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Outline

M.A. work: DG vs FD
Ph.D. work: joint source and model inversion
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Motivation of Study

Why DG?
viable numerical method for forward modeling
(discontinuous media)
outperforms FD methods when using mesh aligning
techniques for complex discontinuous media (Wang 2010)

Why smooth media?
smooth trends in bulk modulus and density are observed in
real data
relevant for seismic imaging, i.e., the inverse problem

Comparison between FD and DG in smooth media has not
been done before ... as far as we are aware.
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Disclaimer

Limited comparison

DG code is serial and in Matlab
FD code is serial and in IWAVE (implemented in C)

What kind of comparison?
counting FLOPs for a prescribed accuracy
benefits to this type of comparison (hardware independent,
and limits to FLOP rates)

5



Mathematical Setup

Acoustic Equations (pressure-velocity form):

ρ(x)
∂v
∂ t

(x, t) + ∇p(x, t) = 0 (1a)

β (x)
∂p
∂ t

(x, t) + ∇ ·v(x, t) = f (x, t) (1b)

for x = [x ,y ]T ∈ Ω and t ∈ [0,T ],

p = pressure
v = [vx ,vy ]T = velocity fields
ρ = density
β = compressibility = 1/κ

f(x, t) = source term
Considering homogeneous boundary and initial conditions.
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FD Methods: Staggered Grid FD

2-2k staggered FD method applied to 2D acoustic wave
equation in first order form:
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FD Methods: Staggered Grid FD
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Figure 1: Staggered grid points for 2D acoustics.
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DG Methods: Semi-Discrete Scheme

Define:

Th = triangulation/mesh

Wh = approximation space (piecewise polynomial)

{`(τ)
i }

N∗
i=1 = local basis functions on triangle τ ∈Th,

where N∗ := 1
2 (N + 1)(N + 2) for polynomial order N

(Lagrange polynomials)

From PDE to strong formulation: find p,vx ,vy ∈Wh such that∫
τ

ρ
∂vx

∂ t
w dx +

∫
τ

∂p
∂x

w dx +
∫

∂τ

n̂x (p∗−p)w dσ = 0

...

for all w ∈Wh and all τ ∈Th.

Numerical flux p∗: provides numerical stability and transmits
information between elements (upwind flux)
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DG Methods: Semi-Discrete Scheme

After introducing basis functions, solve for coefficients v(τ)
x ,v(τ)

y ,p(τ)

=⇒ Semi-discrete scheme:

M[ρ]
d
dt

v(τ)
x (t) + Sxp(τ)(t) + ∑

e∈∂τ

n̂xM(e)
(

(p(e))∗−p(e)
)

(t) = 0,

...

for each τ ∈Th.

DG operators:

weighted mass matrix M[ω]ij :=
∫

τ

ω`
(τ)
i `

(τ)
j dx, in RN∗×N∗

edge mass matrix M(e)
ij :=

∫
e
`
(τ)
i `

(e)
j dσ , in RN∗×(N+1)

α-stiffness matrix Sα
ij :=

∫
τ

`
(τ)
i

∂`
(τ)
j

∂α
dx, in RN∗×N∗

for ω ∈ {ρ,β} and α ∈ {x ,y}.
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Numerical Experiments

2-2 and 2-4 FD staggered grid schemes;
implemented in C, IWAVE (Symes et al., 2009)

RK-DG with N = 2,4; implemented in Matlab
(Hesthaven & Warburton, 2007)

considered upwind flux
considered quadrature-free and quadrature-based
implementations
considered mesh refinement for lower velocity zones
triangular meshes

Numerical results were compared to a highly discretized
2-4 FD solution (h = 0.5m,dt = 0.0442ms)

Comparing FLOP count for achieving prescribed accuracy
(RMS < 5%,max < 6%)
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Numerical Experiments: Defining Error

Relative error:

Eh(xr ) =
‖ph(xr , ·)−p(xr , ·)‖

‖p(xr , ·)‖
,

with p is a high fidelity solution (2-4 FD with hx = hy = 0.5m),
where

‖p(xr , ·)‖=

(
∑
i
|p(xr , ti)|2

) 1
2

Accuracy conditions:

RMS Eh(xr ) < 5%

max Eh(xr ) < 6%
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Numerical Experiments

For all simulations:
source term f (x, t) = χ(x)Ψ(t), where

Ψ(t) = Ψ(t ; tc , fpeak ) = Ricker wavelet
χ(x) = χ(x;xc ,dx ) = cosine bump function

with fpeak = 10 Hz and dx = [50 m,50 m]
density is assumed to be constant, ρ = 2.3 g/cm3

Figure 2: (⇐) sample Ψ; (⇒) sample χ.
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Numerical Experiments: Negative-Lens Velocity Model
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Figure 3: (⇐) Velocity model; (⇒) traces of p
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Results: Negative-Lens Velocity Model

discretization parameters (dt ,h) tuned to satisfy accuracy conditions
(RMS < 5%,max < 6%)

GPW = cmin/(fpeak h) [FD] or N×cmin/(fpeak h) [DG]

dt [ms] h[m] GPW GFLOPs
FD 2-2 0.838 6 33.33 0.6296
FD 2-4 1.565 15 13.33 0.0820
no mesh ref.
DG N=2, Q-free 1.003 40 10 19.72
DG N=2, with Q 0.963 60 6.66 7.72
DG N=4, Q-free 0.655 50 16 99.92
DG N=4, with Q 1.199 80 10 19.99
mesh ref.
DG N=2, Q-free 0.983 80:40 10 7.44
DG N=2, with Q 0.852 100:50 8 3.61
DG N=4, Q-free 0.655 100:50 16 32.19
DG N=4, with Q 1.205 150:75 10.66 8.29

Table 1: Results for negative-lens test case.
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Numerical Experiments: Mixed Model
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Figure 4: (⇐) velocity model; (⇒) traces of p
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Results: Mixed Model

Figure 5: Relative errors for mixed velocity model.

dt[ms] h[m] GPW GFLOPs
FD 2-2 0.742 6 33.33 1.4308
FD 2-4 1.130 8 25 0.7793

DG 1.038 112.5:56.25 14.22 25.68

Table 2: Results for mixed test case. 17



Results

hom. linear lens mixed
GFLOP (DG/FD) 119 76 44 33

Table 3: Approximate GFLOP ratios between best of DG over FD, for
each test case.

smaller FLOP counts for quadrature vs quadrature-free DG

overall FD methods yield smaller FLOP counts than DG, at the
least by a factor of 33 for the mixed model test case
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Conclusions

Overview:
Goal of thesis is to compare DG and FD in the context of
2D acoustics, with smooth coefficients.

Incorporated methodology for dealing with variable media
(quadrature vs quadrature-free DG and mesh refinement).

Limited comparison due to implementations of numerical
methods (DG in Matlab and FD in C).

Comparison is done by looking at FLOP counts.
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Conclusions

On FLOP count ...
20%∼ 30% peak machine performance1 can be achieved
for FD methods, via vectorization and cache optimization
(Zhou 2014)

=⇒ GFLOP count is a crude metric for computation time

TFD =
GFLOPs

0.2∗GLFOPs/sec

=⇒ TDG/TFD =
33∗GFLOPs

ε ∗GFLOPs/sec

/ GFLOPs
0.2∗GFLOPs/sec

= 33
0.2
ε
≥ 6.6

1Sandy Bridge Xeon E5-2660 processor
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Further Remarks

On accuracy condition ....

What if you want higher accuracy?
recall, FD schemes were O(∆t2) while RK-DG was O(∆t4)
=⇒ FD will not scale as well as RK-DG
increase the time discretization (Lax-Wendroff schemes)
=⇒ expect increase in FLOP count for new FD methods
=⇒ How will FD compare to RK-DG?
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Future Work (Ph.D.)

Idea: Joint source-model inversion, for anisotropic sources, via
variable projection.

source estimation and representation

an accurate estimation of source wavelet is crucial for the
reconstruction of impedance profiles (Delprat & Lailly 2005)
anisotropy is real!
p− τ data set from Gulf of Mexico (Minkoff & Symes 1997)

variable projection (VP) method (Golub & Pereyra 1973)

reduces dimensionality of problem while perserving global
minimizer
better conditioned problem in most instances
(Ruhe & Wedin 1980)
outperforms alternating direction and simultaneous descent
(Rickett 2013)
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Future Work (Ph.D.)

Source representation: multipole-point-source approximation
(Santosa & Symes 2000)

fj (ηηη , t) =
N

∑
n=0

(−1)nF (n)
j;k1···kn

(t)
∂

∂ηk1

· · · ∂

∂ηkn

δ (ηηη−ηηη
∗)

=⇒ ui (x, t) =
∫

dV (ηηη) fj (ηηη , t)∗Gij (x, t ;ηηη)

=
N

∑
n=0

F (n)
j;k1···kn

(t)∗Gij ,k1···kn (x, t ;ηηη∗)

where
Gij ,k1···kn (x, t ;ηηη∗) :=

∂

∂ηk1

· · · ∂

∂ηkn

Gij (x, t ;ηηη)
∣∣∣
ηηη=ηηη∗

and F(n) is the nth degree force moment tensor, related to the
seismic moment tensor from earthquake source representation.
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Future Work (Ph.D.)

source paramters f (i.e., F(n)), model parameters m

OLS Formulation: minimize JOLS[f,m],

JOLS [f,m] :=
1
2 ∑

r
∑
k

∣∣∣uir (xr ,ωk )−d(xr ,ωk )
∣∣∣2

=
1
2 ∑

r
∑
k

∣∣∣ N

∑
n=0

F (n)
j;k1···kn

(ωk )Gir j ,k1···kn (xr ,ωk ;ηηη∗)−d(xr ,ωk )
∣∣∣2

=
1
2

∥∥∥G[m]f−d
∥∥∥2

VP Formulation: minimize JVP [m],

JVP [m] := JOLS [f(m),m],

where
f(m) := argmin

f
JOLS [f,m].
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Future Work (Ph.D.)

Questions:

How difficult is the joint inversion problem, via VP method,
in comparison to the non-reduced problem and the ideal
case where source is known?

The key is in the Hessian? ...

Can source parameters be determined? Uniquely?
Stably? What data do I need?
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