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Acoustic Wave Equation and FDTD Stencil Kernel
Acoustic wave equation in fluid media:

∂2u(x , y , z , t)

∂t2
= c2∇2u(x , y , z , t)

Where u is the pressure field and c is the velocity (constant).
Approximate all the derivatives using the CFD scheme (2nd order
in time and 2r-th (r=2,8) order in all three spatial dimensions):

u(x , y , z , t + ∆t) = c0u(x , y , z , t)− u(x , y , z , t −∆t)

+
r∑

i=1

ci [u(x + i∆x , y , z , t) + u(x − i∆x , y , z , t)]

+
r∑

i=1

ci [u(x , y + i∆y , z , t) + u(x , y − i∆y , z , t)]

+
r∑

i=1

ci [u(x , y , z + i∆z , t) + u(x , y , z − i∆z , t)]
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NAIVE – stencil kernel with no optimization.

U_out[x][y][z] stores u(x , y , z , t −∆t), u(x , y , z , t + ∆t);
U_in[x][y][z] stores u(x , y , z , t).

for (t = 1; t <= NT; t++)

for (k = 1; k <= NZ; k++)

for (j = 1; j <= NY; j++)

for (i = 1; i <= NX; i++){

U_out[k][j][i]=c0*U_in[k][j][i]-U_out[k][j][i];

for(ixyz = 1; ixyz <= r; ixyz ++)

U_out[k][j][i]+=cx[ixyz ]*( U_in[k][j][ixyz+i]+U_in

[k][j][-ixyz+i]);

for(ixyz = 1; ixyz <= r; ixyz ++)

U_out[k][j][i]+=cy[ixyz ]*( U_in[k][ixyz+j][i]+U_in

[k][-ixyz+j][i]);

for(ixyz = 1; ixyz <= r; ixyz ++)

U_out[k][j][i]+=cz[ixyz ]*( U_in[ixyz+k][j][i]+U_in

[-ixyz+k][j][i]);}}}
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Optimization Overview

Based on wave equation stencil kernels, I apply:

I CPU SIMD vectorization techniques.

I CPU cache optimization techniques (work together with
OpenMP parallelization).
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SIMD Technology
SIMD = Single Instruction, Multiple Data.

Figure : Packed SSE instruction ADDPS performing vector addition.

Packed SIMD (desired!) vs. Scalar SIMD

Figure : Scalar SSE instruction ADDSS performing scalar addition.

SIMD instruction sets available on Sandy Bridge: SSE, AVX
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Implement SIMD with descending difficulty
1. Assembly languages
2. SIMD intrinsics: function interfaces that can provide direct

control over the generation of SIMD instructions.
I Most of the literatures on stencil (Jacobi-type) vectorization

use SIMD intrinsics. [Datta, 2009, Dursun et al., 2009,
Henretty et al., 2011, Strzodka et al., 2011,
Dursun et al., 2012, Zumbusch, 2012, Zumbusch, 2013].

I Detailed work is shown in flexSIMD.h (Dr. Stork, personal
communication)

I U_out[k][j][i]=c0*U_in[k][j][i]-U_out[k][j][i];

__m256 out_simd=_mm256_load_ps (&U_out[k][j][i]);

__m256 in_simd=_mm256_load_ps (&U_in[k][j][i]);

__m256 c_simd=_mm256_broadcast_ss (&c0);

in_simd=_mm256_mul_ps(in_simd , c_simd);

out_simd=_mm256_sub_ps(in_simd , out_simd);

_mm256_store_ps (&U_out[k][j][i], out_simd);

3. Auto-vectorization by compilers: gcc, icc.
I Borges demonstrated how to auto-vectorize a fixed order

stencil (r=4). [Borges, 2011]
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Auto-vectorization By Compilers

Common violations prevent compiler auto-vectorization:
[Intel, 2012]

I Not innermost loop

I Low loop count (≤ 4)

I Not unit-stride accessing

I Existence of potential data dependencies, e.g. a[i]=a[i-1]+1

NAIVE kernel has coefficient loops as innermost loops, it can not
be auto-vectorized because:

I low loop count (if r≤4)

I not unit-stride accessing when shifting along j, k dimensions.
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Auto-vectorization By Compilers

Steps:

1. Interchange i-loop and ixyz-loop to ensure long unit-stride

2. Add compiler hint (#pragma ivdep) to remove potential
vector dependencies for icc.

3. Double-check with -S.

//t, k, j, i-loops wrapped outside.

U_out[k][j][i]=-U_out[k][j][i]+c0*U_in[k][j][i];

for(ixyz =1; ixyz <=r; ixyz ++){

#pragma ivdep

for(i=1; i <= nx; i++)

U_out[k][j][i]+=cx[ixyz ]*( U_in[k][j][ixyz+i]+U_in[k

][j][-ixyz+i])

+cy[ixyz ]*( U_in[k][ixyz+j][i]+U_in[k][-ixyz+j][i])

+cz[ixyz ]*( U_in[ixyz+k][j][i]+U_in[-ixyz+k][j][i])

;}}

Listing 1: AUTOVEC
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Auto-vectorization Results

I Problem: 2563 single precision floating point arrays, 5001
time steps.

I Test Device: a Xeon E5-2660 Sandy Bridge processor: 8 x
2.2GHz cores.

I Desired SIMD instruction sets: packed AVX.

I Parallelization: OpenMP (outside k loop), 1 thread/core.
I Kernels:

I NAIVE: with no optimizations.
I EXTEND: based on NAIVE, with the coefficient loop unrolled

manually, coded in the old IWAVE/acd.
I AVX[n]: based on NAIVE, coded with SIMD intrinsic, with i

loops manually unrolled n times.
I AUTOVEC: based on NAIVE, with re-arranged code structure

and compiler pragmas so that the compiler can auto-vectorize
this kernel.
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Auto-vectorizaiton Results
Number of SIMD FLOP Instructions Executed:
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Auto-vectorization Results

Table : Run time results [seconds]. icc=icc 14.0.0, gcc=gcc 4.8.2.

SC4 SC16
Kernel icc gcc icc gcc

NAIVE 138 196 543 940
EXTEND 36 152 202 838

AVX 36 47 198 244
AUTOVEC 36 47 200 241

I Current compilers make auto-vectorized codes have
comparable performance as intrinsic codes, so writing
intrinsics code manually is unnecessary.
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The second part solves the memory problem.

I Memory Bound
Due to the limited memory bandwidth between cache and

DRAM, if the application is memory intensive, then the
performance of the application is likely to be bounded by the
size of the memory bandwidth.

I L3 cache (∼20MB) < Array size (e.g. 134MB in our test), so
the entire array will be loaded into cache at least once per
time step.

I Cache optimization aims to mitigate the memory bottleneck
by reusing the cached data.
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Roofline model shows the impact of memory bound on the
performance of SC.

Operation Intensity (OI): FLOPs executed per byte transferred.
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Multiple loads per time step for SC16
I Before reusing U_in at b, the thread needs to do [(NY-r)NX-1]

stencil operations. Denote related memory by mem(SC ).

k

j
ib

a

I Each thread will process NZ/NT contiguous k-planes.

Figure : OpenMP parallelization without using schedule(static, 1).
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Multiple loads per time step for SC16

I For 2563 SC, mem(SC ) is ∼6 k-planes (SC4), ∼17 k-planes
(SC16).

I Xeon E5-2660 has 20MB L3 cache, which can hold at most 8
k-planes/core (SC16), 9 k-planes/core (SC4).

I In SC16, every time k1 is treated as a finite difference term
along k axis, it has to be loaded from DRAM.

#loads #stores

17×U_in + 1×U_out 1×U_out

Table : Loads and stores per time step for SC16

I Operation intensity ↓ 0.97 FLOPs/byte, Peak GFLOPs/sec ↓
31.59 GFLOPs/sec. (200.17 GFLOPs/sec if load/store only
once.)
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Cache optimization methods:

Solutions reduce multiple loads blocking in time

Thread-blocking X
Separate-and-exchange X

Parallelized Time-skewing X X

I Blocking in time makes it possible to reuse the same cached
data for several time steps.
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#1: Thread-blocking Method

Figure : Using schedule(static, 1).

I Every thread will only get one k-plane each round.

I U_in data at point b may be re-used by other threads
simultaneously (at least min(NT, r) times).

#loads #stores lb(cache)

1×U_in + 1×U_out 1×U_out (4NT + 2r) k-planes
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Sol2: Separate-and-exchange Method [Stork]

k

j
i

k

j
i

#loads #stores lb(cache)

2×U_in + 2×U_out 2×U_out ((4 + 2r)× NX + 4r)× NT

I Hurt the performance for lower-order stencils.
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Sol3: Parallelized Time-skewing Method
=Thread-blocking + time-skewing

I Temporal blocking factor (NTS) is determined by minimizing
#loads/stores.

#loads #stores

1/NTS×U_in + 1/NTS×U_out 1/NTS×U_in + 1/NTS×U_out
lb(cache)

[2(NTS-1)×max(NT, r) + 4NT+2r] k-planes
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Cache Optimization Results

Table : L3 cache misses.

SC4 SC16
Kernel icc gcc icc gcc

AUTOVEC 2.27e9 2.38e9 1.23e10 1.12e10
+T-b 2.05e9 2.13e9 2.73e9 2.91e9
+S&E 4.95e9 5.32e9 8.09e9 5.95e9

+Parallelized TS 7.17e8 7.36e8 1.07e9 1.15e9

Table : Run time results [seconds].

SC4 SC16
Kernel icc gcc icc gcc

AUTOVEC 36 47 200 241
+T-b 35 41 84 133
+S&E 65 72 97 156

+Parallelized TS 31 39 82 131 22
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Evaluation of Two Optimization Approaches
base = NAIVE, SIMD = AUTOVEC
blocking = Thread-blocking
Time-skewing = Parallelized time-skewing
[I] = icc, [G] = gcc.

21% machine peak

28% machine peak
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Conclusion

Conclusion

I By modifying the code structure, both icc and gcc compilers
can provide fully-vectorized stencil code of any order with
performance comparable to that of SIMD intrinsic code.

I Both SC4 and SC16 are memory bandwidth bound by
analyzing the corresponding roofline model.

I Among the three cache optimizations provided to mitigate the
memory issue, separate-and-interchange method works
efficiently only for high order stencils (e.g., SC16). Parallelized
time-skewing (upgraded from thread-blocking) gives a 1.2x
(2x) further speedup for fully-vectorized SC4 (SC16).
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Ongoing PhD work

1. I Identify the performance bottleneck of variable-order
staggered-grid anisotropic elastic (TI, crack-induced
orthorhombic, or more general types) wave simulation codes.

I Extend cache optimizations to these modeling codes, and
implement them in the context of RTM. The codes will be
written directly in IWAVE, with hybrid MPI+OpenMP.

2. Add multi-grid option, extend the idea of conservative energy
interpolation to high-order anisotropic elastic codes.

The energy-conservative interpolation
[Petersson and Sjögreen, 2010] for ghost points can yield a
more accurate, more stable, faster solution than the
non-conservative intuitive interpolation when source is near
the grid interface.
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Thanks!
Q&A
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Backup Slide 1
1. Why vectorization doesn’t give you 8x speedup?

Sandy Bridge can only do 128-bit load and 128-bit store per

cycle. With perfect unrolling, SSE and AVX can attain the same

performance. The performance is load/store bound.

2. Why GCC is slower than ICC?
[Stated in the appendix E:] 1. The AVX instruction generated by

ICC can directly operates on memory address, GCC needs another

load instruction; 2. Once the coefficient variable is loaded into

register, ICC can reuse it multiple times among different *i*s, while

GCC loads it again and again for different *i*s.

3. The difference between the cache optimizations used in this
thesis and ones used in that CUDA paper?

One impressive feature of that paper is to maximize the register

locality, while my work doesn’t have this feature. The GPU process

the data plane by plane along the contiguous dimension. Loading a

next plane means locally loading a front datum into register and

throwing out the tail datum out of the register, and some data

shuffling among registers. 27
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Backup Slide 2

4. Latest Intel/GCC compiler version?
icc 14.0 and gcc 4.9.
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Backup Slide 3

Other tricks applied:
I Align memory on 32-byte boundary [Appendix E]

I reduce generated instructions per statement
I increase unrolling factors
I employ cache by-passing stores when using intrinsics.

But my experiments showed that there was no apparent run
time reduction after alignment. 1. Pad the array to
obtain alignment

2. Notify the compiler about the alignment (e.g.,
__assume_aligned())

I Compiler options:
-funroll-loops: increase unrolling factors.
-march=native (gcc only): using desired length of SIMD

registers.
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B4: Sol3: Parallelized Time-skewing Method

For SC4, NTSopt=3.
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When NTS=1, the code degrades to the thread-blocking code. 30



B5: Sol3: Parallelized Time-skewing Method

For SC16, NTSopt=2.
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