign the weight on the fine grid interface point as I , and
1
2
I for the

coarse grid interface point.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x∗ < 0.5− 2h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5− 2h ≤ x∗ < 0.5− h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5− h ≤ x∗ ≤ 0.5 +H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5 +H < x∗ < 0.5 + 2H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x∗ ≥ 0.5 + 2H

Figure 4: Distribution of nonzero elements in the approximated source term with
varying x∗. The cross represents the location of x∗. Blue dots denote grid positions
of nonzero sni , gray dots for nonzero Sni .
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Numerical Results and Discussion

The first series of experiments demonstrate that it is necessary to use the energy
conserving ghost data interpolation.

I vary the source location x∗ at five different positions on the composite grid as
illustrated and categorized in Fig.4 and compare 1D wave propagation numerical
results obtained by using the intuitive composite staggered grid scheme and the
stable composite staggered grid scheme with its exact solutions. The results are
shown in Fig.5 and 6.

When the source is very close to the interface (within two grid sizes), which creates
a discontinuity in the solution near the interface, Fig.5 shows that the intuitive
composite staggered grid scheme is not stable; whereas Fig.6 shows that the stable
composite staggered grid scheme is stable regardless of the source-to-interface
distance.

This result is consistent with the previous analyses that the intuitive ghost data
interpolation can provide a good approximation only when the exact solution is
smooth near the interface; however in this case the exact solution is not smooth
near the interface because there is a first order derivative of Dirac delta source
which is close to the interface. In contrast, the energy conserving ghost data inter-
polation successfully solves this issue by incorporating the source influence, see
Eq.(25).

One may point out that both schemes fail to provide a good approximation to the
velocity near x∗ regardless of its location (except using the stable scheme when
x∗ = 0.5 − 1.5h); however, this inconsistency has been observed in Petersson and
Sjögreen (2010) as well, and I suspect that this inconsistency is due to the source
discretization, which also causes the slight mismatch between exact velocity and
numerical velocity computed by the stable scheme when x∗ = 0.5 + 5H .

The second series of experiments seek to demonstrate the necessity of restrict-
ing the time step size to qualify for boundedness. As derived earlier, the maximal
time step size to maintain stability is equal to h. I examine the numerical solu-
tions computed by the stable composite grid scheme by setting ∆t = 0.98h and
∆t = 1.02h respectively. The results shown in Fig. 7 reveal that in this case the
restriction ((1D.dt)) on the time step size is not only necessary but also so sharp
that any infinitesimal amount of increment would cause instability.
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Figure 5: Comparison between exact solutions and numerical solutions computed
by the intuitive composite staggered grid scheme with varying x∗ location. All
the snapshots were taken at T = 0.33. The left five panels show exact velocities
(red line) and numerical velocities (red circles); the right five panels show exact
pressures (blue line) and numerical pressures (blue circles).
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Figure 6: Comparison between exact solutions and numerical solutions computed
by the stable composite staggered grid scheme with varying x∗. All the snapshots
were taken at T = 0.33. The left five panels show exact velocities (red line) and
numerical velocities (red circles); the right five panels show exact pressures (blue
line) and numerical pressures (blue circles).
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Figure 7: Comparison between exact solutions and numerical solutions computed
by the stable composite staggered grid scheme with varying ∆t. All the snapshots
were taken at T = 0.33. The left two panels show exact velocities (red line) and
numerical velocities (red circles); the right two panels show exact pressures (blue
line) and numerical pressures (blue circles).

CONCLUSION AND FUTURE WORK

In this paper, I built a stable composite staggered grid scheme based on the first-
order hyperbolic wave equation, on a rectangular domain composed of two subdo-
mains with different characteristic wavelengths. The scheme is equipped with the
homogeneous Dirichlet boundary condition. The 3D scheme can handle anisotropic
(up to orthorhombic) elastic wave simulations. I use the energy method to show
that if the homogeneous form of a scheme satisfies conservaiton and boundedness,
then the scheme is stable. To qualify for conservation, the interface ghost data
have to be updated in a way so that the energy is conserved. When the refinement
ratio is equal to two, I show that this conservation qualification, together with the
transmission condition, yields a linear equation system to solve for the ghost data,
and this system is solvable under mild conditions. When the ghost data are up-
dated to conserve the energy, the scheme can qualify for boundedness as long as
the time step size is bounded above by the spatial grid size multiplied by some
constant which are determined by only coefficients in the wave equation. Finally,
The 1D numerical results show that the intuitive composite grid scheme, in which
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the interface ghost data are straightforwardly interpolated from pressures nearby
and so the energy may not be conserved, is not stable when the solution is not
continuous near the interface, whereas the stable composite grid scheme keeps its
stability in this case. In addition, the results also show that restricting the time
step size is indispensable to achieve stability.

Future work includes:

• Analyze convergency. Lax-Richtmyer Equivalence Theorem states that for
a linear and consistent numerical scheme, stability is equivalent to conver-
gency. The stable composite grid scheme built in this paper is linear, stable
and consistent at all interior grid points, but it is hard to analyze whether
or not it is consistent at interface and boundary points. So Lax-Richtmyer
Theorem can not be applied in this case unless I can prove consistency at
the interface and the boundary.

• Towards high order scheme. Currently, the spatial finite difference opera-
tors are only of second order accuracy. Using high order spatial finite dif-
ference operators can reduce the number of points required per wavelength
and hence it saves memory and computational cost (Levander, 1988). There-
fore, it is desirable to extend the scheme using high order finite difference
operators.

• Implement the free surface boundary condition. Free surface boundary
condition is used to model the water-air interface, where the traction per-
pendicular to the interface is 0, i.e.,

σ ·n = 0.

Implementing this boundary condition on finite difference scheme based on
first-order hyperbolic wave equation is straightforward. If the stress com-
ponents are aligned on the boundary, then set them to be zero; for those
stress components that are half grid size to the boundary, then construct
their ghost stress points with respect to the interface so that averaged stress
values on the interface are zero. This modeling technique is known as stress-
imaging technique (Levander, 1988), and this technique can provide an accu-
rate and stable solution when modeling a planar free surface (Robertsson,
1996). In Petersson and Sjögreen’s paper (Petersson and Sjögreen, 2010),
they obtain a stable collocated grid scheme with free surface boundary con-
dition. So I expect to achieve a stable staggered grid scheme with this bound-
ary condition.
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• Implement the PML boundary condition. The perfectly matched layer
(PML) boundary condition (Bérenger, 1994) is used to to simulate wave
propagations in infinite domain by minimizing spurious waves reflected
from the artificial boundary, as if the computational domain extends to in-
finity and the outgoing waves never travel back. It wraps a layer around the
computational domain which attenuates the wave energy at an exponential
rate regardless of the wave incident angle to the boundary. PML has already
been well developed for staggered grid finite difference scheme based on
anisotropic (orthotropic or higher symmetric) elastic wave equation (Collino
and Tsogka, 1998). In addition, Bécache (Bécache et al., 2001) has derived a
necessary and a sufficient stability condition for this PML scheme.

• Parallelization and performance tuning. For parallelization, I would like
to use MPI+OpenMP guided by HPCToolkit (Mellor-Crummey, 2015). The
first task is to efficiently solve and parallelize the energy conserving ghost
data interpolation. Petersson and Sjögreen (Petersson and Sjögreen, 2010)
found that in practice an iterative block Jacobi relaxation method can effi-
ciently solve these equation systems in parallel for composite collocated grid
finite difference scheme.

For fine tuning, I will explore cache optimizations and ensure full SIMD vec-
torization. In my master thesis (Zhou, 2014) I built a fully vectorized uni-
form collocated grid finite difference scheme based on the wave equation in
second-order displacement form. I investigated both spatial and temporal
cache optimizations, which are designed to be compatible with the OpenMP
parallelization. The composite staggered grid scheme simulates more vari-
ables than the uniform collocated grid scheme, so it incurs higher memory
pressure and hence cache optimizations might be more effective in improv-
ing the performance.
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Petersson, N. A., and B. Sjögreen, 2009, An energy absorbing far-field bound-
ary condition for the elastic wave equation: Communications in Computational
Physics, 6, 483–508.

——–, 2010, Stable grid refinement and singular source discretization for seismic
wave simulations: Communications in Computational Physics, 8, 1074–1110.

Robertsson, J. O., 1996, A numerical free-surface condition for elastic/viscoelas-
tic finite-difference modeling in the presence of topography: Geophysics, 61,
1921–1934.

Rodrı́guez, J., 2008, A spurious-free space-time mesh refinement for elastody-
namics: International Journal for Multiscale Computational Engineering, 6,
263–279.

Rubio, F., M. Hanzich, A. Farrés, J. de la Puente, and J. M. Cela, 2014, Finite-
difference staggered grids in GPUs for anisotropic elastic wave propagation
simulation: Computers & Geosciences, 70, 181–189.

Tsvankin, I., 1997, Anisotropic parameters and P-wave velocity for orthorhombic
media: GEOPHYSICS, 62, 1292–1309.

Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress
finite-difference method: Geophysics, 51, 889–901.

Waldén, J., 1999, On the approximation of singular source terms in differential
equations: Numer. Methods Partial Differential Eq., 15, 503–520.



Stable Composite Staggered Grid Finite Difference Scheme 149

Zhou, M., 2014, Wave equation based stencil optimizations on a multi-core CPU:
Master’s thesis, Rice University.



150 Muhong Zhou



The Rice Inversion Project, TRIP15, April 10, 2016

Algorithmic Aspects of Extended Waveform Inversion

William. W. Symes

ABSTRACT
Extended waveform inversion uses inference of an extended model, depend-
ing on non-physical parameters, to extract velocity information directly from
waveform data. It has been observed a number of times that data fit at all
stages of velocity updates, a side-effect of model extension, appears to be im-
portant to assure reliability of algorithms of this type. An analysis of the
modeling operator derivative provides an explanation for this observation,
and reveals the link between extended waveform inversion and traveltime to-
mography.
A version of this paper was presented at the EAGE 2015 Anuual Meeting.

INTRODUCTION

Waveform velocity analysis uses extended modeling to detect inconsistency be-
tween velocity model and data: extra parameters are introduced into the model to
enable data fit even in the initial stages of model updating. The final model must
depend only trivially on these additional parameters, and model updates are con-
structed to reduce the dependence. Such methods may operate primarily in data
domain or image domain, or combine elements of both, and may distantly or
closely relate to full waveform inversion (FWI). Some recent contributions to this
technology include Lameloise et al. (2014); Gao and Williamson (2014); Biondi
and Almomin (2014); Weibull and Arntsen (2014) and a number of papers men-
tioned below. For extensive discussion and older references, see Symes (2008).

This paper concerns algorithmic features of waveform velocity analysis common
to both image- and data-domain approaches. Kern and Symes (1994) describe an
optimization formulation, and observe that in one particular case: (a) model up-
dates should be nested, with short-scale components updated prior to each update
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of long-scale velocities; (b) within each inner step, short-scale model components
should be inverted, that is, made to fit data, rather than merely imaged; (c) com-
putation of the gradient involves the adjoint derivative of the modeling operator,
which may be computed with an RTM-like procedure, so Newton-like descent
methods are feasible. The evidence for these assertions presented by Kern and
Symes (1994) was partly numerical. The purpose of this paper is to identify the
mathematical structure underlying these conclusions, thus demonstrating their
applicability beyond the particular case considered in Kern and Symes (1994).
I will also show how item (b) resolves the “gradient artifact” problem (Fei and
Williamson, 2010; Vyas and Tang, 2010) for a natural class of objective. A by-
product of the resolution is positive semidefiniteness of the Hessian at noise-free
data, which to some extent explains why these methods work.

THEORY

The variants of waveform modeling considered in this abstract are separable: the
model consists of two components, a background model m and a linear compo-
nent r. In many cases this division results from linearization (“Born approxi-
mation”) of a nonlinear model: m is the background or reference model, r is a
perturbation of m (Tarantola, 1984). In others, r is an intrinsically linear parame-
ter, such as a trace-dependent source wavelet or filter (Plessix, 2000; Warner and
Guasch, 2014).

Denote by F[m] the linear modeling operator parametrized by m. F[m]r is then
predicted data from the separable model (m,r). For the cases discussed in this
paper, F[m] can be represented as an integral operator with oscillatory kernel,
whose normal operator F[m]∗F[m] (the superscript ∗ means adjoint or transpose)
is also an oscillatory integral with phase function k · (x − y). The amplitudes of
these operators are homogenous in wavenumber k, to leading order, and the order
can be arranged to be = 0 by appropriate choice of other model parameters (for
example, source wavelet). See for example ten Kroode et al. (1998); Stolk et al.
(2009). Operators of this type have a calculus: sums, adjoints, and (operator)
products are operators of the same type. The order follows the same rules as for
differential operators: in particular, the product AB of operators A of order p and
B of order q has order at most p+q, but the commutator [A,B] = AB−BA has order at
most p+q−1. Indeed the common name for this operator type is pseudodifferential
(Taylor, 1981). The importance of order stems from the effect of these operators
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on frequency components of their inputs: for an operator of order p, components
of wavenumber k are scaled roughly by kp in the output (again, similar to the
effect of differential operators).

An annihilator A is an operator whose null space consists of the non-extended
models, that is, those not depending on the extra extension variables. For the
separable models considered here, only the linear model parameter r need be
extended. Using ‖ · ‖ to denote norm (RMS), and 〈·, ·〉 inner product, a canonical
formulation of the extended waveform inversion problem is

minimize
1
2
‖Ar‖2 subject to F[m]r − d = 0 (1)

Because of the added degrees of freedom provided by extended modeling, es-
sentially arbitrary data may be fit essentially perfectly: ignoring some technical
issues, write r = F[m]−1d to satisfy the constraint. F[m]−1 is an operator of the
same type as F[m]. The objective in equation (1) may be written as

JDSO[m] =
1
2
‖AF[m]−1d‖2 =

1
2
〈d, (F[m]∗)−1A∗AF[m]−1d〉 (2)

If A∗A is pseudodifferential, then the operator “sandwich” in the middle of the
inner product is also pseudodifferential, and its amplitude depends on the model
through ray tracing and various algebraic combinations. JDSO[m] is therefore
smooth in m: the sizes of its derivatives are essentially independent of data fre-
quency content. Conversely, in at least some cases smoothness of JDSO[m] requires
that A∗A be pseudodifferential (Stolk and Symes, 2003).

Analysis of the gradient and Hessian of JDSO[m] requires analysis of the derivative
DF of F (Symes, 2014; ten Kroode, 2014):

DF[m,δm]r = lim
h→0

1
h

(F[m+ hδm]−F[m])r = F[m]Q[m,δm]r, (3)

in which Q[m] is an operator of order 1 - that is, it scales the input at wavenuber
k by a factor proportional to k, thus enhancing high frequency components. Q is
skew-symmetric to leading order: Q+Q∗ is an operator of order 0.

EXAMPLES

A simple setting for waveform velocity analysis is linearized constant density
acoustics. The dynamical laws for this model consist of two couple partial dif-



154 Symes

ferential equations:

1
v2
∂2p

∂t2
−∇2p = f ;

1
v2
∂2δp

∂t2
−∇2δp = 2

δv

v3
∂2p

∂t2
; p,δp = 0, t < 0 (4)

plus suitable boundary conditions. Sampling the pressure perturbation δp at re-
ceiver locations defines a separable modeling operator: F[m]r = {δp(x = xr , z =
zr , t)}, with m = v−2 and r = δv/v. The derivative DF[m,δm] is related in the same
way to the solution of a coupled system of four wave equations, not written here.

To illustrate the effect of Q, I used a linearized model derived from the Marmousi
exaample (Versteeg and Grau, 1991), and a normally incident plane wave source
with the −1/2 derivative of a (2, 3.5, 10, 12.5) Hz bandpass filter as waveform.
Even over the small bandwidth of this example, this presence of an additional
derivative (factor of frequency) in the output of DF becomes obvious in a plot of
average trace spectra - see Figure 1.

Figure 1: Average spectra of typical linearized modeling output (blue line) and of
its model derivative (red line).


#############################################################################
###################### COMMON DEFINITIONS - DO NOT ALTER ####################
#############################################################################
from rsf.proj import *
from batch import getFlowSignature
from batch import getThreads
import os
#############################################################################
###################### END COMMON DEFINITIONS ###############################
#############################################################################

######################## LOCAL DEFINITIONS ##################################
penv = {'stampede' :  { 'batch' : 'slurm',
                        'queue' : 'normal',
                        'acct'  : 'FDTD3D-Cont',
                        'mail'  : 'symes@caam.rice.edu',
                        'bcmd'  : '/usr/bin/sbatch',
			'local' : '', 
                        'suffix': 'bat', },
         'davinci' :  { 'batch' : 'pbs',
                        'queue' : 'trip',
                        'acct'  : 'symes',
                        'mail'  : 'symes@caam.rice.edu',
                        'bcmd'  : '/usr/bin/qsub',
			'local' : '',
                        'suffix': 'pbs', },
       }
######## abbreviations for commands used in flows - put these first, if
######## you use abbreviations
# example:
#          CWPROOT         = os.getenv('CWPROOT')
#          ...
#          sunull          = os.path.join(CWPROOT,'bin/sunull')
CWPROOT         = os.getenv('CWPROOT')
sushw           = os.path.join(CWPROOT,'bin/sushw')
suchw           = os.path.join(CWPROOT,'bin/suchw')
suplane         = os.path.join(CWPROOT,'bin/suplane')
suconv          = os.path.join(CWPROOT,'bin/suconv')
sunull          = os.path.join(CWPROOT,'bin/sunull')
suop2           = os.path.join(CWPROOT,'bin/suop2')
suspike         = os.path.join(CWPROOT,'bin/suspike')
sufilter        = os.path.join(CWPROOT,'bin/sufilter')
suwind          = os.path.join(CWPROOT,'bin/suwind')
sufrac          = os.path.join(CWPROOT,'bin/sufrac')
sugain          = os.path.join(CWPROOT,'bin/sugain')
sutaper         = os.path.join(CWPROOT,'bin/sutaper')
suvcat          = os.path.join(CWPROOT,'bin/suvcat')
suwaveform      = os.path.join(CWPROOT,'bin/suwaveform')
sufft           = os.path.join(CWPROOT,'bin/sufft')
suamp           = os.path.join(CWPROOT,'bin/suamp')
sustack         = os.path.join(CWPROOT,'bin/sustack')
RSFSRC          = os.getenv('RSFSRC')
acd             = os.path.join(RSFSRC,'trip/iwave/acd/main/acd.x')
acdcgne         = os.path.join(RSFSRC,'trip/iwave/acd/main/acdcgne.x')
acdfwi          = os.path.join(RSFSRC,'trip/iwave/acd/main/acdfwi.x')
acdadjtest      = os.path.join(RSFSRC,'trip/iwave/acd/main/acdadjtest.x')
planewave       = os.path.join(RSFSRC,'trip/iwave/trace/main/planewave.x')

fetches = {
#    'wavelet_base.su' : ['marmousi', 'http://www.trip.caam.rice.edu'],
#    'velocity.HH' : ['marmousi', 'http://www.trip.caam.rice.edu']
}
for file in fetches.keys():
    Fetch(file,fetches[file][0],server=fetches[file][1])   

# new diml consts
N1 = 141
D  = 24
N2 = 444
NX = 251
OX = 3000 
F2 = 383
NPW= 31
DP = 0.2
NT = 501
NTP= 101
DT = 0.004
SCALCO = 1000

# make velocity model described in text
Flow('ocean',None,'makevel n1=' + str(N1) + ' d1=' + str(D) + ' n2=' + str(N2) + ' d2=' + str(D) + ' o1=0 o2=0 v000=1.5 | put data_type=vel data_format=native_float label1=Depth unit1=m label2=Position uni2=m unit=m/ms esize=4',stdin=0) 
Flow('vel24base','velocity.HH','dd form=native | window j1=6 j2=6')
Flow('vext','vel24base','window f2=' + str(F2) + ' n2=1 | spray axis=2 d=' + str(D) + ' n=60')
Flow('extv',['vel24base', 'vext'], 'cat axis=2 d=' + str(D) + ' ${SOURCES[1]}')
Flow('vel24',['ocean','extv'],'window n1=15 f1=0 | cat axis=1 d=' + str(D) + ' ${SOURCES[1]}') 
Flow('vel24sm2','vel24','smooth rect1=5 rect2=5 repeat=2')
Flow('vel24big','vel24','smooth rect1=10 rect2=10 repeat=10')

# corresponding c-squared models
Flow('csq24','vel24','add mode=p ${SOURCES[0]} |put data_type=csq')
Flow('csq24sm2','vel24sm2','add mode=p ${SOURCES[0]} |put data_type=csq')
Flow('csq24big','vel24big','add mode=p ${SOURCES[0]} |put data_type=csq')
Flow('csq24noah','ocean','add mode=p ${SOURCES[0]} |put data_type=csq')
Flow('dcsq24big',['csq24big','csq24noah'],'add < ${SOURCES[0]} ${SOURCES[1]} scale=1.0,-1.0 | add scale=0.05 > ${TARGETS[0]}')
Flow('csq24big80pct',['csq24big.rsf', 'csq24noah.rsf'], 
     'add < ${SOURCES[0]} ${SOURCES[1]} scale=0.8,0.2 > ${TARGETS[0]}')

# extended models
Flow('csq24big_ext','csq24big', 
     'spray < ${SOURCES[0]} axis=3 n=11 d=1.0 o=0| ' +
     'put dim=2 gdim=3 id1=0 id2=1 id3=3 ' +
     '> ${TARGETS[0]}')
Flow('csq24big80pct_ext','csq24big80pct', 
     'spray < ${SOURCES[0]} axis=3 n=11 d=1.0 o=0| ' +
     'put dim=2 gdim=3 id1=0 id2=1 id3=3 ' +
     '> ${TARGETS[0]}')

# reflectivity
Flow('dcsq24', ['csq24', 'csq24sm2'],'add mode=a scale=1,-1 < csq24.rsf csq24sm2.rsf |window min1=180| sfpad beg1=8') 

# source pulse
Flow('wavelet_base.su', None, suspike + ' nt=201 ntr=1 offset=0 ix1=1 nspk=1 it1=100 dt=0.004 | ' + sufilter + ' f=1,3.5,10,12.5 | ' + sushw + ' key=delrt a=-400 ', stdin=0)

# source pulse - 
#Flow('gauss2hz.su', None, suwaveform + ' type=gauss fpeak=2 ', stdin=0)
Flow('wavelet_lf.su', None, suwaveform + ' type=gauss fpeak=0.25 > gauss025.su; ' + suwaveform + ' type=unit ns=1001 | ' + suconv + ' sufile=gauss025.su ', stdin=0)
  
#Flow('wavelet_lf.su', ['gauss2hz.su'], suwaveform + ' type=unit ns=1001 | ' + sugain + ' tpow=0.5 | ' + suconv + ' sufile=gauss2hz.su | ' + sushw + ' key=delrt a=0 ', stdin=0)

Flow('frac.su', None, suspike + ' nt=601 ntr=1 offset=0 ix1=1 nspk=1 it1=300 dt=0.004 |  ' + sufrac + ' power=-0.5 phasefac=0.0 verbose=1 | ' + sufilter + ' f=2,3.5,10,12.5 | ' + sushw + ' key=delrt a=-1200 ', stdin=0)

#Flow('wavelet_lf.su', ['heavi.su', 'frac.su'], suconv + ' sufile=${SOURCES[1]}')

# output data and input source traces
# normal incidence
Flow(['hdr1p.su','wav1p.su'],['wavelet_base.su'],
    planewave + ' CWPROOT=' + CWPROOT + 
    ' src=${SOURCES[0]} pwhdr=${TARGETS[0]} pwsrc=${TARGETS[1]}' +
    ' nt=' + str(NT) + ' ot=0 nx=' + str(NX) + ' dx=' + str(D) + ' ox=' + str(OX) + ' zs=12 zr=12' +
    ' np=1 dp=0.2 op=0 nxs=444 oxs=0 dxs=' + str(D),
    stdin=0, stdout=-1)

# normal incidence
Flow(['jnk','frac1p.su'],['frac.su'],
    planewave + ' CWPROOT=' + CWPROOT + 
    ' src=${SOURCES[0]} pwhdr=${TARGETS[0]} pwsrc=${TARGETS[1]}' +
    ' nt=' + str(NT) + ' ot=0 nx=' + str(NX) + ' dx=' + str(D) + ' ox=' + str(OX) + ' zs=12 zr=12' +
    ' np=1 dp=0.2 op=0 nxs=444 oxs=0 dxs=' + str(D),
    stdin=0, stdout=-1)

# output data and input source traces
# normal incidence
Flow(['hdr1plf.su','wav1plf.su'],['wavelet_lf.su'],
    planewave + ' CWPROOT=' + CWPROOT + 
    ' src=${SOURCES[0]} pwhdr=${TARGETS[0]} pwsrc=${TARGETS[1]}' +
    ' nt=' + str(NT) + ' ot=0 nx=' + str(NX) + ' dx=' + str(D) + ' ox=' + str(OX) + ' zs=12 zr=12' +
    ' np=1 dp=0.2 op=0 nxs=444 oxs=0 dxs=' + str(D),
    stdin=0, stdout=-1)

# 11 plane wave components p=-0.1 -> 0.1
Flow(['hdr11p.su','wav11p.su'],['wavelet_base.su'],
    planewave + ' CWPROOT=' + CWPROOT + 
    ' src=${SOURCES[0]} pwhdr=${TARGETS[0]} pwsrc=${TARGETS[1]}' +
    ' nt=' + str(NT) + ' ot=0 nx=' + str(NX) + ' dx=' + str(D) + ' ox=' + str(OX) + ' zs=12 zr=12' +
    ' np=11 dp=0.02 op=-0.1 nxs=444 oxs=0 dxs=' + str(D),
    stdin=0, stdout=-1)

# trace-src output file single normal incidence plane wavae
Flow('shot1p.su','wav1p.su csq24 hdr1p.su',
     '''
     /bin/cp ${SOURCES[2]} $TARGET &&
     acd deriv=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 
     csq=${SOURCES[1]} source=${SOURCES[0]} sampord=1 data=$TARGET
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

# trace-src output file single normal incidence plane wavae
Flow('shot1plf.su','wav1plf.su csq24 hdr1plf.su',
     '''
     /bin/cp ${SOURCES[2]} $TARGET &&
     acd deriv=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 
     csq=${SOURCES[1]} source=${SOURCES[0]} sampord=1 data=$TARGET
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

# born simulation
Flow('born1p.su', ['hdr1p.su', 'wav1p.su', 'csq24big.rsf', 'dcsq24.rsf'],
     '''
     /bin/cp ${SOURCES[0]} ${TARGETS[0]} &&
     acd deriv=1 adjoint=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 sampord=1 
     csq=${SOURCES[2]} csq_d1=${SOURCES[3]} source=${SOURCES[1]}
     data=${TARGETS[0]}
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

# born simulation - frac power wavelet
Flow('fborn1p.su', ['hdr1p.su', 'frac1p.su', 'csq24big.rsf', 'dcsq24.rsf'],
     '''
     /bin/cp ${SOURCES[0]} ${TARGETS[0]} &&
     acd deriv=1 adjoint=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 sampord=1 
     csq=${SOURCES[2]} csq_d1=${SOURCES[3]} source=${SOURCES[1]}
     data=${TARGETS[0]}
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

# 2nd deriv
Flow('2deriv1p.su', ['hdr1p.su', 'wav1p.su', 'csq24big', 'dcsq24', 'dcsq24big'],
     '''
     /bin/cp ${SOURCES[0]} ${TARGETS[0]} &&
     acd deriv=2 adjoint=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 sampord=1 
     csq=${SOURCES[2]} csq_d1=${SOURCES[3]} csq_d2=${SOURCES[4]} source=${SOURCES[1]}
     data=${TARGETS[0]}
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

# 2nd deriv
Flow('f2deriv1p.su', ['hdr1p.su', 'frac1p.su', 'csq24big', 'dcsq24', 'dcsq24big'],
     '''
     /bin/cp ${SOURCES[0]} ${TARGETS[0]} &&
     acd deriv=2 adjoint=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 sampord=1 
     csq=${SOURCES[2]} csq_d1=${SOURCES[3]} csq_d2=${SOURCES[4]} source=${SOURCES[1]}
     data=${TARGETS[0]}
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

# spectra
Flow('spec_fborn1p.su','fborn1p.su',sufft + '< ${SOURCES[0]} | ' + suamp + ' mode=amp | ' + sustack + ' key=sx > ${TARGETS[0]}',stdin=0,stdout=-1)

Flow('spec_f2deriv1p.su','f2deriv1p.su',sufft + '< ${SOURCES[0]} | ' + suamp + ' mode=amp | ' + sustack + ' key=sx > ${TARGETS[0]}',stdin=0,stdout=-1)

Flow('specs.su',['spec_fborn1p.su','spec_f2deriv1p.su'],suwind + '< ${SOURCES[0]} tmin=0 tmax=20 > ${TARGETS[0]}; ' + suwind + ' < ${SOURCES[1]} tmin=0 tmax=20 >> ${TARGETS[0]}',stdin=0, stdout=-1)

# migration of born data
Flow('mig1p.rsf', ['born1p.su', 'wav1p.su', 'csq24big.rsf'],
     '''
     add scale=0.0 < ${SOURCES[2]} > ${TARGETS[0]} &&
     acd deriv=1 adjoint=1 order=2 cfl=0.5
     cmin=1.0 cmax=6.0 sampord=1 nsnaps=20
     csq=${SOURCES[2]} csq_b1=${TARGETS[0]}
     source=${SOURCES[1]}
     data=${SOURCES[0]}
     ''', stdin=0, stdout=-1, workdir='${TARGETS[0]}.work')

# trace-src output file homog
Flow('shot1pnoah.su','wav1p.su csq24noah hdr1p.su',
     '''
     /bin/cp ${SOURCES[2]} $TARGET &&
     acd deriv=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 dump_term=1 sampord=1 
     csq=${SOURCES[1]} source=${SOURCES[0]} sampord=1 data=$TARGET
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

Flow(['diff.su'],['shot1p.su', 'shot1pnoah.su'],
     suop2 + ' ${SOURCES[0]} ${SOURCES[1]} op=diff > ${TARGETS[0]}',
     stdin=0, stdout=-1)

# trace-src output file homog
Flow('shot1plfnoah.su','wav1plf.su csq24noah hdr1plf.su',
     '''
     /bin/cp ${SOURCES[2]} $TARGET &&
     acd deriv=0 order=2 cfl=0.5 cmin=1.0 cmax=6.0 dump_term=1 sampord=1 
     csq=${SOURCES[1]} source=${SOURCES[0]} sampord=1 data=$TARGET
     ''',stdin=0,stdout=-1,workdir='${TARGETS[0]}.work')

Flow(['difflf.su'],['shot1plf.su', 'shot1plfnoah.su'],
     suop2 + ' ${SOURCES[0]} ${SOURCES[1]} op=diff > ${TARGETS[0]}',
     stdin=0, stdout=-1)

Flow(['migshot1p.rsf'], ['diff.su', 'wav1p.su', 'csq24noah.rsf'],
     '''
     add scale=0.0 < ${SOURCES[2]} > ${TARGETS[0]} &&
     acd deriv=1 adjoint=1 order=2 cfl=0.5
     cmin=1.0 cmax=6.0 sampord=1 nsnaps=20
     csq=${SOURCES[2]} csq_b1=${TARGETS[0]}
     source=${SOURCES[1]}
     data=${SOURCES[0]}
     ''', stdin=0, stdout=-1, workdir='${TARGETS[0]}.work')

#Result('wavelet','wavelet_base.su', 'suread endian=0 read=data | put label1=Time label2=Pressure unit1=s unit2=GPa unit="GPa" |sfgraph')

#Result('csq24', 'csq24', 'put label1=Depth unit1=m label2=Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey mean=n scalebar=y barreverse=y')

#Result('csq24big', 'csq24big', 'put label1=Depth unit1=m label2=Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey color=c mean=y scalebar=y barreverse=y')

#Result('dcsq24', 'dcsq24', 'window max1=2000 min2=2000 |put label1=Depth unit1=m label2=Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey color=c mean=y scalebar=y barreverse=y')

#Result('shot1p','shot1p.su', 'suread endian=0 read=data | put label1=Time label2=Distance d2=0.024 o2=0 unit1=s unit2=km label="Pressure" unit="GPa" | grey scalebar=y barreverse=y')

#Result('born1p','born1p.su', 'suread endian=0 read=data | put label1=Time label2=Trace unit1=s unit="GPa" | grey')

#Result('2deriv1p','2deriv1p.su', 'suread endian=0 read=data | put label1=Time label2=Trace unit1=s unit="GPa" | grey')

#Result('mig1p', 'mig1p', 'window max1=2000 min2=2000 | put label1=Depth unit1=m label2 = Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey color=c mean=y clip=0.004')

#Result('diff','diff.su', 'suread endian=0 read=data | put label1=Time label2=Trace unit1=s unit="GPa" | grey')

#Result('migshot1p', 'migshot1p', 'window max1=2000 min2=2000 | put label1=Depth unit1=m label2 = Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey color=c mean=y clip=0.01')

Result('specs','specs.su', 'suread endian=0 read=data | put label1=Frequency label2=Amplitude unit1=Hz unit2=GPa d1=0.5 n2=2 | graph wanttitle=n plotfat=10,10 screenratio=0.5')

Result('fborn1p','fborn1p.su', 'suread endian=0 read=data | put d2=24 o2=3000 label1=Time label2=xrec unit1=s unit2=m unit="GPa" | grey wanttitle=n screenratio=1.5')

Result('f2deriv1p','f2deriv1p.su', 'suread endian=0 read=data | put d2=24 o2=3000 label1=Time label2=xrec unit1=s unit2=m unit="GPa" | grey wanttitle=n screenratio=1.5')

End()
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RESULTS

Several central facts about waveform inversion in the linearized, separable setting
explained above follow from the derivative structure theorem (8).

To begin with, a straightforward version of linearized full waveform inversion
could be written in the notation introduced above as: given d, find m,r to

minimize
1
2
‖F[m]r − d‖2 subject to Ar = 0 (5)

The derivative of the least squares objective (5) with respect to the background
model m is

〈F[m]r − d,DF[m,δm]r〉 = 〈F[m]∗(F[m]r − d),Q[m,δm]r〉.

Because F[m] is of order 0, the size of the objective is roughly proportional to the
norm of d. However, the derivative of the objective, involving as it does an opera-
tor of order 1, becomes very large if d or r have high-frequency components. This
disparity in size between the objective and its model derivative, arbitrarily large
if arbitrarily large wavenumbers are permitted in the data and/or linear model, is
another way of looking at the phenomenon commonly known as “cycle skipping”,
and is responsible for the multimodal nature of the least squares objective.

Remarkably, switching the role of objective and constraint creates the optimiza-
tion problem (1), with very different properties from those just described. As
will be explained below, the derivative structure theorem implies that (1) exhibits
local convexity and relations to traveltime tomography that (5) does not.

Some earlier work on (1) used approximation J̃DSO of JDSO, in which the migrated
image F[m]∗d is substituted for the inversion F[m]−1d (Shen et al., 2003). The at-
traction of this formulation is clear, as the adjoint or transpose operator may have
much lower computational complexity than the inverse. However, several authors
have pointed out that the gradient of this modified objective has a tendency to os-
cillate in space, detracting from its utility as a model update (Fei and Williamson,
2010; Vyas and Tang, 2010). This feature is not a defect in the gradient, but in the
modified objective. With F[m]∗d in place of F[m]−1d, a quick calculation shows
that

D2J̃DSO[m](δm1,δm2) = 〈AQ[m,δm1]∗F[m]∗d,AQ[m,δm2]∗F[m]∗d〉+
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〈AF[m]∗d,AQ[m,δm1]∗Q[m,δm2]F[m]∗d〉+ ... (6)

in which the ellipses stand for similar terms. Now presume that the data is actu-
ally consistent with the model: F[m]r = d,Ar = 0 - note however that there is no
guarantee that m is a global minimizer of J̃DSO. The Hessian form becomes

D2J̃DSO[m](δm1,δm2) = 〈[A,Q[m,δm1]∗F[m]∗F[m]]r, [A,Q[m,δm2]∗F[m]∗F[m]]r〉+

〈[A∗A,F[m]∗F[m]]r,Q[m,δm1]∗Q[m,δm2]F[m]∗F[m]r〉+ ... (7)

The first term on the RHS is a positive semidefinite quadratic form of order 0, sta-
ble against (mean-square) small errors in r, and in fact related to traveltime error
(Symes, 2014), therefore tomographic. The second term however dominates: for
oscillatory (therefore reflective) r, the net order 1 operator in of this form makes it
far more important than the first, and J̃DSO is not locally convex, hence not glob-
ally minimized, at the “truth”. This observation accounts for the gradient “arti-
facts” mentioned earlier, as well as the minimization of J̃DSO at data-inconsistent
models observed by Khoury et al. (2006). It justifies the assertion of Kern and
Symes (1994) that inversion is required.

Returning to the definition proposed in equation (1),

DJDSO[m]δm = −〈AF[m]−1DF[m,δm]F[m]−1,AF[m]−1d〉

= −〈Q[m,δm]F[m]−1d,A∗AF[m]−1d〉 (8)

From equation (11) follows a formula for the gradient of JDSO in terms of the
adjoint derivative: for a suitable choice of inner product 〈·, ·〉M in background
model space, 〈DF∗[m,d],δm〉M = 〈d,DF[m,δm]〉. Kern and Symes (1994) showed
how to compute the adjoint, also known as the tomographic operator (Biondi and
Sava, 2004), using an RTM-like procedure.

At model-consistent data, each appearance of F[m]∗F[m] in (7) is replaced by the
identity operator, and many terms disappear, leaving the stable semidefinite form

D2JDSO[m](δm1,δm2) = 〈[A,Q[m,δm1]]r, [A,Q[m,δm2]]r〉 (9)

with tomographic meaning in specific instances (Symes, 2014). Further, m is a
global minimizer of JDSO. Thus aspects of m that are controlled by certain forms
of tomography are also controlled by JDSO.
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CONCLUSIONS

This abstract has briefly reviewed the theoretical foundations of extended wave-
form inversion. The basic lessons of Kern and Symes (1994) - that inversion
should be nested, with short scale components in the inner loop, and these should
be inverted, not merely imaged (an observation also made by Lameloise et al.
(2014)) - have been justified using recently developed understanding of the mod-
eling operator and its derivatives.

As mentioned before, certain technical issues have been overlooked in this discus-
sion. Most importantly, F[m] is invertible in only a few special cases. Generally,
it is only invertible approximately (modulo lower-frequency errors, and requires
regularization) and microlocally, that is, in certain regions of model phase space.
These caveats do not invalidate the conclusions stated above in any significant
way, but complete arguments are considerably more complex. Recently, com-
putable RTM-like approximate inverses with smoothing errors have been estab-
lished for several important modeling cases (ten Kroode, 2012; Hou and Symes,
2014). These are essential ingredients in practical implementation.
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Full Waveform Inversion via Matched Source
Extension

Guanghui Huang and William W. Symes

ABSTRACT
Matched Source Waveform Inversion introduces additional degrees of free-
dom into waveform modeling in the form of trace-dependent source modifi-
cation, allowing close data fit at all stages of the inversion process. Penalizing
source modification leads to an optimization problem with the same global
minimum as Full Waveform Inversion, but with less tendency to develop lo-
cal minima caused by cycle-skipping. We implement and analyze a simple
variant of this technique, using constant density acoustics and a transmission
configuration, and explain the very close relation of this method to traveltime
tomography for mildly heterogeneous velocity models. In common with other
data domain waveform tomography methods, the Matched Source objective
function may develop multiple local minima, despite avoiding cycle-skip in
data residual, if multiple ray paths connect sources and receivers.
A version of this paper was presented at the SEG 2015 Anuual International
Meeting.

INTRODUCTION

Full waveform inversion via nonlinear least squares tends to produce many, mostly
noninformative local minima (Gauthier et al., 1986; Virieux and Operto, 2009), a
serious difficulty since efficient local optimization methods are mandatory due
to problem size. The root cause of local minima is cycle-skipping: the tendency
of synthetic data to be more than a half-wavelength out of phase with observed
data, hence enjoying spurious fit. Many recent advances in FWI technology have
reduced this impediment - most obviously, it lessens with low-freqquency, high
s/n data, However the difficulty remains, and has inspired many researchers to
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suggest alternative approaches. One family of alternatives relies on extended mod-
eling, that is, additional degrees of freedom leading to closer data fit, hence less
tendency to cycle-skip, throughout the inversion process - see Symes (2008) for
an overview of these ideas.

This paper reviews a particularly simple extended modeling variant, Matched
Source Inversion, which exhibits several important features of other extended
model inversion, but is simpler to analyse. The additional degrees of freedom in
Matched Source Inversion are introduced through permitting source waveforms
to depend on source and receiver coordinates.

THEORY

The discussion to follow uses a simple model of seismic trace data synthesis based
on constant density linear acoustics: the excess pressure field p(x, t;xs) generated
by a causal isotropic point radiator at source position x = xs solves the wave equa-
tion

1
v2
∂2p

∂t2
−∇2p = δ(x− xs)f (t) (1)

p|t=0 =
∂p

∂t

∣∣∣∣
t=0

= 0 (2)

The forward modeling operator S[v,f ] relates the velocity field v(x,z) and wavelet
function f (t) to the scattered field at the receiver,

S[v,f ](xr , t;xs) = p(xr , t;xs). (3)

in which xr and xs range over survey source and receiver positions.

With these conventions, Full Waveform Inversion may be stated as follows: given
recorded traces d(xr , t;xs), find v and f so that S[v,f ] ' d. A common formulation
asks that v,f be chosen to minimize the residual sum of squares (Tarantola, 1984;
Virieux and Operto, 2009):

JFWI[v,f ] =
1
2

∑
xr ,xs

∫
dt |S[v,f ](xr , t;xs)− d(xr , t;xs)|2

The objective function JFWI is quadratic in f , but quite non-quadratic in v:
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Extended modeling and matched sources

The tendency of FWI to cycle-skip is fundamentally due to the failure to fit data,
given kinematically wrong v. This misbehaviour disappears if the source wavelet
depends on the trace: that is, replace f (t) on the RHS of equation (1) with f̄ (xr , t;xs),
call the resulting source-receiver dependent pressure field p̄ and define a new
modeling operator by S̄[v, f̄ ](xr , t;xs) = p̄(xr , t;xs). Note that computing S̄ does not
require solving a wave equation for each source-receiver pair, since

S̄[v, f̄ ] = f̄ ? S[v,δ] (4)

(trace-by-trace convolution with the causal Green’s function of (1)).

If f̄ (xr , t;xs) = f (t) is independent of source and receiver coordinates: then S̄[v, f̄ ] =
S[v,f ]. This observation suggests supplementing the data-fit condition

S̄[v, f̄ ](xr , t;xs) = d(xr , t;xs) (5)

with a penalty for source dependence on source-receiver coordinates. Several
such penalties have been suggested. For example, assume a transmission con-
figuration: suppose that the sources xs lie in a plane, say x = xs, and the receivers
lie in another, say x = xr . Song and Symes (1994), Symes (1994) suggest (essen-
tially) minimizing the mean-square of differences of neighboring source traces,
that is, the mean square of ∇ys,zs,yr ,zr f̄ . Plessix et al. (2000), Plessix (2000) ap-
plied this “differential semblance” concept to invert field crosswell data. Warner
and Guasch (2014) notes that f̄ = f ∗ implies that the match filter w̄ required to
make w̄ ? f ∗ = f̄ is an impulse at zero lag for every trace, hence in the null space
of multiplication by t. Luo and Sava (2011) use a similar approach, and Plessix
et al. (2000) used a moment penalty to enhance the stability of the differential
semblance approach.

Analysis of the gradient

All of the approaches explained in the last paragraph take the form:

JMS[v] =
1
2

∑
xs,xr

∫
dt |Af̄ |2 (6)



164 Huang and Symes

subject to the data fit condition (5)). This condition makes f̄ , hence JMS implicitly
a function of v. A is an annihilator-like operator, such as ∇yr ,... or multiplication of
the match filter by t, whose null space consists of trace-independent f̄ .

The gradient of JMS can be computed in the same way as the gradient of JFWI,
via the adjoint state method (that is, RTM). On the other hand, in some cases the
structure of the gradient follows from a remarkable relation between the model-
ing operator S̄ and its derivative, or first order perturbation with respect to veloc-
ity DvS̄. This analysis reveals a very close link between Matched Source Inversion
and traveltime tomography.

Presume also that v is slowly varying (smooth), so that the geometric acoustics
approximation to the Green’s function is accurate, and that for all source-receiver
pairs in the survey, a single-arrival traveltime field τ , with geometric ampiltude
a, describes the propagation. That is,

S[v,δ](xr , t;xs) ≈ a(xr ;xs)δ(t − τ(xr ,xs)). (7)

The remarkable relation mentioned above is this: up to an error of lower order in
frequency,

DS̄[v, f̄ ]δv ≈ S̄[v,Q[v,δv, f̄ ]] (8)

In this expression, Q[v,δv, f̄ ] is linear in δv and f̄ (separately). Q is essentially a
derivative, in its action on f̄ : it is given by an Fourier-like integral whose ampli-
tude contains a factor of ω. Also, Q is approximately skew adjoint: QT +Q ≈ 0,
the error not involving derivatives.

For the very simple matched source extended model discussed here, this rela-
tion follows directly from the geometric optics approximation (7), in fact with an
explicit formula: Q[v,δv, f̄ ] = −(Dτ[v]δv)(∂t f̄ ), where Dτ[v]δv is the first order
perturbation of traveltime τ . Similar relations hold for more complex extended
models: see for example Symes (2014) and ten Kroode (2014) for similar relation
in space-shift (subsurface offset) extended modeling.

Evidently

DJMS[v]δv ≈
∑
xr ,xs

∫
dt (ATA)f̄ (Dτ[v]δv)∂t f̄
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so

∇JMS[v] ≈
∑
xr ,xs

Dτ[v]T
(∫

dt (∂t f̄ )(ATAf̄ )
)

(9)

Here Dτ[v]T is the adjoint operator of Dτ[v], which backprojects its argument
along rays (Song and Symes, 1994)

To see what information is backprojected, we examine two of the possibilities
mentioned above. For simplicity, consider 2D wave propagation and a single re-
ceiver position z = zr in the plane {x = xr}, and assume that the data is noise-free
and well-approximated by geometric acoustics (7):

d(xr , t;xs) ≈ a∗(xr ,xs)f ∗(t − τ(xr ,xs)). (10)

Denote by ∆τ(zr , zs) = τ[v∗](zr , zs) − τ[v](zr , zs) the traveltime residual. Then from
equations (5) and (7),

f̄ ≈ (a∗/a)f ∗(t −∆τ)

1) differential semblance (Song and Symes, 1994; Plessix et al., 2000): A = ∂zs ,
then ∫

dt∂t f̄ A
TAf̄ ≈ −

(a∗
a

)2 (∫
dt

∣∣∣∣∣∂f ∗∂t
∣∣∣∣∣2)

×
(
∂
∂zs

)T (
∂
∂zs

∆τ(zr , zs)
)

+ (...). (11)

up to an error of lower order in peak frequency of f ∗; this is equivalent to back-
projecting ∂zs∆τ by Dv(∂zsτ)T , a form of stereotomographic update (Billette and
Lambaré, 1998).
2) moment of f̄ (after Luo and Sava (2011), Warner and Guasch (2014) - note that
Adaptive Waveform Inversion as in Warner and Guasch (2014) employs the match
filter mentioned earlier (w̄ above) hence differs somewhat from this construction):
A = multiplication by t,∫

dt∂t f̄ A
TAf̄ ≈ (a∗/a)2

∫
dt t2

1
2
∂t(f

∗(t −∆τ))2

≈−∆τ(a∗/a)2
∫
dt (f ∗)2. (12)



166 Huang and Symes

where f ∗ is assumed to be zero-phase.

That is, the gradient of JMS is closely related to the gradient of a tomographic ob-
jective - backprojection of either traveltime residual or traveltime slope residual,
scaled by the amplitude ratio.

Analysis of the Hessian

JMS is locally convex near a local minimizer if its HessianD2JMS is positive semidef-
inite. For consistent (noise-free) data, the global minimum is zero, so Af̄ = 0, and
as a result many terms vanish, leaving

D2JMS[v∗](δv,δv) ≈
∑
xs,xr

∫
dt |[A,Q](v,δv, f̄ )|2

The notation [A,Q](...) means AQ[v,δv, f̄ ] − Q[v,δv,Af̄ ]. A similar conclusion
holds for other variants of extended modeling, see (Symes, 2014; ten Kroode,
2014; Symes, 2015). Substituting the explicit expression for Q derived above,
obtain the following approximations to
D2JMS[v∗](δv,δv):

1) for A = ∂zs ,

≈
(∫

dt

∣∣∣∣∣∂f ∗∂t
∣∣∣∣∣2)(∑

xs,xr

∣∣∣∣∣ ∂∂zsDτ[v∗](δv)
∣∣∣∣∣2 ).

2) for A = multiply f̄ by t,

≈
(∫

dt |f ∗|2
)∑

xs,xr

|Dτ[v∗]δv|2.

That is, the Hessian of JMS is proportional to the Hessian of a traveltime objec-
tive function: at least locally, JMS is as convex as a tomographic objective, and
minimizing it determines the same information about the velocity, in the high
frequency limit.
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NUMERICAL EXAMPLES

We focus on the numerical performance of the annihinator A = t (case (2) above),
and assume that f ∗ = Ricker wavelet with peak frequency 10 Hz. Implementation
of S̄ is via equation (4), with S[v,δ] approximated via finite difference modeling
(numerical Green’s function), and f̄ estimated via trace-by-trace deconvolution.

Example 1. Plot objective function for various values of velocity.

Figure 1 plots the values of the objective function for data from a homogeneous
medium v = 2 km/s, with sources and receivers in lines x = const. separated by 1
km. At least along this line segment in velocity model space, the only stationary
point occurs at the global minimizer.
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Figure 1: Matched source objective function for homogeneous velocity 0.25 s/km
≤ v−1 ≤ 0.75 s/km. Correct velocity is 2 km/s.

Example 2. In this example, the target velocity consists of two Gaussian velocity
anomalies embedded in a v = 2km/s background:

v(x,z) = 2− 0.6e
− (x−0.25)2+(z−0.3)2

(0.2)2 − 0.6e
− (x−0.25)2+(z−0.7)2

(0.1)2 ,

where x ∈ [0,0.5]km, z ∈ [0,1]km. The initial model is given by the constant velocity
v0 = 2 km/s. 50 shots are simulated on x : xs = 0.01 km, from z = 0.01 km to z = 0.99
km with ∆zs = 0.02 km. For each shot, 99 receivers are uniformly distributed from
z = 0.01 km to z = 0.99 km at xr = 0.49 km. See Figure 3a
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The inversion procedure computes the gradient of JMS by the adjoint state method
- not by use of formula (9), in fact no use whatever is made of geometric acoustics
in the computations. These computations are input to the Limited Memory BFGS
algorithm (Nocedal and Wright, 1999) globalized with a backtracking line search.

The estimated velocity vest after 50 LBFGS iterations, beginning with v0 = 2 km/s,
appears as the right-hand panel in Figure 3b. We compare the target data with
the re-synthesized data, using the inverted velocity vest and the known wavelet f ∗

- see Figure 2a. The data fit error, computed in this way, is about 23%, and the
velocity is close enough that most of the remaining residual could be eliminated
by FWI. Note that the extended model residual S̄[vest, f̄est] − d is negligible by
construction.

DISCUSSION

Since the inversion algorithm does not require ray-tracing computations, one might
wonder if the relation between traveltime tomography and the matched source
objective function would hold without the assumption of single arrivals (only one
raypath connecting source and receiver. The following example suggests other-
wise:

Example 3. This example uses precisely the same velocity field as the previous one, but
places the source and receiver lines 1 km apart. The anomalies are centered between
the lines (see Figure 7a). The initial model is also given by the constant velocity v0 = 2
km/s. Apart from the distance between the lines being doubled, the source-receiver
geometry is the same.

A typical shot gather in the left of Figure 6a shows that the later arrivals are now
distinct and have energy comparable to the first. Resimulation using the esti-
mated velocity from 50 iterations of the procedure previously described, starting
from v0 = 2 km/s (right hand panel in Figure 7b), fits the first arrival reasonably
well but is otherwise kinematically incorrect, and would not be a useful starting
estimate for FWI.

The reason for this failure is the presence of events in the estimated source f̄ at
time lags equal to differences of traveltime branches between the trial and tar-
get velocities - see Figure 8. These difference branches do not collapse to zero
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lag, but must cancel, which does not happen until the predicted traveltimes co-
incide with the observed traveltimes for all branches, not just the first arrivals,
to within a half wavelength. Therefore matched source inversion is prone to an
effect similar to cycle-skipping once multiple arrivals achieve sufficient energy.
See Symes (1994) for a complete discussion and more synthetic examples, Plessix
et al. (2000); Plessix (2000) for more discussion of the implications in the crosswell
context, Nolan and Symes (1997); Stolk and Symes (2004) for examples of similar
pathology afflicting other data-domain model extensions, and Symes (2008); Stolk
et al. (2009) for an account of extensions that are immune, at least to some extent.
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Figure 2: Four typical shots synthesized data (up) and difference between synthe-
sized and inverted data (bottom)

CONCLUSION

We have shown a close relation between Matched Source Waveform Inversion and
traveltime tomography, in the case of simple ray geometry, for both moment-type
and differential semblance annihilators. Numerical examples show that this re-
lation persists if the energy carried by later arrivals is not dominant. However
with sufficient energy propagating along multiple ray paths, an effect akin to
cycle-skipping takes place, and MSWI fails in the same fashion as standard FWI.
Our examples use an idealized crosswell configuration, but the same conclusions
should apply to a matched source approach to diving wave tomography.
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Figure 3: True model (left) and inverted model (right) after 50 iterations, velocity
model fitting error is 2.2%.
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Figure 5: Convergence history of MSWI
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Accelerating Extended Least Squares Migration with
Weighted Conjugate Gradient Iteration

Jie Hou, William W. Symes

ABSTRACT
Least Squares Migration (LSM) iteratively achieves a mean square best fit to
seismic reflection data, provided that a kinematically accurate velocity model
is supplied. The subsurface offset extension adds extra degrees of freedom
to the model, thereby allowing LSM to fit the data even in the event of sig-
nificant velocity error. This type of extension also implies additional expense
per iteration from cross-correlating source and receiver wavefields over the
subsurface offset, and therefore places a premium on rapid convergence. We
accelerate the convergence of Extended Least Squares Migration, by combin-
ing the Conjugate Gradient algorithm with weighted norms in range (data)
and domain (model) spaces that render the extended Born modeling operator
approximately unitary. Numerical examples demonstrate that the proposed
algorithm dramatically reduces the number of iterations required to achieve
a given level of fit or gradient reduction, compared to Conjugate Gradient
iteration with Euclidean (unweighted) norms.
A version of this paper was presented at the SEG 2015 Anuual International
Meeting.

INTRODUCTION

Least Squares Migration (LSM) iteratively seeks a short-scale reflectivity model
so as to achieve a best fit to the seismic reflection data in least squares sense, via
repeated migrations and demigrations(Bourgeois et al., 1989; Nemeth et al., 1999;
Kuehl and Sacchi, 2003). Since it is an inversion, the amplitudes are likely to be
physically reasonable, and many authors have noted the effective spatial deconvo-
lution and increase in apparent resolution resulting from data fitting (Dutta et al.,
2014).

177
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However, ability to fit the data depends critically on the accuracy of the back-
ground velocity model. Velocity error leads to mispositioned and defocused struc-
tures in the image domain, and related data misfit. That is as one would expect:
the model depends on fewer parameters than the data, so only in special case
(correct velocity) can the data be fit well throughout.

A natural solution is to extend the model with extra dimensions, to equalize the
model and data dimension. One possibility is described in Stolk and De Hoop
(2005), Symes (2008), Stolk et al. (2009): add an internal offset variable to the
model, so that incident wavefield at one point can interact with (cause) a reflected
wavefield at a positive distance. Extended Least Squares Migration (ELSM) with
this subsurface offset extension is able to fit the data equally well with correct or
incorrect background velocity model (Liu et al., 2013).

On the other hand, LSM generally requires tens of iterations for an acceptable re-
sult, each costing as much as two migrations. The additional parameters in ELSM
add extra cost: for subsurface offset extension, computational loops over the off-
set axes are implicit in the definition of extended modeling or migration. This
additional cost could be alleviated in two ways : either lower the cost for each
iteration or accelerate the convergence rate. The first kind of acceleration may in-
volve simultaneous source (Beasley et al., 1998), blended data (Berkhout, 2008) or
phase encoding method (Romero et al., 2000; Ikelle, 2007), together with various
technologies to suppress the crosstalk artifacts (Krebs et al., 2009; Schuster et al.,
2011; Xue et al., 2014). This paper discusses only the second kind of acceleration,
which is often accomplished by preconditioner. Numerous preconditioners have
been investigated in this scope, such as approximate diagonal of Hessian (Pratt,
1999; Shin et al., 2001; Tang, 2009), debluring filter (Aoki and Schuster, 2009).
Recently ten Kroode (2012) explained the construction of a computable approxi-
mate inverse to the subsurface offset extended Kirchhoff modeling operator. Hou
and Symes (2014) modified ten Kroode’s construction for the Born operator. Since
an approximate inverse can often be used as a preconditioner, it seems likely that
this concept could be the source of convergence acceleration.

This paper points out that the approximate inverse F† of the subsurface offset
extended Born modeling operator F takes the form

F† =WmodelF
TWdata, (1)

in which FT is the transpose of F (extended RTM), Wmodel and Wdata are positive-
definite symmetric operators on model and data spaces respectively, explicitly
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computable directly from knowledge of the velocity field. Since F†F ≈ I , it follows
that F† is approximately unitary with respect to the norms defined by Wmodel and
Wdata. Therefore a properly formulated Conjugate Gradient (or LSQR) algorithm
will converge very rapidly, much more rapidly than the same algorithm formu-
lated with the Euclidean norm. We will explain exactly how to compute Wmodel
andWdata, and numerically verify the dramatic improvement in convergence rate.

We first review the theory of ELSM and the approximate inverse operator. We
then explain how to compute the weight operators, and how to write CG iteration
to accommodate them. We end with two synthetic examples, demonstrating WCG
algorithm possesses faster convergence rate comparing to normal CG algorithm.

THEORY

The solution of the constant density acoustic wave equation can be expressed as

F [v] = u (2)

where F is the full wave equation solution or modeling operator, v is the velocity
model, u is the acoustic potential. Most of seismic imaging technologies depend
on the (partial) linearization of the nonlinear modeling operator F with respect
to v, which is often referred to as Born (linear, single scattering) approximation.
Write v = v0 + δv, and treat the influence of δv by first order perturbation (lin-
earization). The corresponding approximation u ≈ u0 + δu is most accurate when
v0 is smooth (transparent) on the wavelength scale, and all model oscillations
(reflectivity) are confined to δv (Symes, 2009). Then the Born approximation is
expressed similarly to (2) as

F[v0]δv = δu (3)

where F =
∂F
∂v

is the linear Born modeling operator.

Least squares migration (LSM) (Nemeth et al., 1999; Kuehl and Sacchi, 2003) is
synonymous with solution of the least squares problem

JLS =
1
2
||F[v0]δv − δd||2[+Regularizing terms], (4)

or equivalent to solving the normal equation:

F[v0]†F[v0]δv = F[v0]†δd. (5)
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where F† is the adjoint relative to the choice of norms in data and model spaces.
LSM will generate a model fitting the data as well as possible, but that may not be
very well for even relatively small velocity errors. Figure 1 shows LSM images of
a flat reflector in correct and incorrect constant background velocity respectively.
The wrong velocity image is mispositioned and has incorrect amplitude, but it is
also not an inversion, i.e. does not fit the data well (misfit plot is shown in Figure
3a).

Figure 1: Least Squares Migration using (a) correct background velocity model (b)
incorrect background velocity model (90%)

Extended Least Squares Migration

In order to equalize the model dimension with data dimension, it is natural to
introduce extra degrees of freedom by extending the physical model. Common
choices for additional dimensions include reflection angle and surface offset. An-
other appropriate extension is the subsurface offset, which is essentially the (hori-
zontal) offset h between sunken source and sunken receiver in Claerbout’s survey-
sinking imaging condition (Claerbout, 1985; Symes, 2008; Stolk et al., 2009).

Physical (non-extended) models δv give rise to subsurface offset extended models
δv̄ via multiplication by δ(h): in 2D, δv̄(x,z,h) = δv(x,z)δ(h). That is, as extended
models, physical models are focused. See Figure 2 for an illustration of the 2D
variant, which we will discuss for the remainder of this paper. The operator ex-
tension F̄ integrates δv̄, over h, hence coincides with F when δv̄ is physical. Note
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Figure 2: Sketch of subsurface offset extended model

that the data space is the same in both cases. We call least squares migration with
extended operators (solution of (4) or (5) with F replaced by F̄) Extended Least
Squares Migration (ELSM).

Figure 1 shows LSM and ELSM model estimates computed with Conjugate Gradi-
ent (CG) iteration (Nocedal and Wright, 1999), in a precise sense the best iterative
method for this type of problem. With the extra dimension, all the data informa-
tion can be preserved in the model space. Correct velocity model will force the
energy focus at h = 0 section. Incorrect background velocity model will spread
event energy to nonzero h. The LSM data residual is large for incorrect velocity,
but the ELSM data residual remains small with correct or incorrect velocity. Fig-
ure 3 compares the relative misfit plot between LSM and ELSM as a function of
conjugate gradient iteration, confirming ELSM’s tolerance on velocity error.

However, the integration over h makes F̄ more expensive than F, therefore fast
convergence is very desirable. The convergence rate of CG depends on the opera-
tor spectrum: error components associated with clustered eigenvalues (for exam-
ple, near 1) of the normal equation (5) are reduced by a large factor in a single it-
eration. Since the definition of the operator adjoint F̄† depends on the norms cho-
sen for domain and range spaces, accelerating convergence can be accomplished
by choosing these norms to move many eigenvalues of F̄†F̄ close to 1.
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Figure 3: Misfit plot for (a) LSM and (b) ELSM with correct and wrong velocity
model. Notice ELSM will converge to zero no matter with correct or incorrect
velocity model.
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Unitary Property of Extended Modeling

The subsurface offset extension actually makes it possible to establish a com-
putable approximate inverse to the extended Born modeling operator (ten Kroode,
2012; Hou and Symes, 2014). This approximate inverse has exactly the form (5),
with

Wmodel = 4v5
0LP , Wdata = I4

t DzsDzr (6)

where L =
√
∇2

(x,z)∇
2
(h,z), It is time integration, FT is the Euclidean adjoint of extend

Born modeling operator (extended RTM) and Dzs ,Dzr are the source and receiver
depth derivatives, which may be expressed as square root operators in t,xs,xr , due
to the field at the receivers being upcoming (free surface not included in model!).
P is a Fourier-like operator whose amplitude is a known algebraic function of
v0(x,z),v0(x±h,z), and (kx, kz, kh). P = 1 for h = 0. The expression above for Wmodel
is not symmetric, but can be symmetrized with negligible error. Both weight op-
erators are positive definite. See ten Kroode (2012); Hou and Symes (2014) for
further discussion.

Weighted Conjugate Gradient Algorithm

Use the weight operators of the last section to define norms in model and data
space:

‖δv̄‖2model =
∑
x,z,h

δv̄(x,z,h)(Wmodelδv̄)(x,z,h),

and similarly for data space. We call the following algorithm Weighted CG (WCG),
even though it is really just the CG algorithm, because of the weight operators
involved in relating the norms and adjoints to their Euclidean counterparts:
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Algorithm 3 Weighted Conjugate Gradient Algorithm

1: z0← F†(d −Fx0)
2: p0← z0
3: k← 0
4: repeat

5: αk←
< zk , zk >model

< Fpk ,Fpk >data
6: xk+1← xk +αkpk
7: zk+1← zk −αkF†Fpk
8: βk+1←

< zk+1, zk+1 >model

< zk , zk >model
9: pk+1← zk+1 + βk+1pk

10: k← k + 1
11: until Error is sufficiently small

NUMERICAL EXAMPLES

In this section, we compare ELSM using CG and WCG on a 2D model with simple
structures and on a salt model.

Simple Example

The first example is a layered model with simple structures. The background
velocity model and reflectivity model are shown in Figure 4. A (2.5-5-30-35) Hz
bandpass wavelet with 1ms time interval is used to generate 76 shots data on the
surface.

Both CG and WCG algorithm are used to carry out ELSM. The images after 20
iterations appear in Figure 5. The zero offset section for both cases depicts the
main structures of the model with focused energy. However, one can observe
obvious lower resolution for the CG result comparing to the WCG result.

As discussed in Hou and Symes (2014), stacking the output extended image over
offset can produce a physical image. The stacked image from WCG result shown
in Figure 6a perfectly reconstruct the original reflectivity model. The difference
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Figure 4: (a) Background velocity model (b) Reflectivity model

Figure 5: 20 iteration ELSM via (a) CG (b) WCG
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with the original model (Figure 6b) confirms this observation.

Figure 6: (a) Stacked image from WCG result (b) Difference with original reflec-
tivity model. Plotted on the same grey scale.

The misfit plot, displayed in Figure 7a, exhibits the remarkable acceleration for
WCG over CG. The required number of iterations for a given error level in WCG is
substantially smaller comparing to CG. As a matter of fact, the first iteration result
of WCG, which is the inverse operator itself, is comparable to the 20 iteration
result of CG. The Normal Residual FT (Fmk −d) plot, from a different perspective,
confirms the fast convergence of WCG.

Salt Example

The salt example described here is based on a 2D section of the SEG/EAGE salt
model(Aminzadeh et al. (1997)). The background velocity model shown in Figure
8a is achieved by smoothing the original salt model. The difference between the
background model and original velocity model is used as the reflectivity model,
displayed as Figure 8b. The model is discretized with a vertical and horizon-
tal space of 20m. The velocity discontinuity at the salt boundary violates the
hypotheses underlying the theory of the approximate inverse (Hou and Symes,
2014). We will use this example to show that the WCG algorithm has an improved
convergent rate even in the presence of salt.

Both CG and WCG are used to generate the extended images, displayed in Figure
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Figure 7: (a) Relative Misfit (b) Relative Normal Residual
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Figure 8: (a) Background velocity model (b) Reflectivity model
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9.

Main structures and boundary of the salt are clearly observed for both cases. Clas-
sical low frequency noise above the salt is still present in the CG result while WCG
remove most of the top salt noise. Stacking over offset yields the image shown in
Figure 10.

Figure 11 shows the misfit plot and normal residual plot for CG and WCG. From
the figure, it is clear that the proposed WCG has substantially faster convergence
for this example also.

CONCLUSION

We propose a WCG algorithm, the CG algorithm with weighted norms chosen
from the construction of an approximate inverse operator, to accelerate ELSM.
Numerical examples suggest that the WCG iteration converges more rapidly to a
better extended LSM estimate of reflectivity than does unweighted CG iteration.
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Figure 9: 20 iteration ELSM via (a) CG (b) WCG
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Figure 10: Stacked Image from WCG result. Plotted on the same grey scale with
the reflectivity model.
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Born Waveform Inversion via Variable Projection and
Shot Record Model Extension

Yin Huang and William W. Symes

ABSTRACT
Born waveform inversion is a partially linearized version of full waveform
inversion based on Born (linearized) modeling, in which the earth model is
separated into a smooth background model and a short scale reflectivity, and
both are updated to fit observed trace data. Because kinematic variables (ve-
locity) are updated, the possibility of cycle-skipping and consequent trapping
at local minimizers exists for Born waveform inversion, just as it does for full
waveform inversion. Extended Born waveform inversion allows reflectivity
to depend on additional parameters, potentially minimizing the likelihood of
cycle skipping by permitting data fit throughout the inversion process. Ex-
tended or not, the Born waveform inversion objective function is quadratic in
the reflectivity, so that a nested optimization approach is available: minimize
over reflectivity in an inner stage, then minimize the background-dependent
result in a second, outer stage. This paper uses a 2D acoustic modeling, re-
flectivity permitted to depend on shot coordinates (shot record extension), a
differential semblance penalty to control this dependence, and the variable
projection variant of nested optimization. Our examples suggest that nei-
ther extended modeling nor variable projection alone are sufficient to enable
convergence to a global best-fitting model, but the two together are quite ef-
fective.
A version of this paper was presented at the SEG 2015 Anuual International
Meeting.

INTRODUCTION

Seismic full waveform inversion (FWI) is used to infer the interior structure of
the earth from observed seismic waves by posing model-based data fitting as a
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nonlinear least squares problem. Studied in the 1980’s by Tarantola and others
(Tarantola, 1984), it has recently become a viable model building strategy (Virieux
and Operto, 2009). Because of the band-limited feature of seismic data, the FWI
objective function may exhibit many local minima sharing few features with a
best-fitting model (Gauthier et al., 1986).

Replacement of full waveform modeling by linearized or Born modeling in the
formulation of FWI yields a partly linear least squares problem, in fact under-
lying much of seismic imaging theory and practice. The Born approximation is
most accurate when the background is smooth on the wavelength scale, hence
transparent, and the perturbation contains all short scale or oscillatory features
of the earth model. Therefore we will adopt the convention that the linearization
is based on such a long/short scale decomposition. The linearized forward model
is linear, hence the mean square error objective function is quadratic, in the per-
turbation or reflectivity component of the Born model. The objective is still quite
non-convex in the background model, hence in principle as likely to suffer from
cycle-skipping and local minima as the FWI objective.

Recently, it has been suggested that a reduced or variable projection objective,
obtained by minimizing over reflectivity for fixed background model, might be
less likely to exhibit local minimizers (van Leeuwen and Mulder, 2009; Xu et al.,
2012). Alternatively, since local minimizers appear to arise from cycle-skipping,
a particular form of data misfit, extension of the reflectivity to depend on more
parameters than just the spatial coordinates, might assist global convergence by
permitting better data fit. Of course, any such dependence on extra parameters is
non-physical, and must be controlled and ultimately removed from the model to
give a satisfactory inversion. See Symes (2008) for an overview of extended mod-
eling and inversion, and Shen and Symes (2008), Sun and Symes (2012), Biondi
and Almomin (2014), Weibull and Arntsen (2014), and Lameloise et al. (2014) for
more recent examples.

In this paper, we present examples which suggest that both extended modeling
and variable projection (or, more generally, nested optimization) appear to be nec-
essary ingredients in an effective Born waveform inversion algorithm. Kern and
Symes (1994) showed how to combine variable projection and extended modeling.
We use the same framework as Kern and Symes (1994), namely 2D constant den-
sity acoustic modeling and the shot-record model extension, to explore the impor-
tance of these two concepts. Shot-record extended models (in the Born inversion
context) permit the reflectivity to depend on shot coordinates. Since single shot
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data is easy to fit by Born modeling, with little constraint on background velocity,
simply by appropriate choice of reflectivity, this extension allows good data fit
throughout the inversion process and in particular reduces the likelihood of cycle
skip. Also like Kern and Symes (1994), we use a differential semblance penalty to
control the non-physical dependence of reflectivity on shot. This penalty is essen-
tially the only choice for the shot-record extension leading to a smooth objective
function, amenable to gradient-based optimization (Stolk and Symes, 2003).

Our examples are based on the Marmousi velocity model (Bourgeois et al., 1991).
The target background model is created by smoothing the Marmousi velocity
model. The target reflectivity model is the difference of the original model and
a less stringent smoothing. We truncate and scale the model and data in two
ways, creating two examples. The first example provides a relatively good start-
ing model; nonetheless, its results suggest that without variable projection, nei-
ther Born waveform inversion nor its extended variant are likely to be successful,
whereas variable projection added to either approach yields accurate inversion.
The second example poses a more difficult problem, that of convergence from a
constant background velocity. Only the variable projection extended approach
appears to produce constructive velocity and reflectivity updates.

THEORY

Born modeling separates the model into a background m and a perturbation δm.
For wave propagation, linearized modeling is generally most accurate when the
background contains the long scales in the model and the perturbation the short
(wavelength) scales. We shall call the perturbation the reflectivity, as the back-
ground is transparent hence δm is responsible for reflections. Denoting observed
data by d and the linearized modeling operator by F[m], the least squares objec-
tive of Born waveform inversion (BWI) is:

JBWI[m,δm] =
1
2
‖F[m]δm− d‖2 (1)

For eachm, F[m] is an operator on perturbational modelsM = {δm(x)}. We refer to
this set as the the physical model space, to distinguish it from the extended model
space M̄ = {m̄(x,h)}; in all cases, the physical model space appears somehow as
a subspace of the extended model space. The variable h is a (scalar or vector)
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parameter, such as shot coordinate, subsurface offset, or scattering angle, which
characterizes additional degrees of freedom in the extended model space. The
extended modeling operator is denoted F̄[m]: note that background models are
not extended. The extended Born waveform inversion (EBWI) problem is: given
data d, find m ∈M, δm̄ ∈ M̄ that minimizes

JEBWI[m,δm̄] =
1
2
‖F̄[m]δm̄− d‖2 +

α2

2
‖Aδm̄‖2. (2)

The second term in this sum involves an operator (“annihilator”) A whose null
space is precisely the physical models M. Minimizing it drives extended models
toward physical (non-extended) models. For shot coordinate model extension, h =
xs and A = ∇xs . Thus physical models are exactly those extended models that are
constant in shot coordinate. The weight α in (2) controls emphasis on physicality:
as α →∞, the minimization of JEBWI resembles more and more minimization of
JBWI (Gockenbach et al., 1995).

Variable Projection

The variable projection reduced objective for Born waveform inversion, JVP[m] is
the least value attained by J[m,δm] over the model space of reflectivity δm:

JVP[m] = min
δm

JBWI[m,δm]. (3)

van Leeuwen and Mulder (2009) and Xu et al. (2012) have proposed closely re-
lated objective functions.

Similarly, define a variable projection objective function for extended Born mod-
eling by

JVPE[m] = min
δm̄

JEBWI[m,δm̄]. (4)

The analysis of VP objective function is similar, but simpler than VPE objective
function. Thus we use JVPE[m] as an example. The value of JVPE at a given
background velocity m is the minimum value of JEBWI over δm̄ for fixed m, d.
Since JEBWI is quadratic in δm̄, its minimum value JVPE[m] is attained at δm̄
which solves the normal equation

(DF̄[m]TDF̄[m] +α2ATA)δm̄ =DF̄[m]T δd. (5)
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Assume that the inner product in the background model space takes the form
〈m̄1, m̄2〉M̄ = 〈m̄1,Λm̄2〉, where 〈·, ·〉 is the ordinary Euclidean inner product and Λ

is a weight or roughening operator, chosen to enforce smoothness (slow variation)
of the background models. In the examples below, Λ is a power of the Laplace
operator. Assuming also that δm̄ solves equation (5),

∇JVPE[m] = Λ−1D2F̄[m]T [δm̄,DF̄[m]δm̄− d] (6)

The transposed second derivative D2F̄[m]T has been called the tomographic or
WEMVA operator (Biondi and Sava, 2004; Biondi and Almomin, 2012). Note that
both D2F̄[m] and D2F̄[m]T depend on the background model parameter. The
gradient of JVP[m] has the same form, but without model extension.

NUMERICAL EXAMPLES

We create a Born model (m,δm) by modifying the 2D Marmousi model (Bour-
geois et al., 1991). In this case, m is the velocity-squared field, and δm is its
perturbation. We extended the water layer to 450 m depth, then smoothed the
velocity-squared field with a moving box average to produce the background ve-
locity model in Figure 1. The reflectivity (δm) is the result of subtracting from the
Marmousi model a less aggressive smoothing. Both m and δm were resampled to
the 16 m × 16 m simulation grid. Then Born data were computed by solving the
perturbational wave equations using a centered finite difference scheme of order
2 in time and 4 in space. The source is a (finite difference version of) an isotropic
point radiator with 6 Hz peak frequency Ricker wavelet. Trace data were synthe-
sized for 110 shots starting from 1km with spacing 64m, depth 6 m. The receiver
spread is symmetric about zero offset, with 481 receivers spaced 16m apart. Re-
ceiver depth is 10 m.

Two examples will be presented in this section. The first one compares inversion
with and without variable projection. We give only the results for EBWI, as those
for BWI are similar. In all cases, the parameter α in the definition (2) of JEBWI and
of JVPE is set to 0.01, on the basis of trial-and-error. Our principal quality control
display will be the stack of the extended reflectivity

δmstack(x) =
∑
h

δm̄(x,h)
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in comparison to the similar stack computed the target velocity-squared model: if
events appear in the same positions with roughly the same amplitude, the inver-
sion is successful.

In the first example, we use 2.6s data and truncate the model at 2km depth. The
target (correct) background velocity-squared model for this example appears in
Figure 1. The initial velocity-squared chosen for the first example (Figure 1, 2nd
panel) is a linear combination: 70% of the target model and 30% homogeneous
“water” ((1.5 km/s)2). Because we have limited the depth range to 2 km and the
maximum recording time to 2.6 s, the kinematic deviation from the target model
is not great: this is a relatively easy velocity estimation problem. The difference
is however great enough that the stack δmstack incorrectly positions reflectors and
faults (Figure 2, compare 1st and 2nd panels).

We approximate minimization of JVPE by a very crude optimization algorithm:
steepest descent with bisection backtracking line search. The gradient is com-
puted by evaluating formula (6) using finite difference implementation of the
adjoint state method, adapted to compute the tomographic operator D2F̄[m]T

(Symes and Santosa, 1988). After 7 steps of this process, a lot of reflectors which
we could not see at the initial model appear, and most reflectors positions are
correct (Figure 2, 3rd panel).

We also attempt minimization of JEBWI (equation (2)) simultaneously for m and
δm, without reduction by variable projection. We use the Limited Memory BFGS
algorithm (Nocedal and Wright, 1999), with the same backtracking line search
used in the VPE minimization. We re-start the algorithm every 50 steps: each
block of 50 steps has cost similar to that of one variable projection iteration, so
350 steps of LBFGS is roughly equivalent to 7 steps of variable projection opti-
mization. The stacked reflectivity obtained at step 350 is displayed in Figure 1,
4th panel. The update of the velocity-squared shows no hint of has kinematic cor-
rection: all reflectors remain essentially in their initial, incorrect positions (Figure
2, 4th panel).

From this example, we conclude that minimization of JEBWI form,δm̄ jointly is un-
likely to succeed, whereas minimization of the variable projection function JV P E
produces a useful velocity update. A similar conclusion holds for JBWI and JVP.

The second example compares extended and non-extended variable projection,
that is, minimization of JVPE and JVP. Since both appear successful for “easy”
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Figure 1: From top to bottom are true velocity-squared background model, initial
model, estimate after 7 iterations of VPE, estimate after 350 iterations of EBWI.

velocity estimations, we create a more difficult problem by using more data (4
s), the full depth range (3.5 km) in the model, and choosing a more drastically
incorrect initial model, namely a homogenous v = 1.5 km/s (Figure 3, top two
panels). The stack δmstack of the inverted extended reflectivity at the initial model
is weak in amplitude with reflector positions are in error throughout (compare top
two panels of Figure 4).

For both optimizations, we use steepest descent with backtracking line search as
described above. The solution of equation (5) for both VP and VPE is estimated
by the CG method with number of iterations increasing with background model
update. This is based on our observation that when the background velocity is far
from the true model, an inaccurate gradient estimate is still adequate to produce
an acceptable update. In all cases, however, the residual error in normal equation
(5) is reduced to less than 5 percent of its initial size.

After 13 steepest descent steps for JVPE each involving 5 - 30 CG iterations per
function evaluation and several backtrack steps, positions of events down to about
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Figure 2: From top to bottom are inverted reflectivity at true background model,
initial model, velocity model after 7 iterations of VPE, 350 iterations of EBWI,
plotted on the same color scale. Note that weak amplitude indicates destructive
interference due to inaccurate velocity.
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1.5 km, somewhat deeper on the left, are largely corrected and amplitudes are
considerably improved in the stacked inversion (Figure 4, 3rd panel). Although
the inverted model at iteration 13 is not close to the true model at below 1.5km,
the trend is promising (Figure 3, 3rd panel).

The first few VP updates, on the other hand, have partly repositioned the shal-
lowest reflectors, subsequent steps do not improve the kinematics of the stack
and do not correct deeper events that are well-positioned by VPE (Figures 3, 4,
4th panels).

Figure 3: From top to bottom are true background model, initial model, velocity-
squared model after 13 iterations of VPE and 13 iterations of VP.

DISCUSSION

The examples presented in the last section suggest that both extended modeling,
which permits data fit throughout the inversion process, and variable projection,
which enforces it, are critical ingredients in waveform inversion. Without both of
these ingredients, gradient-based algorithms fail to constructively update kine-
matically inaccurate initial guesses. In particular, since the variable projection
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Figure 4: From top to bottom are stacks of inverted reflectivity at the true back-
ground model, initial model, velocity model after 13 iterations of VPE and 13
iterations of VP, plotted on the same color scale, except the last which is scaled by
0.2 for display.
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algorithms for Born and extended Born inversion involve similar numbers of mi-
gration/modeling pairs, the extended variant would appear to be the superior
choice.

The Achilles’ heel of this approach is its overall cost: the number of modeling/mi-
gration cycles required for the rather simple 2D examples presented here was in
the hundreds, and such computational largesse is likely infeasible for industry-
scale problems. Most of the cycles in these exercises go into the iterative solution
of the normal equation (5), which must be fairly precise in order that the error
in the gradient formula (6) be controlled. Convergence of CG and other iterative
methods can be accelerated through the use of preconditioning, that is, inexpen-
sive approximate inverse operators. Several methods for constructing precondi-
tioners for (5) have been proposed (Tang, 2009; Stolk et al., 2009; Nammour and
Symes, 2009), and should be evaluated for their potential to accelerate the VPE
algorithm.

CONCLUSION

This paper has reviewed the variable projection extended inversion algorithm in-
troduced by Kern and Symes (1994), and evaluated its performance on two 2D
models.

We compared this method with iterative Born inversion, both with and without
variable projection reduction, and with extended inversion without variable pro-
jection reduction. Our examples appear to indicate that both model extension
and nested optimization are crucial attributes of a robust Born modeling based
waveform inversion.
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Reducing the cost of extended waveform inversion by
multiscale adaptive methods

Lei Fu and William W. Symes

ABSTRACT
Extended waveform inversion overcomes the “local minima” obstacle by
adding an additional dimension of freedom to the model. However, one main
challenge of this method is the computational intensity. In this abstract, we
combine multiscale method with an adaptive approach to reduce the compu-
tational cost. In the multiscale strategy, the data and the source function are
filtered by low-pass filters with low to high cutoff frequencies. Correspond-
ingly, the space decomposition follows a coarse-to-fine scheme. Instead of
using fixed subsurface offset range, in our adaptive approach, the adequate
range is dynamically determined by measuring the data fitting at each back-
ground velocity step. Results from a synthetic example show a great improve-
ment in computational efficiency while maintaining sufficient offset.
A version of this paper was presented at the SEG 2015 Anuual International
Meeting.

INTRODUCTION

Least-squares full waveform inversion provides a way to determine the earth
properties based on the comparison of the observed data and predicted data ob-
tained from forwarding modeling (Tarantola, 1984). However, due to its highly
nonlinear nature, the objective function of typical least-squares functions ap-
pears to possess many stationary points (local minima). Aiming to solve the local
minima problem, the extended modeling concept links migration velocity anal-
ysis with full waveform inversion (Symes, 2008). The extension of the velocity
model to subsurface offsets provides a robust solution to the local minima prob-
lem of conventional full waveform inversion (Sun and Symes, 2012; Biondi and
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Almomin, 2012; Almomin et al., 2012). However, the extended waveform in-
version is still a challenging data-fitting procedure. One main challenge is the
computational intensity from the introduced additional dimension.

Based on the linearized model of acoustic scattering (Born approximation), the
pressure field can be divided into two parts: the reference (incident) pressure
field u and the scattered (perturbation) field δu. The reference pressure field u
only contains direct waves and refracted waves, provided that the background
velocity v is smooth or slowly varying, on the scale of wave length. The perturbed
field depends linearly on the velocity perturbation δv, which is presumed to rep-
resent the oscillatory character of Earth structure within wavelength scale. In the
constant density acoustic case, these two fields can be expressed as:(

1
v2

∂2

∂t2
−∇2

)
u(t,x;xs) = w(t)δ(x− xs) (1)

(
1
v2

∂2

∂t2
−∇2

)
δu(t,x;xs) =

2r̄
v3
∂2u

∂t2
(t,x;xs) (2)

where r̄ = δv̄ is the extended perturbed velocity model, and v(x) denotes the
acoustic background velocity. The reference field is represented by u(t,x;xs), a
function of position x and time t. The source term is composed of wavelet time
function w(t) and a delta function δ(x− xs) centered at shot postion xs.

We can then express the solution of equation (2) as

δu(t,xr;xs) =
∂2

∂t2

∫
dx

∫
dh

∫
dτ

2r(x,h)
v(x + h)v2(x−h)

G(τ,x + h;xr)G(t − τ,x−h;xs)
(3)

where G is Green’s function, and h is the subsurface offset. Here we write the
action of the operator r̄ as if it were an integral operator, with kernel also denoted
r̄. This additional integral in dimension of h increases the computational cost by
a factor of Nh, number of grid points in h. Note that in 3D, one more space shift
dimension is needed, making it even more expensive.

In order to make the extended waveform inversion feasible in real world applica-
tions, improvement of the computational efficiency is indispensable. The multi-
grid method (Brandt, 1977; Briggs et al., 2000) is a powerful technique to effi-
ciently solve large-scale problems. One of the main advantages of this method is
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reducing the computational cost by decomposing a problem by scale. See Bunks
et al. (1995) for an early example of the multiscale method in least-squares in-
version. By decomposing the problem by scale, the method greatly reduces the
computational burden of the inversion, and improves the performance of itera-
tive inversion.

THEORY

Seismic waveform inversion purports to obtain a velocity model, from which syn-
thetic data is generated via a forward solver to best fit the observed seismic data
d. The objective function J is a measure of the difference between synthetic data
and observed data. The objective function of the linearized extended waveform
inversion depends on the background velocity v and the extended velocity per-
turbation (extended reflectivity) r̄, which can be written as:

minv,r̄J[v, r̄] =
1
2
‖F̄[v]r̄ − d‖2 +

α2

2
‖Ar̄‖2 (4)

where ‖Ar̄‖2 acts as a regularizing term, weighted by α2. OperatorA is the regular-
ization operator (annihilator), which is specific to differential semblance operator,
multiplication by subsurface offset h in this work. Note the weighting parameter
α controls the balance between data fitting and model extension: when α → 0,
the model has little constraint on the energy distribution in the extended dimen-
sion h in order to achieve good data fitting; when α →∞, the reflectivity model
is forced to be physical (r̄ = r), i.e. the objective function becomes the ordinary
non-extended one.

Instead of updating the extended reflectivity model and background velocity model
alternately or simultaneously, this seismic inverse problem can be classified as a
problem of separable least-squares and be solved with variable projection method
(Golub and Pereyra, 1973). The inverse problem is solved by a nested optimiza-
tion approach. In the inner loop, the objective function is optimized over ex-
tended reflectivity r̄. The background velocity v is updated in the outer loop.

First, we calculate the gradient of the objective function J[v, r̄] with respective to
extended model perturbation r̄:

∇r̄J[v, r̄] = F̄[v]∗(F̄[v]r̄ − d) +α2A∗Ar̄ (5)
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where ∗ denotes adjoint.

Setting the gradient function to zero results in the first order necessary condition
for a stationary point of equation (4):

F̄[v]∗F̄[v]r̄ +α2A∗Ar̄ = F̄[v]∗d (6)

where DF̄[v]∗ is a version of prestack depth migration and independent of r̄.
Defining the normal operator N̄ [v] = F̄[v]∗F̄[v] + α2A∗A, equation (6) can be re-
written as:

N̄ [v]r̄ = F̄[v]∗d (7)

This normal equation can be solved by a linear iterative method, e.g. conjugate
gradient (CG) method. We name this as least-squares extended reverse time mi-
gration (LSERTM).

Lastly, the background velocity v is updated in the outer loop. The gradient of the
reduced objective function J[v, r̄[v]] respect to v can be written as:

∇vJ[v, r̄[v]] = Λ−2sDF̄[v]T
(
r̄[v], F̄[v]r̄ − d

)
(8)

where Λ−2s is a smoothing operator for positive s (Symes and Kern, 1994).

As explained above, determining the subsurface offset range is a crucial prob-
lem. Shen (2004)’ showed some exemplary calculations to identify the relevant
ray fields with subsurface space shift, but that does not address the distribution
of energy in the space-shift extended model. Mulder (2014) gave the formulas
to calculate the amplitude in the space-shift extended model for 2D and 3D by
stationary phase approximation, provided that the true and trial velocities are
constant. However, in the real world, a rough estimation of the velocity error
may exist, in most situations, we don’t know this error accurately enough to de-
termine the necessary extend of space shift. We propose an adaptive method for
determining the offset range by measuring the data fitting:

1. Apply a lowpass filter (0− f Hz) on the data and source;

2. Run the least square extended migration;

3. Evaluate the data residual;
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4. If data residual < X% and half offset residual < X%, decrease the offset range
h→ h/2, return to step 3;

5. If data residual < X% and half offset residual > X%, update the background
velocity. Then decrease the grid size by fact of 2 (dh→ dh/2), and increase
the frequency band (f → 2f ), return to step 1;

6. If the data residual is more than X%, increase the offset range (h → 2h),
return to step 2;

Here, half offset residual refers to the data residual computed by using half of
the subsurface offset range. Combined with multiscale approach, this adaptive
method is able to assess the adequacy of the offset range very efficiently: early on,
use low frequency, coarse grid, and coarse sampling in offset to update inaccurate
model; as model becomes more accurate, increase frequency content, resample to
finer grid, and keep computational cost down by reducing offset range. Steps 1-6
form a loop. The loop terminates when the offset range is adequate to resimulate
the data and has been reduced as far as possible given the current velocity model.
The value of X is determined by the amount of the data that can not be simulated
by the current scale of the model (including the noise in the data).

RESULTS

In this section, we will use a single reflector model with constant background
velocity to demonstrate the feasibility of the proposed multigrid approach. Note
that we have done far more iterations than necessary but only because this is base-
line experiment. Here we would like to emphasize that the data fit would not be
able to decrease further even with more iterations, when the subsurface offset is
inadequate.

The modeling and inversion are both constant-density acoustics based on the Born
approximation. The 26 sources and 201 receivers (0 km to 2.0 km) are placed
on the surface. Shown in Figure 1a, the true velocity model is consist of one
horizontal high velocity perturbations sitting on constant background velocity
v of 3.0 km/s. Based on Born approximation, the true velocity is split into the
background velocity model v(x,z) and the extended velocity perturbation model
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δv̄(x,z,h). Note that the background velocity model v(x,z) is nonextended, while
the extended perturbation model δv̄(x,z,h) has nonzero value only at h = 0m.

The multigrid strategy is a coarse-to-fine space decomposition scheme. In this
experiment, the space decomposition is implemented in three steps with grid size
40m, 20m, and 10m. Correspondingly, the observed data and the source function
are filtered by low-pass filters with low to high cutoff frequencies. The original
source wavelet is a 3− 24Hz bandpass wavelet (shown in Figure 1b). Figure ??-??
illustrate the source wavelet filtered by 0 − 8Hz and 0 − 16Hz bandpass filters,
respectively.

Figure 1: (a) Velocity model, (b) source wavelet (bandpass 3-24 Hz)

Step 1. We start with grid size 40m, frequency band 0 − 8Hz, and the time step
interval 6ms. Figure 2a shows the extended reverse time migration (ERTM) im-
age for the 0− 8Hz data with slower migration velocity (2.4 km/s). The large data
residual after 100 CG iterations indicates that the subsurface offset range is in-
sufficient to resimulate the observed data (see Figure ??). In the vertical slices at
x = 1000m, the upward curve is truncated at the maximum offset h = ±320m. Fig-
ure 2b illustrates that the LSERTM image is distorted by this limited offset range.
Because the data residual is greater than X = 8%, we increase the offset range to
640m. The data residual is less than 8%, which indicates the offset is long enough
to predict the observed data. The ERTM image and LSERTM are shown in Figure
3a and 3b. Based on equation (8), the gradient of the objective function respect to
v is shown in Figure 4b. Note that the theoretical computational cost here is only

(
1
4

)4 ≈ 0.39% of the original problem, in which space grid size 10m and the time
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step interval 1.5ms are used.

Figure 2: Subsurface offset range −320 m ≤ h ≤ 320 m, velocity = 2.4 km/s, 3-8 Hz
data: (a) Extended RTM image, (b) Extended LSRTM model, 100 CG iterations

Step 2. Assume that we update the migration velocity correctly to 2.6 km/s. Now
we filter the source wavelet and observed data by a frequency band 0−16Hz, and
decresase the subsurface offset range, the grid size and the time step interval by a
factor of 2. The LSERTM image of 100 CG iterations is shown in Figure 5a. As the
migration velocity is closer to the correct value, the energy should be more focused
toward h = 0m, which suggests that shorter subsurface offset range is needed. As a
result, an even half of the subsurface offset range (−320m ≤ h ≤ 320m) is sufficient
to predict the observed data, suggested by the data fitting (illustrated in Figure ??).
Note that 1/4 of the subsurface offset range (−160m ≤ h ≤ 160m) is insufficient.

Step 3. Assume that we update the migration velocity to 2.8 km/s. Now the origi-
nal source wavelet and observed data are used. The subsurface offset range, grid
size and the time step interval is further decreased by a factor of 2. The subsurface
offset range of −160m ≤ h ≤ 160m gives good data fitting.

CONCLUSIONS

The objective of this abstract is to address the central problem of extended wave-
form inversion, the computational cost, by applying the multiscale method and
adaptively. In the multiscale approach, the data and the source function are fil-
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Figure 3: Subsurface offset range −640 m ≤ h ≤ 640 m, velocity = 2.4 km/s, 3-8 Hz
data: (a) Extended RTM image, (b) Extended LSRTM model, 100 CG iterations
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set ranges; (b) Gradient of variable projection objective function with respect to
background velocity



Multiscale adaptive EWI 217

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵
✵

✵�✷

✵�✹

✵�✻

✵�✽

✶

❙t❡♣ ✁

■✂✄☎✆✂✝✞✟ ✟✠✡☛✄☎

❘
☞
✌✍
✎✏
✑
☞
✒
✏✓
✔✏
✎

❤✕✶✻✵ ✡

❤✕✖✷✵ ✡

❳✕✵�✵✽

Figure 5: Step 2: velocity updated to 2.6 km/s, space grid size 20m, subsurface
offset range −320m ≤ h ≤ 320m, and the 3 − 16Hz data and source function (a)
LSERTM result of 100 CG iterations, (b) the relative data residual as a function of
iteration number with different subsurface offset range

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Step 3

Iteration number

R
e
la

ti
v
e
 m

is
fi
t

 

 

h=80 m

h=160 m

X=0.08
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tered by low-pass filters with low to high cutoff frequencies. Correspondingly, the
space decomposition follows a coarse-to-fine scheme. We also shows an adaptive
method for determining the subsurface offset range, in which the data fitting is
used to assess the adequacy of the offset range. The numerical example demon-
strate that the proposed methods can greatly reduce the computational cost and
ensure adequate offset at the same time.
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Accelerating Least Squares Migration with Weighted
Conjugate Gradient Iteration

Jie Hou, William W. Symes

ABSTRACT
Iterative least squares migration can be effectively preconditioned by an adap-
tation of a preconditioner developed for subsurface offset extended least
squares migration. The adaptation avoids interaction with the subsurface off-
set axis during forward and reverse time propagation, and is thus relatively
economical of computer resources.
A version of this paper was submitted to the EAGE 2016 Annual Meeting.

INTRODUCTION

Least Squares Migration (LSM) iteratively achieves a best fit to seismic reflection
data in least squares sense. It typically requires a kinematically correct veloc-
ity model and involves high computational cost to achieve a reasonable data fit.
LSM with subsurface offset extension (ELSM) allows a good fit to the data even
with significant velocity error, however, at higher computational expense per it-
eration. Hou and Symes (2015a) recently showed how to accelerate the conver-
gence of ELSM with Weighted Conjugate Gradient (WCG) iteration, based on a
high-frequency asymptotic approximate inverse to the extended Born modeling
operator. However, the computationally expensive extension is in principle un-
necessary with a correct velocity model, as the data can then be fit well with a
conventional (non-extended) reflectivity model.

In this paper we present a modification of the WCG iteration of Hou and Symes
(2015a) that accelerates the convergence of conventional (non-extended) iterative
LSM without subsurface offset extended wave equation modeling and migration.
This paper discusses and illustrates the 2D case; the 3D case is in principle similar.
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THEORY

In this section, we will first review the concept of ELSM and WCG algorithm. We
will then show how to apply the WCG algorithm to LSM without extended wave
modeling.

Extended Born Modeling

The dynamical law of 2D constant density acoustics can be expressed as:

∂2u

∂t2
−m∇2u = f , (1)

where m = v2 is the squared acoustic velocity, u = u(x,z, t;xs) is the pressure field
for source position xs, and f models the seismic energy source at xs. Linearization
with respect to m yields

∂2δu

∂t2
−m∇2δu = δm∇2u (2)

Here δm is the model perturbation (or reflectivity model), δu is the pressure per-
turbation. The Born modeling operator F maps δm to δu sampled at survey source
and receiver positions. Given source/receiver data δd, LSM seeks a reflectivity
model δm to minimize, ||Fδm − δd||2, in which the vertical bars denote RMS (Eu-
clidean length) over all axes. The subsurface offset extended model replaces δm
with δm̄ and the right-hand side of equation 2 with∫

dhδm̄(x − h,z,h)∇2u(x − 2h,z, t;xs) (3)

The extended Born modeling operator F̄ maps δm̄ to δu sampled at the survey
source and receiver positions; here h is essentially the (horizontal) offset between
sunken source and receiver in Claerbout’s survey-sinking imaging condition (Claer-
bout, 1985). The extension operator E produces an extended reflectivity from a
non-extended or physical reflectivity δm by

δm̄(x,z,h) = Eδm(x,z,h) = δm(x,z)δ(h). (4)

The relation between extended and non-extended modeling operators is F = F̄E.
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WCG Algorithm for ELSM

The WCG algorithm is based on the the construction of a computable approximate
inverse F̄† to the extended Born modeling operator (ten Kroode, 2012; Hou and
Symes, 2015b):

F̄† =W −1
modelF̄

TWdata, where W −1
model = 4v5

0LP , Wdata = I4
t DzsDzr . (5)

L =
√
∇2

(x,z)∇
2
(h,z) is similar to the Laplacian operator and can be implemented eas-

ily in wavenumber domain, It is time integration, F̄T is the Euclidean adjoint of
extend Born modeling operator (extended RTM) and Dzs ,Dzr are the source and
receiver depth derivatives. P is a Fourier-like operator and approximately equal
to 1.

The WCG algorithm is the CG algorithm with weighted inner products:

‖δm̄‖2model = δm̄TWmodelδm̄, ‖δd‖2data = δdTWdataδd (6)

Equation 5 can be interpreted as asserting that the extended Born modeling oper-
ator is approximately unitary with respect to the weighted norms, hence the WCG
algorithm can accelerate the convergence of ELSM dramatically.

WCG Algorithm for LSM

Using the relation between ordinary and extended Born modeling, F = F̄E, the
basic cost function of LSM with data weight Wdata can be written as

J = ||W 1/2
dataFδm− δd‖

2 = ||W 1/2
dataF̄Eδm− δd‖

2. (7)

LSM with WCG algorithm amounts solve the data-weighted normal equation,

FTWdataFδm = FTWdataδd. (8)

To include the model weight factor, note that the extended image F̄TWdataδd is
focused at h = 0 when the velocity is kinematically consistent with δd ≈ Fδm, as is
its image under the extended Hessian. For such focused image volumes EET acts
as the identity, up to scale factor (the adjoint ET extracts the h = 0 section). Thus

EFTWdataFδm = EET F̄TWdataF̄Eδm ≈ F̄TWdataF̄Eδm. (9)
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Apply the model weight operator on the left hand side of equation 9 and use
equation 5 to obtain

ETW −1
modelEF

TWdataFδm ≈ δm (10)

That is, the Born modeling operator F is approximately unitary with respect to the
norms defined by Wphys = ETWmodelE and Wdata, and these weights should play
the same role in accelerating LSM as do W −1

model and Wdata in accelerating ELSM.
Operationally, application of W −1

phys amounts to padding its input with zeroes for

h , 0, applying W −1
model, then extracting the h = 0 section. Thus model extension

is involved, but outside of the time loops that define F and FT , and therefore at
negligible cost.

SYNTHETIC EXAMPLES

Marmousi Model

We first apply LSM with both CG and modified WCG iteration on the Marmousi
Model (Bourgeois et al., 1991). The background model, shown in Figure 1a, is
computed by smoothing the original model and resampling to 20m grid. The
reflectivity model, shown in Figure 1b, is the difference between smoothed back-
ground model and original model. 231 evenly spaced shots Born data are sim-
ulated with a (2.5-5-20-25) Hz band-pass wavelet and recorded by 461 evenly
spaced receivers. Both the source and receiver are placed at 20m depth. Figure
1c,1d plot the reflectivity image after 20 CG and WCG iterations on the same grey
scale. The WCG result clearly exhibits higher resolution. The misfit plot, dis-
played in Figure 2, shows the remarkable acceleration of WCG over CG. Actually,
the result of 3 WCG iteration is already better than that of 20 CG iteration.

Overthrust Model

Background and reflectivity models derived from the SEG/EAGE overthrust model
(Aminzadeh et al., 1997) are shown in Figure 3a and 3b, respectively. The model
is discretized with 25m grid. The experiment simulates 201 evenly spaced shots
and records at 401 evenly spaced receivers, both at 25m depth. A (2.5-5-20-25)
Hz band-pass wavelet with a 2-ms time interval is used.
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Reflectivity images (Figures 3c, 3d) and misfit plot (Figure 4) show clearly that
WCG substantially improves convergence.

CONCLUSIONS

We have modified WCG algorithm for LSM. It shows a remarkable acceleration
over CG iteration.
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Figure 1: (a) Smoothed background velocity model for Marmousi example (b)
Reflectivity model (c) LSM image from 20 iteration CG (d) LSM image from 20
iteration WCG.
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Figure 2: Relative data misfit plot for LSM of Marmousi example data with CG
and WCG.
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Figure 3: (a) Smoothed background velocity model for Overthrust model (b) Re-
flectivity model (c) LSM image from 20 iteration CG (d) LSM image from 20 iter-
ation WCG.
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Figure 4: Relative data misfit plot for LSM of Overthrust example data with CG
and WCG.
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Dip-angle decomposition in relation with subsurface
offset extended wave-equation migration

Raanan Dafni and William W. Symes

ABSTRACT
Our proposal provides post-migration techniques for computing angle-
domain common-image gathers (CIGs) from seismic images, extended by the
subsurface offset, in relation with wave-equation migration methods. In ad-
dition to the commonly used decomposition of the scattering-angles, we as-
sociate the wave-equation migration with dip-domain image gathers as well.
Our methodology suggests a system of Radon transform operators by intro-
ducing local transform relations between the subsurface offset image and the
angle-domain components. The same subsurface offset extended image is em-
ployed to decompose scattering and dip angle CIGs individually, or to de-
compose a multi-angle CIG by showing simultaneously both angles on the
gather axis. It is our belief that dip-angle information, decomposed by wave-
equation migration, would have a great impact in making the scattering-angle
reflection coefficient more reliable and noise-free, in addition to the expected
acceleration of wave-equation inversion methods.

Note: A version of this paper was ubmitted for presentation at the 2016 EAGE
Annual Meeting. The full text of this paper is part of the 2015 TRIP annual report:

http://www.trip.caam.rice.edu/reports/2015/trip2015 report.html
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Kinematic artifacts in the extended subsurface offset
domain

Raanan Dafni and William W. Symes

ABSTRACT
We provide a kinematic analysis of the prestack image behaviour in the sub-
surface offset domain. When the medium properties are perfectly known, the
image is expected to focus at the zero subsurface offset, where the incident
and the scattering wavefields interact at a common point. However, kine-
matic artifacts are often observed in subsurface offset common-image gathers
(CIGs) away from the zero offset trace, and artificially impairs the expected
focusing. These artifacts emerge in relation with the acquisition geometry
truncation at the boundaries of the seismic survey extent.
We suggest a formation mechanism for the artifacts emergence by considering
seismic migration as a superposition of subsurface offset extended impulse re-
sponses, contributed by individual data traces. The accumulation of the im-
age, in a trace-by-trace manner, gives an insight to its fundamental building
blocks that better explains the formation of the kinematic artifacts.
We also discuss the defocusing of the subsurface offset image due to an erro-
neous migration velocity. In such case, the kinematic artifacts are formed by
the same mechanism, while interfering with the essential defocusing infor-
mation of the image away from the zero offset trace.

Note: A version of this paper was ubmitted for presentation at the 2016 EAGE
Annual Meeting. The full text of this paper is part of the 2015 TRIP annual report:

http://www.trip.caam.rice.edu/reports/2015/trip2015 report.html
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Geometry of Extended Reflection

William Symes*

ABSTRACT
Subsurface offset extended modeling implies relations between reflection
properties (reflector dip, scattering angle) and ray geometry. The relation is
similar to that of non-extended modeling, but differs in that a simple relation
between scattering angle and image wavenumber holds only for zero offset.

INTRODUCTION

Sava and Fomel (2003) introduced the construction of angle domain extended
images by Radon transform of subsurface offset extended images. Notably, the
“scattering angle” was identified by Sava and Fomel (2003) as linked to the image
wavenumber in offset.

Generally, the physical meaning of this “angle domain” has been misunderstood.
For example, the “scattering angle” computed via Radon transform is the open-
ing angle between incident and reflected rays only when these rays meet at the
scattering point - that is, for zero subsurface offset. All of the energy is focused at
zero offset when the velocity if correct (in the infinite frequency limit, of course),
but not otherwise.

The ray geometry of the subsurface offset extension has been explored in a num-
ber of papers. I use here the account of Hou and Symes (2015), which completely
and rigorously develops the geometry of extended reflection. Note that essen-
tially the same relations appear in ten Kroode (2012), and possibly elsewhere;
these relations are implicit in the asymptotic analysis of extended modeling and
migration.
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THEORY

In constant-density acoustic Born modeling extended by horizontal subsurface
offset, the model perturbation δv is a function of horizontal spatial coordinates
x, horizontal subsurface offset h, and depth z. For 2D modeling, x and h are 1D
vectors, whereas for 3D modeling they are 2D: we will use the same notation in
either case.

The dual wavevectors to these coordinates are kx,kh,, and kz.Two distinguished
wavevector subspaces play a key role, namely kh = 0 with coordinates kx, kz and
kx = 0 with coordinates kh, kz. We will write

kxz =
√
|kx|2 + k2

z , khz =
√
|kh|2 + k2

z . (1)

For 2D, the angle subtended with the distinguished axis, which for horizontal
subsurface offset is of course the kz axis, are denoted ν for the kx, kz subspace, and
γ for the kh, kz subspace:

cosν =
kz
kxz
, cosγ =

kz
kxz
. (2)

For 3D, these angles are denoted ν1 and γ1, and the corresponding azimuths are
ν2 and γ2 respectively. Equations (2) are still correct, with ν replaced by ν1 and γ
by γ1.

In the high-frequency asymptotics of reflection, the wavevector (kx,kh, kz) is an
extended reflector normal. For physical reflectors, the reflectivity Fourier trans-
form is independent of kh, and the subvector with coordinates (kx, kz) is thus the
physical reflector normal. Accordingly, nu (2D) or ν1 (3D) is the dip (polar) angle
and ν2 is the dip azimuth. The physical significance of the angle γ , or γ1 and γ2
in the 3D case, is not as obvious, as it is related to the ray geometry of reflection.

For the purposes of this paper, assume that all traveltimes between source or re-
ceiver and reflecting point are single-valued, that is, that no caustics occur in the
scattering domain. For a particular pair xr ,xs of source and receiver coordinates
(assuming that these lie on horizontal planes), the two-way traveltime T is defined
in terms of the one-way traveltime τ by

T (x,h, z;xr ,xs) = τ(x + h, z,xr) + τ(x−h, z,xs). (3)
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T is closely related to the phase function in the expression of the scattering normal
operator - see Hou and Symes (2015), Appendix A, equation (A-1). Note that in
this reference T is denoted φ, and the one-way times are denoted as Tr and Ts
respectively. The computations leading up to equation (A-6) are essentially the
same, with x replaced by x and kx, kh by kx,kh and so on to accommodate the
3D case. Note that in 3D, two time integrations are required for each copy of
F̄ on the left-hand side of equation (A-1), in order that the resulting expression
be equivalent to integration over a surface. The upshot is essentially the same
stationary phase conditions as expressed in (A-6). In particular,

(kx, kz) is parallel to ∇x,zT , (4)
(kh, kz) is parallel to ∇h,zT , (5)

from which it follows that

kz
kxz

=
∇zT
|∇x,zT |

, (6)

kz
khz

=
∇zT
|∇h,zT |

, (7)

and

tanν =
|∇xT |
∇zT

, (8)

tanγ =
|∇hT |
∇zT

. (9)

The x, z gradient of T is the sum of the x, z gradients of τ for the arguments in-
dicated in equation (3). These gradients are in turn the ray velocity vectors from
source and receiver. For h = 0, the eikonal equation states that these gradients
have the same length, so that their sum is their bisector. Thus in this case equa-
tion (4) states Snell’s law of reflection, and the bisector of the angle subtended
by incident and reflected rays is the dip (reflector normal) vector. For h , 0, the
values of velocity at the points of evaluation (x±h, z) are not necessarily the same,
so that while the reflector normal is still parallel to the isochron normal, it is not
necessarily the bisector of the incident and reflected ray pair.

The scattering (or opening) (half-) angle γscat is one-half the angle subtended by
the incident and reflected rays. Denoting s = v−1(x, z), s± = v−1(x±h, z), and using



238 Symes

the eikonal equation several times,

|∇x,zT (x,h, z;xr ,xs)|2 = s2+ + s2− + 2s+s− cos2γscat

= 4s+s−

(
s+

2s−
+
s−

2s+
− 1 + cos2γscat

)
. (10)

This equation is difficult to interpret in general, however in the special case h = 0
it takes on a familiar meaning:

|∇x,zT (x,0, z;xr ,xs)|2 = 4s2 cos2γscat (11)

On the other hand,

|∇x,zT |2 = |∇xT |2 + |∇zT |2 = sec2ν|∇zT |2. (12)

The computation of |∇zT |2 is accomplished in equations (A-21) through (A-26)
and accompanying discussion in Appendix A of Hou and Symes (2015), and needs
no change other than the lexicographic ones already noted to accommodate 3D:
the starting point is the stationary phase (A-6), or its rewrite (4), (5) above. The
net result is (for general h, rewritten from equations (A-24), (A-25) and (A-26))

|∇zT |2 =
−b+

√
b2 − 4ac
2a

(13)

in which

a =
k2
xzk

2
hz

k4
z
, b = −2

[
(s2+ = s2−)

kx ·kh
k2
z

+ (s2+ + s2−)
]
, c = (s2+ − s2−)2. (14)

For h = 0, these expressions collapse to

|∇zT |2 = 4s2
k4
z

k2
xzk

2
hz

(15)

so from (11), (12, and (2)

4s2 cos2γscat = 4s2 sec2ν
k4
z

k2
xzk

2
hz

= 4s2 cos2γ (16)
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so the angles γ and γscat are identical for h = 0. Inspection of (13), (14) suggests
that otherwise, when s+ , s−, these two angles are not necessarily equal.

For the 2D case with h = 0, reference to (2), (4), (5) and (15) yield identities previ-
ously stated by Sava and Fomel (2003):

∂T
∂x

= 2s sinν cosγ,

∂T
∂h

= 2scosν sinγ,

∂T
∂z

= 2scosν cosγ, (17)

and

−∂z
∂x

= tanν = −kx
kz

−− ∂z
∂h

= tanγ = −kh
kz

(18)

which are simply the equations (8) and (9) with sign normalization. On the left-
hand side, z is regarded implicitly as a function of x,h describing the plane tan-
gent to the extended reflector at the reflection point. Note that the identities (17)
are correct in general only for h = 0, whereas from the point of view developed in
this paper, equations (18) are valid in general.

For completeness, we state the 3D generalizations of these relations, in coordi-
nates, using hx and hy for the x− and y− components of subsurface offset:

∂T
∂x

= 2s sinν1cosν2 cosγ1,

∂T
∂y

= 2s sinν1sinν2 cosγ1,

∂T
∂hx

= 2scosν1 sinγ2 cosγ2,

∂T
∂hy

= 2scosν1 sinγ1 sinγ2,

∂T
∂z

= 2scosν1 cosγ1, (19)
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and

−∂z
∂x

= tanν1 cosν2 = −kx
kz
,

−∂z
∂y

= tanν1 sinν2 = −
ky
kz
,

− ∂z
∂hx

= tanγ1 cosγ2 = −
khx
kz
,

− ∂z
∂hy

= tanγ1 sinγ2 = −
khy
kz
. (20)

Again, equations (19) relate rays to reflectors and hold only for h = 0, whereas
equations (20) simply identify the angles in relation to the reflector wavenumbers
and hold in general.

CONCLUSION

The geometrical reasoning developed by Hou and Symes (2015) encapsulates the
relations between ray angles and reflector normals. These relations take the usual
form proposed by Sava and Fomel (2003) only for physical reflection, that is, zero
subsurface offset.
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Parallel IWAVE

William W. Symes, The Rice Inversion Project

ABSTRACT
IWAVE supports loop-level, block-level, and task-level parallelism. OpenMP
parallelization of loops is available, as is domain decomposition via MPI. MPI
also enables parallelism over shot records. This brief report desribes the me-
chanics of IWAVE parallel execution modes, and includes examples of typical
use cases.

INTRODUCTION

IWAVE was designed from the outset for parallel execution. The first release (ver-
sion 1.0, fall 2009) used domain decomposition via MPI, and optionally loop dis-
tribution via OpenMP, for simulation (forward map) only. Later releases intro-
duced task-level parallelism, that is, concurrent execution of shots optionally in
combination with domain decomposition, and extended all of these modes of par-
allelism to derivative and adjoint derivative computations.

This paper explains how to invoke IWAVE in various modes of parallel execution.
I apply a selection of these modes to a small 2D example, and so illustrate that the
same results are obtained for serial execution as for any mix of parallel options.
I will discuss parallelization over shots and domain decomposition here: loop
distribution via OpenMP will be discussed elsewhere. The SConstruct file in the
project subdirectory contains examples of all of the constructions mentioned
here, and should be regarded as part of the paper.

THE IWAVE APPROACH TO PARALLELISM

Domain decomposition is computed from minimal user input, namely the number
of subdomains along each grid axis. The global grid is partitioned into subgrids
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of equal, or near-equal, size, and each subgrid is assigned to an MPI process. The
subgrids contain ghost points required to execute the scheme stencil. Exchange
of data to re-initialize ghost points uses the MPI Vectortype structure to realize
virtual subgrids, thus avoiding redundant memory allocation and data motion.
OpenMP-based threaded execution co-exists with domain decomposition. See
Terentyev (2009) for details on the initial design of IWAVE, Fehler and Keliher
(2011) for information on its use in the QC of the SEAM Phase I project. and
Symes et al. (2011) for a description of a later release.

IWAVE uses minimal user data, namely the number of shots to execute in parallel,
to generate a vector of communicators, one per parallel shot. Each communica-
tor is assigned a subset of shots, the subsets being chosen as close to equal size
as possible, and a subset of processes that participate in computing each shot as-
signed to that communicator - one for pure task-level parallelism, more than one
if domain decomposition is also being used.

The same principles apply to the forward map and to its derivatives and adjoint
derivatives: all are parallelized in the same ways.

IWAVE currently implements disk-to-disk operations. Common input data (eg.
model fields) is read and broadcast, shot-dependent data (such as shot gathers) are
read or written as needed or generated. The current i/o design is very MPI 1, that
is, all i/o takes place on rank 0 of each communicator (note that there may pos-
sibly be multiple communicators active in an IWAVE run). Reduction data (non-
extended adjoint output) is presumed to be summed (stacked). In task-parallel
domain decomposition, each communicator assembles a partial stack over the
shots assigned to it, then these results are summed in a final reduction phase.

BUILDING PARALLEL IWAVE

IWAVE can be built MPI-enabled, but not as part of the overall Madagascar build.
To enable MPI execution, run SConstruct in RSFSRC/trip, with a config.py file
specifying MPI compilation and linking. You will need to put the path to the MPI
root directory in your environment as MPIROOT, or use one of the module load-
ing systems common at supercomputer sites to provide equivalent information
to your shell, then follow the model (or use) one of the config files in RSFSR-

C/trip/admin, for example RSFSRC/trip/admin/linux.mpi.py - to use, simply
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copy to RSFSRC/trip/config.py, then scons.

This process creates the MPI-enabled executables in the main subdirectories, not
in the RSFROOT/bin directory where other Madagascar commands are found - for
example, in this exercise, RSFSRC/trip/iwave/acd/main/acd.x. You will need to
instrument your SConstruct files to find these commands, since the default paths
from Madagascar will not work. See project/SConstruct for an example.

NOTE: at this writing (2015.09.10) the TRIP directory tree head revision does
NOT reside in RSFSRC - it is independent of Madagascar, for purely accidental rea-
sons flowing from a catastrophic failure at SourceForge earlier in summer 2015,
and lives in the CAAM TRIP repository as trip2.1. I anticipate that sometime
soon the TRIP tree will migrate back to the new RSFSRC GitHub repository. For
the time being, where you see RSFSRC/trip in this discussion, substitute trip2.1.
Do NOT use the version of the TRIP tree found in RSFSRC, until further notice, as
it is increasingly out-of-date.

JOB CONTROL

The TRIP software stack includes a Python module (RSFSRC/trip/admin/new-
batch.py) defining functions that read standardized job information for serial,
command line parallel, or batch execution of IWAVE commands and builds ap-
propriate Madagascar Flows for each case. These data structures specify each
essential item of information necessary for job definition with minimal depen-
dencies on other items.

An SConstruct file using the IWAVE batch module should include standard boil-
erplate at the top:

from rsf.proj import *
from newbatch import tripExec

The SConstruct should also define

• an array of job dictionaries;

• one or more parallel environment dictionaries;
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• one or more batch environment dictionaries.

and include a call to tripExec following these definitions. This section describes
these data structures and their relations and uses.

The central data structure is the job, a Python dictionary with these fields:

• job: job name (string),

• pre: preliminary command, to be executed in serial mode. This is mainly
provided to include creation of output data files by copy or by another com-
mand (from Madagascar or SU, for example) - these need to exist, with cor-
rect metadata, before acting as target in an IWAVE command, however they
cannot be built in a separate Flow since no object can serve as target in two
different Flows. Generally these are (low-intensity floating point) commands
which one wishes to execute in serial, hence defined separately from the
main command below, which may be executed in parallel.

• src: list of source files, including all those used in as sources in the IWAVE
command and in the preliminary command.

• tgt: list of target files.

• cmd: main command, to be executed as serial command, under mpirun, or
as part of a batch script.

• exe: execution environment dictionary - defines type of parallel execution
(serial, command-line mpi, or batch) with necessary parameters for each.

Since each project typically specifies several jobs, the project SConstruct file
should organize its job dictionaries into an array, eg.

jobs = [ {job1: {...}}, {job2: {...}},...]

Three types of parallel execution environment are recognized, corresponding to
three dictionary structures:

• serial: an empty dictionary
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• command line mpi: a dictionary with two items,

– platf: mpi - specifies command line mpi

– ppn: ... - number of MPI processes

• batch:

– platf: batch platform name - serves as index into batch environment
dictionary, see below

– nodes: number of nodes

– ppn: processes/cores per node

– wall: wallclock time limit, in form xx:xx:xx

Batch execution requires some additional job-independent characteristics of each
environment, such as scripting language, launcher name or path, project name
and other accounting information, etc. These need to be listed in a batch environ-
ment dictionary. The information provided in the batch environment dictionary
is peculiar to each site and/or machine operated by the site, and may be expected
to change as supercomputing sites evolve their software stacks and environments.
The dictionary has a standard structure: it uses platform names (from the batch
instances in the parallel environment dictionary) as keys; the corresponding val-
ues are themselves dictionaries, defining values for the standard keys:

• batch: batch system name, eg. pbs, sge, slurm,...

• queue: name of execution queue.

• acct: account name, to which jobs are to be charged.

• mail: email address to which notification of job begin and end should be
sent

• launcher: name of MPI launcher used, eg. mpiexec, ibrun,...

Having defined the array of job dictionaries, the parallel environment dictionary
(or dictionaries, as different jobs can use different parallel environments), and the
batch environment dictionary (which may be empty, if your project has no need
of batch job submission), include the line
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tripExec(<name of jobs array>, <name of batch env dict>)

in the project SConstruct somewhere below the definitions. The tripExec func-
tion parses the information contained in its arguments into Madagascar Flows
that execute the various jobs with the chosen modes of parallelism. Each Flow ex-
ecutes in a subdirectory of the project directory, named jobname.work, in which
jobname is the job name assigned in the job dictionary (containing the item ’job’:

jobname). This subdirectory captures the diagnostic output of IWAVE and MPI
(for instance, the cout....txt files generated by IWAVE, one for each MPI pro-
cess). The subdirectory is a Flow target, so scons -c in the project directory gets
rid of all of these execution directories and their contents.

Notes:

1. The Flows generated by tripExec do not do standard i/o, so this tool is re-
ally suitable only for applications like IWAVE. For SU or Madagascar commands
structured as filters (i.e. < inp cmd >outp, write ordinary Madagascar Flows.

2. The implementation of tripExec uses sfbatch, the Madagascar batch utility,
enabling use of the Madagascar SOURCES and TARGETS macros in the command
definition, and keeping each data file name to a unique location (in the src or
tgt list). sfbatch incorporates current standard choices for SLURM and PBS at
many sites, but given the variety and continued evolution of supercomputer batch
environments it’s natural to suspect that it may need updating - so beware.

3. The various modes of execution may be mixed in a Madagascar project SConstruct.
In particular, dependence of results on other results produced by batch com-
mands is respected: a Flow dependent on the result of a batch computation exe-
cutes when the batch computation is complete, rather than when the batch sub-
mission command is executed.

4. For all but serial execution models, the number of processes, and for domain
decomposition their geometric layout, must be described. This information can
be captured in various ways, but probably the easiest is via a set of Python integer
variables, as in the example described in the next section. For example, a script
fragment describing a 2D 2 × 3 domain decomposition of 6 shots, computed 3 at
a time, would include in the definition of the IWAVE driver command something
like
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NP1=2

NP2=3

NPT=3

...

cmd=’... mpi_np1=’ + str(NP1) + ’ mpi_np2=’ + str(NP2) +

’ partask=’ + str(NPT)

For command-line MPI execution, one would naturally use exactly the required
number of threads, so

jobs=[..., {...,’exe’: {’platf’: ’mpi’, ’ppn’: str(NP1*NP2*NPT)} },...]

whereas queue management algorithms for batch sites argue for an independent
definition of the number of threads, like

jobs=[..., {...,’exe’: {’platf’: ’euclid’,

’nodes’: str(NODES),

’ppn’: str(PPN),

’wall’: ’04:00:00’} },...]

The IWAVE MPI environment function checks that sufficient resources are avail-
able: thus IWAVE will abort if NP1*NP2*NPT > NODES*PPN.

5. WARNING: In many cluster environments, partial use of a node (using fewer
cores than available on the number of nodes allocated) can result in jobs hanging.
Therefore, until we see some portable and transparent way around this limitation,
the number of tasks defined by IWAVE (NP1*NP2*NPT in the preceding example)
should be the same as the number of cores allocated (NODES*PPN in the example).

EXAMPLES

I have used the simple 4-layer OBC example from (Symes, 2014) to illustrate the
various parallel IWAVE modes for serial and command line mpi execution. The
command used in these examples is iwave/acd/main/acd.x, which implements
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the forward map, its first and second derivatives, and their adjoints. This appli-
cation is described in some detail in Symes (2014).

The paper (Symes, 2015) describes a similar example. The reader should exam-
ing the project/SConstruct files for both papers to see “live” examples of the
framework. In particular, the examples attached to this paper are configured for
command-line MPI, rather than batch. To see an explicit example of the me-
chanics of batch submission, see the examples attached to the companion paper
(Symes, 2015).

The velocity model for the 4-layer OBS example appears as Figure 1. Other details
of the simulation are as described in Symes (2014), and in the figure captions.
Figures 2a, 2b, 2c, and 2d show the results of modeling an OBC gather (effectively,
a shot on the seafloor and near-surface receivers) with no domain decomposition
(or 1 × 1), versus 1 × 2, 2 × 1, and 2 × 2 decompositions, all plotted on the same
scale. The differences are at round-off level. The parameters mpi np1 and mpi np2

describe the number of domains along the first and second axes, and were set at
1 and 2 respectively. Thus, 1, 2, 2, and 4 MPI processes were involved in these
simulations respectively. It is an error to provide too few processes to assign each
domain a process. However providing more processes is not an error; the unused
processes are simply idled.

Figures 5a, 5b, 5c, and 5d describe the analogous results for the Born approxima-
tion. Once again, the differences are at round-off level. Finally, Figures 6a, 6b, 6c,
and 6d describe the reverse time migration (adjoint linearized modeling) of the
corresponding Born data.

All of these results should be compared the analogous plots in Symes (2014).

Finally, to illustrate shot parallelization and its combination with domain decom-
position, I simulated 9 shots, with 3 computed concurrently (partask=3). I ob-
tained the result displayed in Figure 7a. This runs under mpi command line con-
trol with -np 3 (resulting from the parallel environment dictionary entry ’ppn’:

’3’. Initially, shots 0, 3, and 6 are distributed to processes 1, 2, and 3. Then shots
1, 4, and 7 are distributed in the same way, and finally 2,5, and 8.

Note that the communicator design described above causes the algorithm to be-
have like an asynchronous queue - for example process 2 could be working on
shot 4 when process 1 is still on shot 0. In general, IWAVE takes an optimistic
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point of view regarding load balancing: it simply relies on similar-sized jobs tak-
ing similar lengths of time to complete. This approach has definite limits, but
it is perhaps reasonable as a first cut for a solver based on uniform rectangular
meshes.

Figure 7b shows the same job processed with 3 concurrent shots and a 1 × 2 do-
main decomposition. In this case, processes 1 and 2 start on shot 0, processes 3
and 4 on shot3, and processes 5 and 6 on shot 6, and so on. As was the case in
other examples, the differences between results obtained with different levels of
parallelism are within round-off of each other.

Figure 1: 4-layer velocity-squared model. First layer has H2O properties: model
sea bottom is at depth = 1875 m.

REFERENCES

Fehler, M., and J. Keliher, 2011, SEAM Phase 1: Challenges of subsalt imaging in
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#############################################################################
###################### COMMON DEFINITIONS - DO NOT ALTER ####################
#############################################################################
from rsf.proj import *
from newbatch import tripExec
import os
#############################################################################
###################### END COMMON DEFINITIONS ###############################
#############################################################################
penv = {'stampede' :  { 'batch'    : 'slurm',
                        'queue'    : 'normal',
                        'acct'     : 'FDTD3D-Cont',
                        'mail'     : 'symes@caam.rice.edu',
			'launcher' : 'ibrun'
                      },
         'davinci' :  { 'batch'    : 'slurm',
                        'queue'    : 'trip',
                        'acct'     : 'symes',
                        'mail'     : 'symes@caam.rice.edu',
			'launcher' : 'ibrun'
                      }
       }

######################## LOCAL DEFINITIONS ##################################

######## abbreviations for commands used in flows - put these first, if
######## you use abbreviations. Note that Madagascar commands do not 
######## require abbreviations 
# Example:
#          CWPROOT         = os.getenv('CWPROOT')
#          ...
#          sunull          = os.path.join(CWPROOT,'bin/sunull')
CWPROOT         = os.getenv('CWPROOT')
sunull          = os.path.join(CWPROOT,'bin/sunull')
sushw           = os.path.join(CWPROOT,'bin/sushw')
suchw           = os.path.join(CWPROOT,'bin/suchw')
sugain          = os.path.join(CWPROOT,'bin/sugain')
suwaveform      = os.path.join(CWPROOT,'bin/suwaveform')
supsimage       = os.path.join(CWPROOT,'bin/supsimage')
suspike         = os.path.join(CWPROOT,'bin/suspike')
MYAPPS          = os.getenv('MYAPPS')
towed_array     = os.path.join(MYAPPS,'trip2.1/iwave/trace/main/towed_array.x')
stdmdl          = os.path.join(MYAPPS,'trip2.1/iwave/grid/main/standardmodel.x')
acd             = os.path.join(MYAPPS,'trip2.1/iwave/acd/main/acd.x')

######### fetch list - non-reproducible data fetched from web archive.
# the format for this dictionary is 
#    filename : [<subdir of "data" directory in archive>, <archive URL>]
# Example: 
# fetches = {
#            'line_fix.su' : ['marmousi', 'http://www.trip.caam.rice.edu'],
#            'velocity.HH' : ['marmousi', 'http://www.trip.caam.rice.edu'],	
#           }
fetches = {}

######### non-IWAVE flows - include these in standard Madagascar form
# sunull writes to stdout but does not read from stdin, so set
# stdin=0
Flow('hdrcoarse.su', None,
     sunull + ' nt=131 ntr=10 dt=0.04 | ' + 
     sushw + ' key=sx a=12000 c=0 j=400 | ' + 
     sushw + ' key=gx a=5000 b=200 j=400 | ' + 
     sushw + ' key=delrt a=0 | ' +  
     sushw + ' key=selev a=-2000 | ' + 
     sushw + ' key=gelev a=-200 | ' + 
     sushw + ' key=scalel a=0 | ' + 
     sushw + ' key=scalco a=0 | ' + 
     suchw + ' key1=offset key2=gx key3=sx b=1 c=-1 > ${TARGETS[0]} ',
     stdin=0)

Flow('hdr12000.su', None,
     sunull + ' nt=651 ntr=400 dt=0.008 | ' + 
     sushw + ' key=sx a=8000 c=500 j=400 | ' + 
     sushw + ' key=gx a=5000 b=25 j=400 | ' + 
     sushw + ' key=delrt a=0 | ' +  
     sushw + ' key=selev a=-1875 | ' + 
     sushw + ' key=gelev a=-6 | ' + 
     sushw + ' key=scalel a=0 | ' + 
     sushw + ' key=scalco a=0 | ' + 
     suchw + ' key1=offset key2=gx key3=sx b=1 c=-1 > ${TARGETS[0]} ',
     stdin=0)

Flow('hdr8-12km.su', None,
     sunull + ' nt=651 ntr=3600 dt=0.008 | ' + 
     sushw + ' key=sx a=8000 c=500 j=400 | ' + 
     sushw + ' key=gx a=5000 b=25 j=400 | ' + 
     sushw + ' key=delrt a=0 | ' +  
     sushw + ' key=selev a=-1875 | ' + 
     sushw + ' key=gelev a=-6 | ' + 
     sushw + ' key=scalel a=0 | ' + 
     sushw + ' key=scalco a=0 | ' + 
     suchw + ' key1=offset key2=gx key3=sx b=1 c=-1 > ${TARGETS[0]} ',
     stdin=0)

# note: if a filename does not have an embedded ".", it's presumed to
# be the root filename of an rsf.  stdmdl does not read data from
# stdin or write data to stdout (it writes verbose comments and
# warnings, but that's not data) so set both stdin and stdout=0

# grid parameters - fine
N1  = 416
D1  = 25
N2  = 800
D2  = 25

# grid parameters - coarse
#N1  = 52
#D1  = 200
#N2  = 100
#D2  = 200

Flow('vel4layer',None,
      stdmdl + \
      '''
      choose=2 model=10 
      m2_numl=4 m2_val1=1.500 
      m2_rf1=1875 m2_val2=2.0 
      m2_rf2=3600 m2_val3=2.5 
      m2_rf3=6000 m2_val4=3.0 
      hfile=vel4layer.rsf
      ''' + 
      ' n1=' + str(N1) + ' d1=' + str(D1) + ' f1=0' +
      ' n2=' + str(N2) + ' d2=' + str(D2) + ' f2=0' +
      ' o2=0 n3=1 d3=1 o3=0',
      stdin=0, stdout=-1)

# sfadd writes output to stdout, so it must be left active - 
# however there is not pipe input to this command, so stdin=0
Flow('csq4layer','vel4layer',
     'sfadd mode=p ${SOURCES[0]} ${SOURCES[0]} | sfput data_type=csq ', stdin=0)

# smooth csq4layer to make migration velocity model
Flow('csq4layersm','csq4layer','smooth rect1=50 rect2=50 repeat=4')
Flow('csq4layersm2','csq4layer','smooth rect1=5 rect2=5 repeat=4')
Flow('dcsq4layer', ['csq4layer', 'csq4layersm2'],
     'add mode=a scale=1,-1 < csq4layer.rsf csq4layersm2.rsf') 

# create base wavelet (just time series, without source position
# information) via suwaveform
Flow('waveletbase.su','',
     suwaveform + ' type=gaussd fpeak=5 ns=101 | ' + 
     sushw + ' key=delrt  a=-100 > ${TARGETS[0]} ',
     stdin=0)

#Flow('waveletbase.su', None, suspike + ' nt=11 ntr=1 nspk=1 it1=1 ix1=1 offset=0 dt=0.008', stdin=0)

# add source coordinates from hdrfile to source AND receiver 
# coordinates from wavelet to create "dressed" wavelet for array
# source option in iwave. Note that iwave reads a source GATHER by
# detecting new source coordinates (sx, sy, selev) but assigns source
# trace GRID POSITIONS in the array by receiver coordinates (gx, gy, 
# gelev). The towed array app sets these coordinates up so that each 
# shot may have an array of sources, with the source traces in the 
# same position relative to the data source coordinates - hence 
# "towed_array".

# use naming convention: time series stored in waveletbase, 
# headers for experiment foo stored in hdrfoo.su, wavelet in
# waveletfoo.su

for foo in ['12000', '8-12km']:
    Flow('wavelet' + foo + '.su', ['waveletbase.su', 'hdr' + foo + '.su'],
         towed_array + 
         '''
         data=${SOURCES[1]} 
         src=${SOURCES[0]} 
         towed=${TARGETS[0]}
         ''',
         stdin=0, stdout=0)



#### debugging flags
#		 ' dump_lda=1 dump_ldc=1 dump_term=1 printact=6 dump_lds=1 dump_ldr=1 dump_pi=1', 

jobs = []

for NP1 in [1,2]:
    for NP2 in [1,2]: 
        jobs = jobs +    [{ 'job': 'shot' + str(NP1) + str(NP2),
                            'pre': '/bin/cp ${SOURCES[0]} ${TARGETS[0]}' ,
			    'cmd': acd  + 
                 	    ' deriv=0 order=2 cfl=0.5 cmin=1.0 cmax=5.0 ' + 
                 	    ' csq=${SOURCES[2]} source=${SOURCES[1]} ' +
                 	    ' data=${TARGETS[0]} sampord=1 ' +
                 	    ' mpi_np1=' + str(NP1) + ' mpi_np2=' + str(NP2),
          		    'src': ['hdr12000.su', 'wavelet12000.su', 'csq4layer.rsf'],
	  		    'tgt': ['shot' + str(NP1) + str(NP2) + '.su'],
          		    'exe' : {'platf': 'mpi', 'ppn'   : str(NP1*NP2) }	 
        		  },
			  { 'job': 'born' + str(NP1) + str(NP2),
                            'pre': '/bin/cp ${SOURCES[0]} ${TARGETS[0]}' ,
			    'cmd': acd  + 
                 	    ' deriv=1 adjoint=0 order=2 cfl=0.5 cmin=1.0 cmax=5.0 ' + 
                 	    ' csq=${SOURCES[2]} source=${SOURCES[1]} + csq_d1=${SOURCES[3]}' +
                 	    ' data=${TARGETS[0]} sampord=1 ' +
                 	    ' mpi_np1=' + str(NP1) + ' mpi_np2=' + str(NP2),
          		    'src': ['hdr12000.su', 'wavelet12000.su', 'csq4layersm.rsf', 'dcsq4layer.rsf'],
	  		    'tgt': ['born' + str(NP1) + str(NP2) + '.su'],
          		    'exe' : {'platf': 'mpi', 'ppn'   : str(NP1*NP2) }	 
			  },
			  { 'job': 'rtm' + str(NP1) + str(NP2),
          		    'pre': 'sfcp ${SOURCES[2]} ${TARGETS[0]}',
			    'cmd': acd  + 
                 	    ' deriv=1 adjoint=1 nsnaps=10 order=1 cfl=0.5 cmin=1.0 cmax=5.0 ' + 
                 	    ' csq=${SOURCES[2]} source=${SOURCES[1]} csq_b1=${TARGETS[0]}' +
                 	    ' data=${SOURCES[3]} sampord=1 ' +
                 	    ' mpi_np1=' + str(NP1) + ' mpi_np2=' + str(NP2),
          		    'src': ['hdr12000.su', 'wavelet12000.su', 'csq4layersm.rsf', 'born'+str(NP1)+str(NP2)+'.su'],
	  		    'tgt': ['rtm' + str(NP1) + str(NP2) + '.rsf'],
          		    'exe' : {'platf': 'mpi', 'ppn'   : str(NP1*NP2) }	 
			  },
			]

# parallel tasks
PT=3
# dom decomp option
PNP1=1
PNP2=2

jobs = jobs + [{ 'job': 'shot8-12km',
	      	 'pre': '/bin/cp ${SOURCES[0]} ${TARGETS[0]}' ,
	  	 'cmd': acd  + 
          	 ' deriv=0 order=2 cfl=0.5 cmin=1.0 cmax=5.0 ' + 
          	 ' csq=${SOURCES[2]} source=${SOURCES[1]} ' +
          	 ' data=${TARGETS[0]} sampord=1 ' +
	  	 ' partask=3',
          	 'src': ['hdr8-12km.su', 'wavelet8-12km.su', 'csq4layer.rsf'],
          	 'tgt': ['shot8-12km.su'],
          	 'exe' : {'platf': 'mpi', 'ppn'   : str(PT) }	 
               },
	       { 'job': 'shot8-12kmdd',
	       	 'pre': '/bin/cp ${SOURCES[0]} ${TARGETS[0]}' ,
	       	 'cmd': acd  + 
               	 ' deriv=0 order=2 cfl=0.5 cmin=1.0 cmax=5.0 ' + 
               	 ' csq=${SOURCES[2]} source=${SOURCES[1]} ' +
               	 ' data=${TARGETS[0]} sampord=1 ' +
	       	 ' partask=' + str(PT) + ' mpi_np1=' + str(PNP1) + ' mpi_np2=' + str(PNP2),
               	 'src': ['hdr8-12km.su', 'wavelet8-12km.su', 'csq4layer.rsf'],
               	 'tgt': ['shot8-12kmdd.su'],
               	 'exe' : {'platf': 'mpi', 'ppn'   : str(PT*PNP1*PNP2) }	 
               },
              ]

tripExec(jobs,penv)

Result('csq4layer', 'put label1=Depth unit1=m label2=Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey color=c mean=y scalebar=y barreverse=y')

Result('csq4layersm', 'put label1=Depth unit1=m label2=Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey color=c mean=y scalebar=y barreverse=y')

Result('dcsq4layer', 'put label1=Depth unit1=m label2=Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" | grey color=c mean=y scalebar=y barreverse=y')

for NP1 in [1,2]:
    for NP2 in [1,2]: 

    	Result('shot' + str(NP1) + str(NP2),'shot' + str(NP1) + str(NP2) + '.su', 'suread endian=0 read=data | put label1=Time label2=Distance d2=0.025 o2=5 unit1=s unit2=km label=Pressure unit=GPa | grey scalebar=y barreverse=y clip=0.1')

	Result('born' + str(NP1) + str(NP2),'born' + str(NP1) + str(NP2) + '.su', 'suread endian=0 read=data | put label1=Time label2=Trace unit1=s label=Pressure unit=GPa | grey scalebar=y barreverse=y')

	Result('rtm' + str(NP1) + str(NP2), 'put label1=Depth unit1=m label2 = Distance unit2=m label="V\_p\^\^2\_" unit="m\^2\_/ms\^2\_" |window max1=8000 min2=5000 max2=15000 | grey color=c mean=y clip=0.0001 scalebar=y barreverse=y')

Result('shot8-12km','shot8-12km.su', 'suread endian=0 read=data | put label1=Time label2=Distance d2=0.025 o2=5 unit1=s unit2=km label=Pressure unit=GPa | sfgrey scalebar=y barreverse=y clip=0.0001')

Result('shot8-12kmdd','shot8-12kmdd.su', 'suread endian=0 read=data | put label1=Time label2=Distance d2=0.025 o2=5 unit1=s unit2=km label=Pressure unit=GPa |sfgrey scalebar=y barreverse=y  clip=0.0001')

End()
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Figure 2: Shot over model of Figure 1 at OBC position x = 8 km, z = 1.875 km,
400 receivers in 5 km ≤ x ≤ 15 km, ∆x = 25 m. Isotropic point source as consti-
tutive law anomaly, Gaussian derivative wavelet, 5 Hz peak frequency. Domain
decomposition parameters (mpi np1,mpi np2) = (1,1) (no domain decomp), (1,2),
(2,1) and (2,2).
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Figure 3: Background model: smoothing of 4-layer velocity-squared.
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Figure 4: Reflectivity model: difference between velocity-squared (Fig-
ure 1) and a less aggressive smoothing than that shown in Figure 3.
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Figure 5: Linearized (“Born”) shot over model of Figure 1 at OBC position
x = 8 km, z = 1.875 km, 400 receivers in 5 km ≤ x ≤ 15 km, ∆x = 25
m. Isotropic point source as constitutive law anomaly, Gaussian derivative
wavelet, 5 Hz peak frequency. Velocity-squared as in Figure 3, reflectivity
(velocity-squared perturbation) as in Figure 4. Domain decomposition param-
eters (mpi np1,mpi np2) = (1,1) (no domain decomp), (1,2), (2,1) and (2,2).
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Figure 6: Adjoint linearized map (RTM) applied to data of Figures
5a, 5b, 5c, and 5d, with same domain decomposition parameters.
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Figure 7: 9 shots from xs = 8 km to xs = 12 km, 3 shots computed at once
(partask=3); no domain decomposition on left, 1 × 2 domain decomposition on
right.
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Extended IWAVE

Raanan Dafni and William W. Symes, The Rice Inversion Project

ABSTRACT
IWAVE accommodates several extended modeling modes. This paper ex-
plains how to implement shot record extension (independent simulation
of shots with one model per shot), subsurface offset extension (mechanical
parameters as non-diagonal operators), and source extension (independent
source parameters for each trace, or each shot, or both), for constant-density
acoustic modeling. The modeling operators and their first and second deriva-
tives inherit all features of IWAVE simulation - dataflow design, shot and
multidomain parallelism, computed memory allocation, command line job
control, etc.

INTRODUCTION

MATHEMATICAL SETTING

The central design principle of IWAVE/RVL can be stated as follows: the math-
ematics is the API. So the first task is to describe the mathematics of extended
modeling.

To make the illustrations in this paper as simple as possible, we choose constant
density acoustic wave propagation as the underlying physics. The sole material
parameter field is the velocity squared, m = v2, proportional to bulk modulus
by the (constant) density. The second order wave equation for causal acoustic
dynamics is

∂2p

∂t2
−m∇2p = f , p = 0, t << 0. (1)

in which p = p(x, t,xs) is the pressure field, xs is the source parameter (which may
be location, or slowness, or ...), f = f (x, t,xs) is the source field. The modeled
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seismogram is the trace, or sampling, of p at (possibly xs-dependent) receiver lo-
cations. For the moment, we will regard the source as known and fixed, and write
F (m) for the collection of traces, so determined, a point in the data space D, the
range of the forward map F whose domain is the model space M.

An extended model space M̄ is simply larger: M “⊂” M̄ - as we will see, the
inclusion need not be literally true. Typically extended modeling means param-
eters added somehow to the model, beyond those specified by the basic physics,
but the fundamental requirement is that there be an extended modeling operator
F̄ : M̄→D and an extension operator E :M→ M̄ so that

F̄ (E(m)) = F (m), m ∈M. (2)

Shot Record Extension

Subsurface Offset Extension

Dataflow Control

IWAVE controls the selection of extension (or no extension) by input and/or output
data format. This idea is described in (Symes, 2014). Briefly,

• if the grid of the input fields (or output fields, in the case of the adjoint
linearized map) contains one or more extended axes, then IWAVE computes
an extended map. As explained in (Symes, 2014), IWAVE uses an enhanced
version of the Madagascar data structure to differentiate extended from non-
extended axes: added keywords are

– dim = spatial dimension, should be same as reference grid

– gdim = global dimension, including extended axes - for typical 2D ex-
tended modeling, this is dim + 1.

– idxxx for xxx=1,...dim-1 are the id’s of the spatial axes, xxx=dim signi-
fies the time axis, xxx=dim + 1,...,99 are available for external extended
axes such as shot number, and xxx=100,... signify internal extended
axes such as subsurface offset. “External” means that only a single
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value participates in the simulation of a single shot; “internal” means
that all (or many) points on the axis particpate in single shot simula-
tion, as is the case for spatial axes.

– for linearized or adjoint linearized maps,

* if the grid of the input reference fields is the same as the grid of
the perturbation inputs or outputs (csq d1 or csq b1 for acd first
derivative and adjoint first derivative respectively), then IWAVE
computes the linearization (or adjoint linearization) of the (extended
or non-extended) forward map.
* if the grid of the input reference fields is not extended (has no

extended axes), but one or more perturbations is extended, then
IWAVE computes the extended linearization (or its adjoint) about
the implicitly extended reference field. This case is typical for mi-
gration velocity analysis.

In all cases, the identification keywords of extended axes tell IWAVE what
sort of extension to compute.

EXAMPLE: COARSE GRID MARMOUSI

This example uses the Marmousi model subsampled to dx = dz = 24 m. The Born
simulation uses a well-smoothed background model (Figure 1) and a reflectivity
derived from the original model with a less agressive smoothing removed (Figure
2). Velocity-squared and its perturbation are plotted, as these are the quantities
used in the simulation. The acquisition geometry is the original, subsampled by a
factor of 4 to give a 60-shot simulated towed streamer geometry. Time of record-
ing is cut back to 2 s.

All of the computations reported here were performed at the Texas Advanced
Computing Center (TACC), University of Texas-Austin, using TACC’s Stampede
Linux cluster. The source directory for this paper contains the project/SConstruct
script file describing every command, and illustrates the configuration of repro-
ducible computational experiments in a batch environment (SLURM). The (small)
jobs described below ran on 32 threads (2 nodes) and complete in well under
a minute. See the companion paper SymesIWPAR:15 for a description of the
software tools used in these examples. Note that the number of tasks (keyword
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Figure 1: Background model: square of smoothing of Marmousi velocity.

Figure 2: Reflectivity model: difference of squares of Marmousi velocity and a
smoothing.
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partask = number of shots to execute in parallel) was also 32, for reasons ex-
plained in (Symes, 2015). Since this example involves 60 shots, IWAVE idles some
threads near the end of the run.

Shot Record Extension

All output (and, of course, input) data objects must exist for IWAVE to function
properly. To build a prototype shot record extended model that can be used as an
output object for shot record extended migration, use sfspray to duplicate the
perturbational model (or any other RSF data object with the reference grid) 60
times. [For implementations of this and all other computations described here,
see the SConstruct file in the project subdirectory.]

In addition to duplicating the reference grid, your command must decorate the rsf
header file as described above: use sfput to add id1=0, id2=1, id3=3, dim=2,

and gdim=3 to the header file. Note that id3=3 sets the first axis numbered above
the time axis (hence extended) to dim + 1, which is the index of the shot record
axis in the simulation grid (see (Symes, 2014) for explanation). These choices will
cause IWAVE to overwrite a shot record extended image on the output (Figure 3).
As expected, the common image gathers reflect the correct velocity in being as flat
as possible subject to the limited aperture of shot record migration and presence
of edge effects (Figure 3, right panel).

Subsurface Offset Extension

In this case, use sfpad to add a subsurface offset axis to the perturbational model
to create a prototype for migration output. I chose to use 20 grid cells to the
left and right of offset 0, with offset increment the same as the other spatial axis
increments (24 m), so a maximum subsurface offset of 480 m. Header correc-
tions for this case are id1=1, id2=0, id3=100, d3=24, o3=-480, dim=2, and
gdim=3. Note all of the spatial fields are transposed in this case: while the model
field fetched from the TRIP web site has z as the fast axis, horizontal subsurface
offset extension is required to use x as fast axis. There are two reasons for this
choice: (1) the organization of loops in the numerical kernals can be maximally
vectorized with this choice, and (2) domain decomposition is not permitted on



262 Dafni and Symes

Figure 3: Shot record extended migration cube: front face is image
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the fast axis, since the effective stencil width is very large in this dimension, and
the restriction to x allows a simple implementation of this restriction. Since the
physical significance of the axes is part of the data structure, IWAVE can take axis
ordering into account so that it is transparent to the simulation. The data setup
must include transposing of the velocity squared field and all perturbations, of
course, and to display the output of the migration in the normal way it must be
transposed back to fast-z order. The choice id3=100 toggles internal extension:
at the level of IWAVE itself, this choice causes appropriate memory allocation to
occur. The interpretation of the extended axis as horizontal subsurface offset is an
attribute of the numerical kernels that go into acd (not of the core IWAVE code).

The resulting migration is reasonably well-focused at offset zero (Figure 4, right
panel), and the zero-offset section is identical to non-extended migration (Figure
4, front panel).

Figure 4: Subsurface offset extended migration cube: front face is image
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Basic Imaging: Viking Graben

William W. Symes, The Rice Inversion Project

ABSTRACT
Presents very simple processing sequence resulting in post-stack and prestack
migrated images of Viking Graben data.

INTRODUCTION

The purpose of this paper is to explain how to use simple scripts and public-
domain software to create images of the subsurface from reasonably tame 2D seis-
mic reflection data. By “reasonably tame”, I mean having few amplitude anoma-
lies and mostly primary reflection energy. These conditions pretty much imply
high quality shallow water marine data from regions with low structural relief
and well-defined dip trends, shot along dip lines, with successful multiple re-
moval applied.

The Viking Graben (or Mobil AVO) data placed in the public domain by Mobil Re-
search in 1994 appears to be reasonably tame, in the sense just described.“Viking
Graben” refers to a 25 km long marine line from the North Sea Norwegian sector.
The data released by Mobil included both raw field tape (tape1093) and parabolic
Radon demultiple (paracdp) version of the data, along with two logs of vp, vs, and
ρ, and a far-field wavelet recording. Data are in SEGY format (IBM 4-byte floats,
plus text and binary reel headers).

Robert Keys and Douglas Foster were the organizers of the SEG post-convention
workshop at which the initial results of various groups’ efforts to invert this data
were presented. Besides the workshop report volume (Keys and Foster, 1998),
Keys and Foster have recently published a web page on this data:

s3.amazonaws.com/open.source.geoscience/open_data/
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Mobil_Avo_Viking_Graben_Line_12/mobil_avo.html

This paper discusses so-called standard processing of the Viking Graben data,
based on hyperbolic normal moveout (NMO). The connection between inversion
and standard processing is covered in detail in my MSRI lecture notes from 2013,
available on the TRIP web page, downloadable materials, short course and sum-
mer school materials, especially part 2.4. I also show how to transform the by-
products of standard processing into suitable input for prestack imaging via RTM.

My workflow is recorded in the project/SConstruct file. The reader should refer
to this file for the detailed form of the commands used. The following sections
outline the rationale for the choice of commands and their sequence. To reproduce
my results, the reader will need to install SU, Madagascar, and trip2.1 packages.
SU should be version 44 or later. The prestack part of the workflow requires
parallel installation of trip2.1, and at least 10 threads of execution, preferably
more, to finish in reasonable time.

PRELIMINARY STEPS

Extract the data using Fetch, from the TRIP data repository. The result is paracdp.segy,
a SEGY-format file. The SU command segyread converts this file to SU format (no
reel headers, little-endian 4-byte floats, same number of traces). Besides parabolic
radon demultiple, this data was delivered with a rather strict mute applied, with
no signal before 1 s. No further mute is applied in the processing sequence de-
scribed here.

Evidently there are some bad traces in some of the low-number CDPs, with float-
ing point garbage in some of the samples. On average, random binary digits form
numbers many orders of magnitude larger than the O(108) samples encountered
in “good” CDPs. So an adequate strategy is to use sugain to reject samples in the
99%ile, and this command is included in the conversion to SU format.
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EXTRACT ANALYSIS CDPS

I chose 4 CDPs (Figure 1a, Figure 1b, Figure 2a, Figure 2b) roughly evenly spaced,
including the end zones, separated by about 8 km. This is a preliminary guess
as to the necessary lateral resolution for velocity analysis. It turned out to be
reasonable.

Also, I truncated the traces at 3 s, as the logged zone indicated that only reflec-
tion arriving before that time would likely image the exploration targets. This
is of course an ex post facto decision, but in fact it becomes clear quickly that
most of the energy after perhaps 4 s must be other than primary reflection, either
multiples or sideswipe.

VELOCITY ANALYSIS

Create velan panels, one for each CDP: Figure 3a, Figure 3b, Figure 4a, and Figure
4b. Note that in each case there is a trend of strong bullets or streaks at lower
velocities than some nearby higher velocity peaks. The higher velocity peaks are
weaker, but pick them anyway. The stronger lower velocity features represent
multiple reflections - the suppression of multiple energy notwithstanding. (If
you carry out this exercise vvwith the field tapes, you will see nothing but water
and near-water velocity features).

To QC your picks, plot the NMO correction of the corresponding CDPs as Figure
5a, Figure 5b, Figure 6a, and Figure 6b.

These CDPs are pretty easy to pick from the velocity spectra; however it is in-
structive to see what might go wrong. For CDP 2000, suppose you were to pick
velocities of 1800 m/s at t=1.2, 1.6. and 1.8 s, and 2200 m/s at t=2.1 s - each of
these coordinates with a feature on the velocity panel - instead of 1950, 2050, and
2250 m/s at 1.25, 1.6, and 2.25 s, as was done to create Figure 6b. Then you would
generate Figure 7 instead.
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STACK AND POST-STACK MIGRATION

As explained in the short course lectures, the velocity-denominated quantity de-
termined by flattening NMO-corrected CDP gathers is the so-called RMS velocity,
or vrms, the root mean square of a local wave velocity expressed as a function of
vertical travel time t0:

v2
rms(t0) =

2
t0

∫ t0

0
dτṽ2(τ). (1)

Vertical traveltime is related to depth by

z =
∫ t0

0
dτṽ(τ) (2)

in which ṽ is the local (or interval wave velocity as a function of t0. Velocity as a
function of depth is then given by composing ṽ with the inverse of the tranforma-
tion (2).

This construction can be carried out for every midpoint. If the subsurface struc-
ture is sufficiently laterally homogeneous, then to good approximation the actual
wave velocity is well-approximated by the interval velocity in the “well” below
each midpoint. The interval velocity as function of t0 or z can then be used to
perform migration of zero-offset data, to good approximation. Also, to good ap-
proximation zero-offset data is similar to the stack of NMO-corrected CDPs.

This process requires a velocity at every CDP. So far we have only determined
four such RMS velocity profiles. However the command sunmo will interpolate
between midpoints, and extrapolate towards the ends of the line as necessary,
and even output the interpolated vrms as a function of t0 and midpoint (keyword
voutfile). This output is critical, as it can be converted later into other forms
of velocity suitable for time and depth migration. Of course, the command also
produces a stacked section (Figure 8).

Because the deeper events are much less energetically imaged than the shallow,
automatic gain control (amplitude equalization) produces a much more informa-
tive Figure 9. This AGC’d stack will be input to all poststack processes.

You will note the precence of many diffraction tails especially below 2 s. These
may be partially collapsed either by poststack time migration using Gazdag’s al-
gorithm (Figure 10) or, more effectively, by poststack depth migration using one
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of several methods. Gazdag poststack time migration assumes layered velocity
structure, hence uses only the first column of the interval velocity as function of
tim. Nonetheless Figure 10 shows considerably less interference from diffraction
tails; the graben structures that give this prospect its name are now clearly in ev-
idence. Poststack depth migration (that is, what one would naturally mean - an
approximation to the adjoint linearized zero-offset modeling operator) does even
better - Figure 11 displays the output of Phase-Shift-Plus-Interpolation poststack
depth migration, using the velocity v(z,x) depicted in Figure 14 (obtained via use
of the SU utility velconv, see project/SConstruct for details). The image gives
reasonable depths for the various horizons. Also, this velocity model is the begin-
ning of the next, prestack phase of Viking Graben processing.

With an eye to the prestack processing to be discussed in another paper, I include
analogous results for downfiltered data. Jie Hou suggested a 5-10-30-40 Hz band-
pass filter. The resulting AGC’d stack (Figure 12) shows the expected decrease in
resolution over the original data, which has significant energy over 50 Hz.

[A question: the process, as you will see from the SConstruct, consists in filter-
ing the data then applying NMO. Since the stack is a collection of time traces,
you might think that you could get the same result by applying NMO first, then
filtering. Is this true?]

The PSPI post-stack depth migration (Figure 13) reveals the same structure as
does the stack, with the same decreased resolution over Figure 11, but with diffrac-
tion tails suppressed and stretched to depth.

CONCLUSION

Use of simplified physics (NMO, stack, poststack migration) based on layered
modeling produces plausible subsurface structure images from the Viking Graben
data. Public domain software - in this exercise, mostly SU - provides enough func-
tionality to carry out this imaging task, provided that some basic pre-processing is
performed (multiple suppression, mute). Mobil provided a suitably preprocessed
version of the data in 1994.

The sequence of processing steps takes us far enough from the basic physics of
wave propagation to raise questions about whether the images produced here are
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actually images of anything real. In a subsequent paper, we turn to prestack pro-
cessing based on the acoustic wave equation - only a step further, but meaningful
nonetheless. To telegraph part of the punch: prestack processing supports the
validity of the images obtained in this paper by poststack processes. It seems that
in the case of this “tame” data, classic seismic data processing does not steer you
wrong.
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Figure 1: Left: CDP 200; Right: CDP 700
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Figure 2: Left: CDP 1300; Right: CDP 2000
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Figure 3: Left: Velocity spectrum for CDP 200; Right: Velocity spectrum for CDP
700



Extended IWAVE 273

Figure 4: Left: Velocity spectrum for CDP 1300; Right: Velocity spectrum for CDP
2000
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Figure 5: Left: NMO corrected CDP 200; Right: NMO corrected CDP 700
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Figure 6: Left: NMO corrected CDP 1300; Right: NMO corrected CDP 2000
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Figure 7: NMO corrected CDP 2000 with tnmo=0.0,1.2,1.5,1.8,2.1,2.6,2.75
vnmo=1500,1800,1800,1800,2200,2400,2700
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Figure 8: Stack with linearly interpolated, constant extrapolated vrms

Figure 9: Automatic Gain Control (AGC) applied to data of Figure 8. Note
pronouced diffraction hyperbolae in the deeper part of the secion.
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Figure 10: Gazdag’s phase-shift time migration applied to the stack (Figure 8), fol-
lowed by AGC. Diffraction artifacts are largely collapsed to the diffracting points
that caused them, and the graben structures that give this prospect its name be-
gin to be clearly visible. This migration assumes horzontal layering, which is not
correct on the scale of 25 km.



Extended IWAVE 279

Figure 11: Gazdag’s phase-shift-plus-interpolation post-stack depth migration
applied to the stack (Figure 8), followed by AGC. Accounts for lateral velocity
variation - uses interval velocity as function of midpoint and depth - more ac-
curately than does the time migration of Figure 10. The geology is even more
clearly delineated, and depths should approximate those to be obtained by more
sophisticated imaging.
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Figure 12: NMO stack of (5,10,30,40) Hz bandpass filtered data, after AGC. Com-
pare to Figure 8.

Figure 13: PSPI post stack migrated image from stack in Figure 12.
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Figure 14: Interval velocity as function of depth, derived from NMO velocity anal-
ysis. Probably not to be taken seriously below 3 km - for initial MVA estimate
should extend by contant from 3 km and smooth.



282 Dafni and Symes


