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Abstract

Wave Equation Based Stencil Optimizations on a Multi-core CPU

by

Muhong Zhou

Wave propagation stencil kernels are engines of seismic imaging algo-

rithms. These kernels are both compute- and memory-intensive. This

work targets improving the performance of wave equation based stencil

code parallelized by OpenMP on a multi-core CPU. To achieve this goal,

we explored two techniques: improving vectorization by using hardware

SIMD technology, and reducing memory traffic to mitigate the bottle-

neck caused by limited memory bandwidth. We show that with loop

interchange, memory alignment, and compiler hints, both icc and gcc

compilers can provide fully-vectorized stencil code of any order with per-

formance comparable to that of SIMD intrinsic code. To reduce cache

misses, we present three methods in the context of OpenMP paralleliza-

tion: rearranging loop structure, blocking thread accesses, and temporal

loop blocking. Our results demonstrate that fully-vectorized high-order

stencil code will be about 2X faster if implemented with either of the first

two methods, and fully-vectorized low-order stencil code will be about

1.2X faster if implemented with the combination of the last two methods.

Our final best-performing code achieves 20%∼30% of peak GFLOPs/sec,

depending on stencil order and compiler.
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Chapter 1

Introduction

Finite Difference Time Domain (FDTD) wave propagation kernels are engines of

seismic imaging algorithms, which help to characterize the subsurface structure and

locate the underlying interested targets. This work aims to optimize wave propagation

kernel on an Intel Sandy Bridge processor (Xeon E5-2660) by implementing single

instruction, multiple data (SIMD) vectorization and cache optimization methods.

The FDTD method discretizes the wave fields on a structured grid, and approxi-

mates both time and spatial derivatives by using the Central Finite Difference (CFD)

schemes [Moczo et al., 2007]. The resulting kernels update wave field values on each

grid point over one time step by using a set of formulas called the FDTD stencil. The

stencil updates a field value by using the field value itself and the nearby field values

in a regular pattern repeated at every grid point.

The repetitive feature of FDTD stencil kernel makes it very easy to parallelize.

Modern CPUs provide several levels of parallelizations. Specially, in-core data-level

parallelization can be provided by SIMD technology built into most contemporary

x86-based CPUs, for instance, those manufactured by Intel and AMD. SIMD support

includes vector registers and packed instruction sets that operate on them, executing

several same operations simultaneously and providing data level parallelization.
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The latest Intel (icc) and Free Software Foundation (gcc) compilers can automat-

ically replace original C codes with SIMD packed instructions, a process knowns as

vectorization. However, if the loop structure has certain features, such as non-unit

stride accessing, or statement dependency [Intel, 2012], then SIMD technology may

not be fully exploited, that is, the compiler will not be able to maximize the percent-

age of SIMD packed instructions in total instructions, nor maximize the number of

SIMD registers in use concurrently.

One way to avoid such inefficiency is to code with SIMD intrinsics (C function

interfaces to SIMD assembly instructions). Expression of algorithms with SIMD in-

trinsic functions typically requires almost complete rewrite of conventional C sources.

The programmer will need to deal with data movements between SIMD vector regis-

ters and main memory (DRAM), and explicit loop unrolling that improves the number

of SIMD registers in use concurrently.

The first part of this work focuses on having the compilers fully auto-vectorize

FDTD stencil kernel of any order with minimal effort: by rearranging loop structure

and adding compiler hints/options, with the expectation that the auto-vectorized

codes could achieve comparable performance to codes using SIMD intrinsic functions,

and compatible with the latest icc and gcc compilers.

Even though the stencil kernels are fully-vectorized, the performance gap between

main memory (DRAM) and cache may still prevent stencil kernel from obtaining ma-

chine performance peak. As an example, Figure 1.1 shows the architecture of our test

device and marks the position of memory bottleneck. The practical problem size usu-

ally exceeds the cache capacity, or even DRAM capacity [Etgen and O’Brien, 2007],

so there will be extensive data movements between DRAM and cache every time step.

As presented in Table 1.1, CPU speed grows much faster than DRAM to cache speed

and bandwidth, so it is possible that sometimes the CPUs are in idle state waiting
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for data references from DRAM.

DRAM(32GB)

L3 (20MB)

core0 core1 core2core3 core4 core5core6 core7

Latency
Bandwidth

Memory Problems

2.2GHz core!
SIMD registers!

32KB L1!
256KB L2

Figure 1.1: The architecture of our test device.

CPU speed Memory speed Memory Bandwidth
∼60% ∼7% ∼23%

Table 1.1: Yearly growth rate of the performance of each component.
[Demmel, 2014]

Memory latency can be hidden by implementing short-stride accessing that im-

proves cache line hit rates and engages hardware prefetching to keep the memory

pipeline busy (see Appendix A). The effects of limited memory bandwidth can be

mitigated by implementing cache optimization methods, which improve cached data

utilization so as to reduce memory traffic.

The second part in this thesis evaluates several cache optimization methods on

FDTD stencil kernel: thread-blocking, separate-and-interchange, and time-skewing

methods.

Examples in this thesis use FDTD algorithm with its time derivative approx-

imated by 2nd order CFD scheme. The orders of the CFD schemes for spatial

derivatives are 4 or larger, depending on the accuracy and run-time requirements

[Etgen and O’Brien, 2007]. For a symmetric stencil, where the orders of the CFD

schemes are the same in each spatial dimension, order refers to this unique order
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of all the spatial CFD schemes. In this work, I will evaluate the effectiveness of

each cache optimization methods on stencil codes (SCs) of both low-order(=4) and

high-order(=16), i.e., SC4 and SC16.

In addition, to accommodate the multi-core trend, all codes are parallelized on

Xeon E5-2660 using OpenMP, so the cache optimizations are all in parallelized as

well.

To summarize, this work focuses on optimizing wave propagation FDTD stencil

kernel, on a single Intel Sandy Bridge processor. The methods are:

• Two levels of parallelization: OpenMP for core-level parallelization and com-

piler auto-vectorization for data-level parallelization. Auto-vectorization aims

to achieve performance similar to that of tuned intrinsic codes with minimal

source code modification, works for stencil codes of any order, and is compati-

ble with both the latest icc and gcc compilers.

• Three cache optimizations: thread-blocking, separate-and-exchange, time-skewing

methods. All of them work for OpenMP parallelized codes, and are evaluated

in both low-order(=4) and high-order(=16) cases.

All the codes are available at https://svn.rice.edu/r/mz10/MA/DocCodes/

The rest of the thesis is organized as follows: Chapter 2 reviews relevant literature;

Chapter 3 introduces the background and formulation of the FDTD stencil codes;

Chapter 4 describes my intrinsics codes and strategies to assist compiler to auto-

vectorize the original C source codes; Chapter 5 presents three cache optimization

methods; Chapter 6 shows results of performance studies; Chapter 7 concludes the

thesis.

https://svn.rice.edu/r/mz10/MA/DocCodes/


Chapter 2

Literature Review

Most of previous literature on stencil optimization work only on very low-order (=2)

stencils [Datta et al., 2008, ?, Datta, 2009, Nguyen et al., 2010, Henretty et al., 2011,

Strzodka et al., 2011, Zumbusch, 2012, Wonnacott and Strout, 2012]. These strate-

gies may not work effectively for high-order(=16 or more) stencils, or even the low-

order(=4) stencils. Besides, most of the targeted stencils in these papers are of Jacobi

type: they do not use the old value at the center of the stencil to update itself, hence

one less FLOP executed per stencil compared with stencils considered here. Also,

their test platforms are not Xeon E5-2660. Various machine characteristics (such as

the memory bandwidth) may not be the same, so it’s hard to predict our test re-

sults from theirs or compare our test results with theirs. However, these papers still

propose a variety of optimization directions worth trying.

Most of the literatures on stencil vectorization use SIMD intrinsics [Datta et al., 2008,

?, Datta, 2009, Dursun et al., 2009, Henretty et al., 2011, Strzodka et al., 2011, Dursun et al., 2012,

Zumbusch, 2012, Zumbusch, 2013], and [Datta et al., 2008, Dursun et al., 2012] ex-

plicitly claimed that their compilers had failed to auto-vectorize the stencil codes.

Borges [Borges, 2011] gives an example of auto-vectorizing an 8th order stencil ker-

nel, however their procedures only work for stencils of a fixed order because all the
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finite difference terms are explicitly written in their scheme, so whenever the stencil

order changes, the codes need to be rewritten.

My tuned SIMD intrinsic codes are primarily based on Dr. Christof Stork’s

flexSIMD package (Stork, personal communication, 2013). Stork points out that

explicit unrolling, aligned vector loads, cache bypassing stores would further improve

the naive intrinsic codes’ performance, and these ideas are integrated in my codes. In

addition, [Fog, 2013, Intel, 2014] provide latency and throughput of every SIMD in-

struction, and they are good references when choose between SIMD intrinsics having

similar functions.

Intel [Intel, 2012] lists some auto-vectorization criteria and compiler hints/options

to assist compiler auto-vectorization. The auto-vectorization strategies for FDTD

stencil kernel in this work are primarily extracted from this article.

Although for AVX instructions (SIMD instruction sets used on Xeon E5-2660),

aligned vector loads requirement is relaxed, still unaligned vector loads may cause per-

formance penalty [Lomont, 2012], so array memory should be padded to ensure maxi-

mal aligned vector loads. Henretty [Henretty et al., 2011] and Zumbusch [Zumbusch, 2012]

present an interleaved memory allocation method to make every vector load aligned,

especially for aligning every load for accumulating finite difference terms along unit-

stride dimension, which cannot be obtained via normal 3D stencil allocation as demon-

strated in by Borges [Borges, 2011]. However, if boundary condition is considered, as

in my work, halo layers are built to keep stencils the same throughout the computa-

tion domain, then the thickness of a halo layer is the the product of vector length and

(order/2-1). For high-order stencils and long vector length, the extra time to build

the halo layers may offset the time reduction due to the aligned vector loads. Also,

the vectorization experiments in this work show that, even though memory alignment

generates fewer instructions per statement and higher unrolling factors, the run-time
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barely reduces for the Xeon E5-2660. So this interleaved memory method is not

implemented in this work.

Although memory bandwidth is growing slower than CPU speed, kernels may

or may not be bandwidth-bound, depending on the problem size, kernel’s opera-

tion intensity (FLOPs executed per bytes movement between cache and DRAM)

[Williams et al., 2009], and the cache capacity of the platform. If the problem size

exceeds the cache capacity, and its operation intensity is smaller than the machine

balance (ratio between machine peak GFLOPs/sec and its sustained memory band-

width) [McCalpin, 1995], then the problem is bandwidth bound, otherwise it is com-

pute bound. The roofline model [Williams et al., 2009] based on this idea further

predicts how much performance can degrade due to bandwidth for a given kernel and

platform pair.

Two categories of methods are effective in reducing memory traffic: purely spatial

blocking methods and time-skewing methods, combining spatial and temporal block-

ing. Due to increasing cache capacity, purely spatial blocking can hardly improve

stencil code performance on modern CPUs [?, Nguyen et al., 2010]. Note that it’s

better to prevent the unit-stride dimension from being blocked, as the prefetching

engine needs warm-up before working at its peak, and intermittent recesses could

degrade its performance [?].

Time-skewing method was first proposed in 1999 [Wonnacott, 1999], subsequently

the serial version of this method has been observed to significantly improve low-

order stencil performance by reducing memory traffic between CPU and DRAM

[?] or even between DRAM and hard disk [Etgen and O’Brien, 2007]. Zumbusch

[Zumbusch, 2012] applied this method on a 2nd order 1D stencil on various single/multi-

core Intel and AMD CPUs, and achieved above 84% peak performance on all the

CPUs.
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There are various ways to parallelize time-skewing method to accommodate multi-

core processors in terms of scalability, load balance and concurrent start [Wonnacott and Strout, 2012].

All of these methods assign each spatial block to a single thread. The difference be-

tween any two methods lies in the shape and traversing order inside each spatial

block. Nguyen [Nguyen et al., 2010] proposed a parallelized time-skewing method

with each spatial block parallelized by OpenMP (without thread-blocking), i.e., each

spatial block is assigned to multiple threads, and only two most contiguous spatial

dimensions are blocked. This variant gives 1.5x speed up for 2nd order 3D stencil of

size 2563 on a quad-core 3.2GHz Intel CPU.

Even though time-skewing has sped up low-order stencils, the results of time-

skewing on high-order stencils are not optimistic. The CATS algorithm [Strzodka et al., 2011]

(time-skewing with diamond spatial block scheme) demonstrated that on a quad-core

3.2GHz Xeon X5482, the GFLOPs/sec dropped by 2.8x when the order of a 3D sten-

cil increased from 2 to 6. Zumbusch [Zumbusch, 2013] also observed the performance

dropped by 3x on a single-core Sandy Bridge Intel i7-2600 when the order of a 3D

stencil increased from 2 to 12.

To reduce memory traffic for high-order stencils, Stork (Stork, 2013, personal

communication) employed a novel approach that is different from the aforementioned

blocking methods. It used no spatial or temporal blocking. It partitioned the stencil

into 3 parts, and each part updates the central point along a fixed dimension. Accord-

ingly, one 3-fold loop structure is partitioned into three 3-fold loops, each responsible

for update along each dimension. Stork interchanged the two outermost loops for the

loop structure corresponding to the least contiguous dimension, so that more points

could get reused along the least contiguous dimension before being ejected from the

cache. I provide a more detailed explanation of this separate-and-interchange method

in Section 5.4
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Other relatively less effective methods include: cache bypassing [Datta et al., 2008],

which uses SIMD bypassing stores when array memory is properly aligned, and the

sliding window algorithm [Zumbusch, 2013], which explicitly unrolls the loop and

re-uses the register data as many times as possible before loading new data.



Chapter 3

Wave Equation Based FDTD Stencil Codes

This chapter sets up the mathematical equation and algorithms used for the codes

developed for this thesis. Section 3.1 introduces the acoustic constant density wave

equation, which is the most simple representation of all the wave equations used for

seismic modeling research. Section 3.2 details the finite difference scheme used to

discretize the derivatives in the wave equation. The resulting finite difference codes

are shown in Section 3.3. Section 3.4 demonstrates how the boundary condition is

implemented in the codes.

3.1 Acoustic Constant Density Wave Equation

Small amplitude wave propagation in fluid media can be described by the following

equation:

∂2u(x, y, z, t)

∂t2
= κ(x, y, z)∇ · ( 1

ρ(x, y, z)
∇u(x, y, z, t)), (x, y, z) ∈ Ω, t ∈ R. (3.1)

Here Ω is the computation domain; u is the pressure field, a scalar function of time

and space variables; κ and ρ are the bulk modulus and density fields respectively, and
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both of them characterize properties of the propagation medium.

In this work, the research is further narrowed down to the case when density is

constant o‘ver Ω. Then the above equation becomes:

∂2u(x, y, z, t)

∂t2
= c2(x, y, z)∇2u(x, y, z, t), (x, y, z) ∈ Ω, t ∈ R. (3.2)

Here c2(x, y, z) is the squared velocity field, which equals to κ(x, y, z)/ρ(x, y, z). This

equation is known as the acoustic constant density wave equation (ACDEQ).

If the bulk modulus field is also constant over Ω, then c2(x, y, z) will be reduced

to a constant c.

3.2 CFD Approximation

Finite difference methods are often used in practice to numerically simulate wave

propagation because they are easy to implement. This method works on a rectan-

gular grid discretizing the computational domain. Every partial derivative in the

PDE is approximated by a linear combination of values at its nearby points. Hence

every point updates its own value by using values at the surrounding (spatially or

temporally) grid points by the same pattern called stencil.

Depending on how derivatives are linearized, finite difference methods can be cate-

gorized as forward, backward, and central finite difference methods [Moczo et al., 2007].

In this thesis we use the central finite difference method (CFD) to approximate both

spatial and temporal derivatives of the wave equation. See Appendix B for CFD

coefficients of various orders. For example, the second order CFD approximation to

utt is:

utt(~x, t) =
u(~x, t−∆t)− 2u(~x, t) + u(~x, t+ ∆t)

∆t2
+O(∆t2)
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In practice, the time derivative of the wave equation is often approximated by sec-

ond order CFD scheme. For spatial derivatives, the order of the CFD scheme varies

based on the requirement on accuracy and run-time. For example, some reflection

problems require wave propagation with less dispersion along vertical directions, thus

the order of CFD should be larger; for some refraction problems of wave propaga-

tion over large horizontal distance, accuracy should be sacrificed for less run-time,

thus CFD scheme with smaller order vertical derivative in z (depth) will be used

[Etgen and O’Brien, 2007].

Recognizing that both low and high order stencils are important, in this work I

will evaluate the effectiveness of each optimization method on CFD codes with both

low- (=4) and high- (=16) spatial truncation error order. For simplicity, the order of

CFD schemes used along all the spatial directions are the same.

3.3 FDTD Stencil Kernel

Since the second order CFD scheme for utt involves data values from three time steps,

it needs at least two arrays to store temporary pressure field values. To minimize

storage, I use U_in to store pressure field values at current time step t, and U_out

to store pressure field values at previous time step (t − ∆t) and the next time step

(t+ ∆t).

We allocate both arrays with 3D indexing, i.e., U_in[k][j][i] would represent

the acoustic field value at grid point (i∆x, j∆y, k∆z), where i loops over the unit-

stride (or the most contiguous) dimension, j loops over the second most contiguous

dimension, and k loops over the least contiguous dimension. ∆x, ∆y, and ∆z are

the corresponding grid sizes. Together with time step size ∆t, the space steps must

satisfy CFL condition [Moczo et al., 2007] to ensure convergence. NX, NY, NZ are the

number of points in each dimension of the computation domain.



13

Listing 3.1 shows the resulting wave propagation simulation kernel. This kernel

is not optimized for performance on any CPU. Optimizations discussed later in this

work will be implemented as modifications of this kernel, so this kernel is named the

NAIVE stencil kernel. The code body inside the i-loop is the stencil operation, which

is the basic component of stencil codes.

1 /∗ FDTD s t e n c i l k e rne l −− NAIVE ∗/

f o r ( t = 1 ; t <= NT; t++)

3 f o r ( k = 1 ; k <= NZ; k++)

f o r ( j = 1 ; j <= NY; j++)

5 f o r ( i = 1 ; i <= NX; i++){

/∗ c0 , cx [ ixyz ] , cy [ ixyz ] , cz [ ixyz ] are c o e f f i c i e n t s combining both f i n i t e

d i f f e r e n c e c o e f f i c i e n t s and v e l o c i t y f i e l d va lue c . ∗/

7 /∗ r i s the s t e n c i l rad ius , a l s o equa l s to h a l f o f the s p a t i a l t runcat i on

e r r o r order ∗/

U out [ k ] [ j ] [ i ] = − U out [ k ] [ j ] [ i ] + c0∗U in [ k ] [ j ] [ i ] ;

9 f o r ( ixyz = 1 ; ixyz <= r ; ixyz++)

U out [ k ] [ j ] [ i ] += cx [ ixyz ] ∗ ( U in [ k ] [ j ] [ i xyz+i ]+U in [ k ] [ j ] [− i xyz+i ] ) ;

11 f o r ( ixyz = 1 ; ixyz <= r ; ixyz++)

U out [ k ] [ j ] [ i ] += cy [ ixyz ] ∗ ( U in [ k ] [ i xyz+j ] [ i ]+U in [ k ][− i xyz+j ] [ i ] ) ;

13 f o r ( ixyz = 1 ; ixyz <= r ; ixyz++)

U out [ k ] [ j ] [ i ] += cz [ ixyz ] ∗ ( U in [ ixyz+k ] [ j ] [ i ]+U in [− i xyz+k ] [ j ] [ i ] ) ;

15 /∗ + proce s s c e r t a i n boundary cond i t i on ∗/}

Listing 3.1: NAIVE Kernel

Figure 3.1 visualizes this operation using 2-4 CFD scheme. Every point is associ-

ated with a U_in value, and only the central point is associated with a U_out value,

and this U_out value is updated by using itself and the nearby U_in values on the

stencil according to the rule given by the stencil operation. Then completing the 3-

fold loop structure (k, j, i loops) can be visualized as sweeping the stencil operation

over the entire computation domain, which updates the entire U_out array values by

one time step.

In IWAVE [Symes, 2013, Terentyev, 2009], our research group’s software frame-

work for seismic modeling and inversion, the stencil kernel in the acoustic constant
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Figure 3.1: A 3D stencil operation using 2-4 CFD scheme

density package are written with the coefficient loops fully unrolled. We denote this

kind of kernel as EXTEND. Listing 3.2 gives an example of EXTEND using 2-4 CFD

scheme.

1 /∗ FDTD s t e n c i l k e rne l −− EXTEND∗/

/∗ Uses CFD of 2nd order in time and 4th order in space ∗/

3 f o r ( t = 1 ; t <= NT; t++)

f o r ( k = 1 ; k <= NZ; k++)

5 f o r ( j = 1 ; j <= NY; j++)

f o r ( i = 1 ; i <= NX; i++){

7 /∗ c0 , cx [ ixyz ] , cy [ ixyz ] , cz [ ixyz ] are c o e f f i c i e n t s combining both f i n i t e

d i f f e r e n c e c o e f f i c i e n t s and v e l o c i t y f i e l d va lue c . ∗/

U out [ k ] [ j ] [ i ] = − U out [ k ] [ j ] [ i ] + c∗U in [ k ] [ j ] [ i ]

9 + cx [ 1 ] ∗ ( U in [ k ] [ j ] [1+ i ]+U in [ k ] [ j ][−1+ i ] )

+ cx [ 2 ] ∗ ( U in [ k ] [ j ] [2+ i ]+U in [ k ] [ j ][−2+ i ] )

11 + cy [ 1 ] ∗ ( U in [ k ] [1+ j ] [ i ]+U in [ k][−1+ j ] [ i ] )

+ cy [ 2 ] ∗ ( U in [ k ] [2+ j ] [ i ]+U in [ k][−2+ j ] [ i ] )

13 + cz [ 1 ] ∗ ( U in [1+k ] [ j ] [ i ]+U in[−1+k ] [ j ] [ i ] )

+ cz [ 2 ] ∗ ( U in [2+k ] [ j ] [ i ]+U in[−2+k ] [ j ] [ i ] ) ;

15 /∗ + proce s s c e r t a i n boundary cond i t i on ∗/}

Listing 3.2: EXTEND Kernel

The coding style of EXTEND adds complexity for programmers as stencil kernel

of different order requires a different coding implementation, and the length of its

innermost loop structure increases with the order of stencil. In views of its flexibility

in changing the stencil order, this work will focus on optimizations for NAIVE kernel,
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and use EXTEND as a performance reference instead. Later the work will show that

the final best-tuned NAIVE code outperforms EXTEND code at any stencil order.

3.4 Implementations of Boundary and Initial Con-

ditions

The computation domain boundaries are processed with Homogeneous Dirichlet con-

dition in my experiments. Instead of changing the stencil scheme near the boundaries,

I allocate ghost points to store the temporary values so that the stencil scheme stays

the same throughout the entire computation domain. Figure 3.2 demonstrates on

how to use ghost cells to keep stencil pattern the same in 2D case. The computa-

tion domain includes the solid white points and solid colored points. The dashed

white points represent the ghost cells. Once finish updating all the U_out values in

the computation domain, U_out[2][-1]=-U_out[2][1]. In general, the value of a

ghost cell is set to be the negative of the value of its mirror point with respect to the

computational domain face nearby, on which array values are kept constant zero.

(2,1)(2,-1) (2,0)

Figure 3.2: Illustration on using ghost points in 2D case with 2nd order SC.

The initial pressure field is set to be one at the center of the computational domain

and zero elsewhere, which resembles a small initial disturbation in the middle. And

we set the time derivative of the initial pressure field also be zero throughout the
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domain.

Note that the second-order CFD approximation for ut at t = 0 is:

ut(x, y, z, 0) ≈ u(x, y, z,∆t)− u(x, y, z,−∆t)

2∆t
(3.3)

This motivates us to set u(x, y, z, t+∆t) = u(x, y, z, t−∆t) to approximate a zero

derivative.

Computing the initial condition only requires one iteration, while updating bound-

ary condition occurs at all iterations. Considering the large iteration number (5001)

used in our experiments and small time duration per iteration (< 0.03 sec), how the

initial condition is implemented barely affects the final performance of the stencil

codes, and experiments in Appendix C demonstrate the time spent in computing

the boundary condition is also small compared with the stencil computation. So the

primary optimization task lies in optimizing the stencil computation.



Chapter 4

Improving Vectorization

The Intel Sandy Bridge processor provides vector registers and SIMD instructions that

can process four or eight single precision floating point (SPFP) operations simulta-

neously. This chapter will first give an overview of SIMD technology, then present

manual and automatic approaches to apply this technology on stencil codes, and

lastly, it will describe the array padding technique used to produce aligned memory

that could reduce the number of load/store instructions in stencil codes.

4.1 SIMD Technology

Single Instruction, Multiple Data (SIMD) technology is widely adopted in the mod-

ern x86 based CPUs, e.g., Intel, AMD CPUs. This technology exploits data-level

parallelism by issuing only one instruction to process several operations of the same

type simultaneously, thus improving the FLOPs executed per CPU cycle.

As listed in Table 4.1, SIMD technology consists of two parts: SIMD registers of

various lengths and SIMD instruction sets that operate on the corresponding SIMD

registers. Our test device is a Sandy Bridge processor, which contains XMM/SSE

and YMM/AVX registers.
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SIMD registers XMM (128-bit) YMM (256-bit) ZMM (512-bit)
SIMD instruction sets SSE AVX AVX-512

Table 4.1: SIMD registers and instruction sets.

SIMD instruction sets provide two kinds of instructions to process FLOPs: scalar

SIMD instructions and packed SIMD instructions. The scalar one only performs the

operation on the first data pair, while the packed one performs the same operations on

all the data pairs simultaneously, forming the so-called vector operation. Figure 4.1

illustrates this difference using XMM/SSE.

(a) Scalar SSE performs 1 SPFP additions.

(b) Scalar SSE performs 4 SPFP additions simultaneously

Figure 4.1: Difference between Scalar and Packed SIMD Instructions

Almost all of the stencil codes’ FLOPs are executed by using these two forms of

SIMD instructions. Very few (order of magnitudes smaller) FLOPs are executed by

using X87 instructions on the non-SIMD registers. Appendix D shows that it takes

the same latency and throughput to complete a scalar instruction and its equivalent

packed instruction. Therefore, the code performance will be improved by processing

more floating point operations with packed SIMD instructions. This procedure is

called vectorization.

Currently there are three approaches to get vectorization:
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1. Writing assembly code.

2. Using SIMD intrinsic functions [Intel, 2014], which are C function interfaces

providing direct control over the generation of SIMD instructions.

3. Adapting code structure and adding compiler hints to assist compiler to auto-

generate SIMD instructions. [Intel, 2012, Borges, 2011]

In this work, I focus on improving vectorization using the last two methods. As

opposed to traditional C codes, in this work, codes using SIMD intrinsics are referred

as intrinsic codes, and codes generated from the third approach are referred as auto-

vectorized codes.

4.2 Explicit Vectorization

SIMD intrinsics provide C function interfaces that directly control the generation of

assembly vectorization instructions. So we can apply them directly on NAIVE kernel.

Figure 4.2 illustrates the vectorization strategy using XMM/SSE. The basic prin-

ciple is that the consecutive stencils are grouped into pack of 4 (length of the XMM

register) along unit-stride dimension, then each segment along x dimension can be

loaded into a XMM register, then call SSE instructions to compute 4 stencils at a

time.

As employed by Stork (personal communication, 2013), explicit loop unrolling at i-

loop level can keep all the vector registers busy simultaneously and reuse coefficients

that have already loaded into vector registers. So this work will also evaluate the

effectiveness of this trick by benchmarking the intrinsic codes that have been explicitly

unrolled for various times.

Since SIMD intrinsics directly control SIMD instruction generation, SIMD code

performance is less affected by compiler heuristics. However, manually porting C
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Figure 4.2: SSE vectorization of stencil code [Borges, 2011]. x is the most contiguous
dimension, and z is the least contiguous dimension.

codes to SIMD codes demands considerable effort from the programmer.

4.3 Auto-vectorization with GCC and ICC Com-

pilers

The principle of automatic vectorization is the same as that of manual vectorization.

Both Intel and GCC compilers are able to generate vector instructions from C source

code, that is, auto-vectorize loops, given that the loops have met certain criteria.

Current compilers are so cautious that they sometimes may refuse to auto-vectorize

loops that are potentially vectorizable. One can never be sure about whether a loop is

auto-vectorized or not, before checking the compiler vectorization report or the assem-

bly code. Because of these elusive compiler heuristics, it is hard to provide complete

criteria for reference, but some common features that prevent auto-vectorization in-

clude [Intel, 2012]:

1. The loop is not the innermost loop.
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2. Loop count is low (<8).

3. Array accessing is not contiguous.

4. Existence of potential data dependencies.

NAIVE kernel is a typical loop structure that cannot be auto-vectorized. Because

of item 1 above, only ixyz-loops in NAIVE kernel can be vectorized. However, when

order is under 8, short length of ixyz-loops prevent auto-vectorization again (item

2). Even if order is greater than 8, the last two ixyz-loops, U_in[k][ixyz+j][i]

and U_in[ixyz+k][j][i] do not access data contiguously with ixyz as the loop

index, hitting another obstacle (item 3).

To circumvent these obstacles, I revised the loop structure in NAIVE kernel. The

new kernel AUTOVEC is in Listing 4.1. AUTOVEC divides the original i-loop in

NAIVE kernel into two parts, i-loop-1 and i-loop-2, then it interchanges ixyz-loop

and i-loop-2. Now the innermost loops are i-loops, in which any data references are

contiguous. Also, loop count is not a problem because NX is usually set long enough

to ensure long unit-stride accessing, and there are no logical data dependencies inside

i-loops.

1 /∗ FDTD s t e n c i l k e rne l −− AUTOVEC ∗/

f o r ( t = 1 ; t <= NT; t++)

3 f o r ( k = 1 ; k <= NZ; k++) //k−loop

f o r ( j = 1 ; j <= NY; j++){ // j−loop

5 f o r ( i = 1 ; i <= NX; i++) // i−loop−1

U out [ k ] [ j ] [ i ] = c0∗U in [ k ] [ j ] [ i ] − U out [ k ] [ j ] [ i ] ;

7 f o r ( ixyz = 1 ; ixyz <= r ; ixyz++){ // ixyz−loop

#pragma ivdep

9 f o r ( i = 1 ; i <= NX; i++) // i−loop−2

U out [ k ] [ j ] [ i ] += cx [ ixyz ] ∗ ( U in [ k ] [ j ] [ i xyz+i ]+U in [ k ] [ j ] [− i xyz+i ] )

11 + cy [ ixyz ] ∗ ( U in [ k ] [ i xyz+j ] [ i ] +U in [ k ][− i xyz+j ] [ i ] )

+ cz [ ixyz ] ∗ ( U in [ ixyz+k ] [ j ] [ i ]+U in [− i xyz+k ] [ j ] [ i ] ) ;}}

13 /∗ + proce s s c e r t a i n boundary cond i t i on ∗/ }

Listing 4.1: AUTOVEC Kernel
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After checking the vectorization reports by both compilers (ICC: -vec-report[n],

GCC: -ftree-vectorizer-verbose=[n], n controls the detail extent, n is from 0 to

6), I found that only GCC compiler could vectorize two i-loops. Intel compiler could

only vectorize i-loop-1, but failed to vectorize i-loop-2 in which it assumed potential

data dependencies. To remove this assumption, I added ivdep pragma to notify the

Intel compiler that there is no data dependencies. After that, Intel vectorization

report showed that i-loop-2 was vectorized.

In addition, if the stencil is asymmetric, which corresponds to different accuracy

on different dimensions, this method still works, except that there should be three

ixyz-loops instead of one ixyz-loop, and each ixyz-loop should be interchanged with

i-loop to make i-loop the innermost loop.

Since the Sandy Bridge machine has 16 XMM/YMM registers, another key to

improve code performance besides getting more packed vector instructions is to keep

more vector registers busy at the same time, i.e., keep the pipeline busy, or in other

words, improve the unrolling factor. Based on default compiler heuristics, the com-

piler option -funroll-loops can automatically unroll the innermost loop and max-

imize the unrolling factor till it reaches 16.

Compared with NAIVE or EXTEND kernel, in which the stencil traverses the

entire computational domain only once per time step, stencil of AUTOVEC traverses

the domain twice per time step because of the partition to i-loop. In consequence,

entire U_in array will be loaded into registers at least twice per time step, which will

slightly slow down the code speed.

4.3.1 Ensuring Memory Alignment by Array Padding

As unaligned references might cause performance penalty, I have also aligned vector

loads/stores by implementing array padding techniques.
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In this thesis, “memory alignment” means the memory addresses of U_out[k][j][1]

and U_in[k][j][1] are aligned on 16- or 32-byte boundary for arbitrary k, j in range.

Aligned memory can assist compiler to generate less data movement instructions, and

increase unroll factors for innermost loops (see Appendix E for a detailed comparison

between unaligned and aligned assembly codes).

In addition, once the arrays are aligned, intrinsic codes can use VMOVNTPS, which

requires aligned stores, to move new U_out values back to memory by-passing the

cache, which prevents other useful data being ejected from the cache, hence reduces

cache misses.

I use an array padding method to obtain memory alignment. This method works

by allocating extra data and then shifting the address of the effective data memory

to an aligned boundary. Take aligning U_in[k][j][1] on 32-byte boundary as an

example, this method is implemented in two phases:

1. Align the first U_in[k][j][1], i.e., U_in[-r+1][-r+1][1], which is the r-th

element in the old unaligned array memory.

(a) Allocate (32/sizeof(float)-1) more floating points of memory for U_in

(b) Find the offset between the r-th element and the position of the next

nearest element whose address is aligned on 32-byte boundary

(c) Shift the array base pointer until U_in[-r+1][-r+1][1] is aligned to this

element.

2. Pass the alignment property to the remaining U_in[k][j][1]s.

For simplicity, in my experiments, NX is set to be a multiple of 16, so if

U_in[-r+1][-r+1][1] is aligned, then U_in[-r+1][-r+1][NX] will be aligned

automatically because of contiguous data storage. But to pass alignment prop-

erty from U_in[-r+1][-r+1][NX] to U_in[-r+1][-r+2][1], the number of
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floating points padded in between should be a multiple of 8. So besides bound-

ary and ghost elements, more padding may be needed to satisfy this require-

ment. Figure 4.3 shows an example of padding extra 4 elements between every

U_in[k][j][NX] and U_in[k][j+1][1] to pass alignment property for this SC

of order 2. In this case, we pad four extra cells encompassed by the dashed

frame to pass alignment property from U_in[k][j][NX] to U_in[k][j+1][1].

If NX is not a multiple of 16, then some array elements near the end of the i-

loop have to be processed in non-vectorized way. But after properly adjust the

pad size between two adjacent segment, it is still easy to get U_in[k][j][1]s

aligned.

U_in[k][j][nx]

Before Padding

After Padding

U_in[k][j+1][1]

U_in[k][j][nx] U_in[k][j+1][1]

Figure 4.3: Use array padding to align 4th order SC on 32-byte boundary. Compu-
tation domain includes colored and solid white circles (boundary), dashed circles are
either ghost or padding cells.



Chapter 5

Cache Optimization Methods

This chapter first uses the roofline model to verify that 4-th and 16-th order sten-

cil codes (SCs) are memory bandwidth bound on Xeon E5-2660 and analyses the

source of memory traffic, then it describes three cache optimization methods that

could reduce the memory traffic and hence break the bottleneck: thread-blocking,

separate-and-divide, and parallelized time-skewing. Parallelized time-skewing in-

volves temporal blocking and combines the features of conventional time-skewing

and the thread-blocking scheme.

5.1 Memory Bottleneck

The roofline model [Williams et al., 2009] helps to differentiate performance bottle-

neck of a kernel on a given platform and predict the performance upper bound of a

kernel on that platform.

Before presenting the roofline model based on Xeon E5-2660, I will give definitions

for some terms which are essential elements of a roofline model.

1. Machine peak : the product of the number of cores and the peak GFLOPs/sec

generated by each core. It reflects the computing power of a platform. For Xeon
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E5-2660, where AVX addition and multiplication pipelines are independent, its

machine peak GFLOPs/sec is:

8 (#cores)×[8 (add)+8 (mul)]FLOPs/cycle×2.2GHz = 281.6GFLOPs/sec.

2. Algorithmic peak : the theoretical peak GFLOPs/sec obtained by a kernel on

a given platform. Since for wave equation based stencil kernel of any order,

its ratio between the number of additions and the number of multiplications is

approximately equal to 2, its algorithmic peak is no greater than

281.6GFLOPs/sec× 3/4 = 211.2GFLOPs/sec

3. Machine balance [McCalpin, 1995]: the ratio between machine peak GFLOP-

s/sec and sustained DRAM to cache memory bandwidth. It predicts the maxi-

mum FLOPs executed by the platform per byte movement. For Xeon E5-2660,

I use STREAM Triad benchmark [McCalpin, 2013] (setup: array of SPFP type,

having total memory of 152.6MB, which is greater than 4 times of 20MB L3

cache to ensure the observed memory bandwidth is between DRAM and cache)

to measure its sustained DRAM to cache memory bandwidth and its observed

value is 32447.4 MB/sec. So the machine balance of our test device is:

281.6GFLOPs/sec / 32447.4MB/sec = 8.68FLOPs/byte.

4. Operation intensity [Williams et al., 2009]: the ratio between the number of

FLOPs executed per byte transferred between DRAM and cache for a given

kernel. For 2r-th order stencil kernel based on wave equation, if the problem

size exceeds the L3 cache size, which is usually the case, then at each time step
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each array will be loaded into the cache at least once and one array will be

stored back to DRAM once. As a result, there will be at least two loads and

one store per grid point. On the other hand, computing each point requires a

total of (9r+ 2) FLOPs. So the upper bound of the operation intensity of 4-th

order stencil codes is:

(9× 2 + 2)FLOPs/(3× 4) bytes = 1.67FLOPs/byte.

Similarly, for 16-th order stencil, its operation intensity upper bound is:

(9× 8 + 2)FLOPs/(3× 4) bytes = 6.17FLOPs/byte.

Figure 5.1 shows the roofline model based on our test device, Xeon E5-2660. The

X axis represents the operation intensity of an arbitrary kernel, the Y value of the

corresponding point on the roofline indicates its performance upper bound in terms

of GFLOPs/sec.

Note that the slope of the skewed line is equal to the platform’s sustained memory

bandwidth. When the operation intensity of a kernel is less than the machine balance,

the performance of the kernel is bounded by the limited memory bandwidth, and it

cannot attain the machine peak. When the operation intensity is greater than the

machine balance, the performance of the kernel is then compute bound.

For wave equation based stencils, since their unbalanced mix of addition and mul-

tiplication prevents them from achieving machine peak, the dividing point between

memory bandwidth bound and compute bound further shifts to the left, 6.51 GFLOP-

s/sec. However, operation intensities of both 4-th order and 16-th order stencil are

still less than this value, so both kernels are memory bandwidth bound. Based on the

sustained memory bandwidth, their performance upper bounds are 54.18 GFLOP-
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Figure 5.1: Roofline model based on Xeon E5-2660.
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s/sec and 200.17 GFLOPs/sec respectively, which are also shown in Figure 5.1 with

the first two dashed blue lines to the left.

5.2 Source of Memory Traffic

In the roofline model, the performance upper bound is found by referring to the upper

bound of the operation intensity of a kernel, which assumes both arrays will be loaded

into cache only once, and U_out will be stored back to DRAM only once. When this

assumption is true, stencil codes of both orders are already memory bandwidth bound.

If cache capacity misses and cache associative misses exist, then U_in array will be

loaded into cache more than once per time step, which leads to more bytes moved per

FLOP executed, then the operation intensity would further shift to the left, which

results in a lower performance upper bound.

Conventional OpenMP parallelization on SC with a multi-fold loop structure usu-

ally parallelizes the outermost loop (k-loop) unless the OpenMP pragma is specified

with schedule(static,1). As demonstrated in Figure 5.2, each thread automat-

ically gets a bunch of contiguous NZ/NT k-planes (e.g., U_in[k][1:NY][1:NX] is a

single k plane) to process along the increasing k direction, where NZ is the range of

the k-loop and NT is the number of OpenMP threads (note: not the number of time

steps!)

When thread #p updates U_out at (ip, jp, kp), it will need U_in at (ip, jp, kp + 1).

Then thread #p will execute (NY-r)×NX-1 stencils before updating U_out at (ip, jp−

r, kp + 1) when it reuses U_in at (ip, jp, kp + 1) again. Note that none of these stencil

operations in between involves U_in at (ip, jp, kp + 1). Denote the data memory size

involved in these operations as mem(SC).

Suppose at a certain time thread #p is updating U_out at (ip, jp, kp), p = 0,

..., NT-1. If NZ/NT is large enough that any two threads will need non-overlapped
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regions of U_in planes, and if the cache capacity is less than NT×mem(SC), then

U_in at (ip, jp, kp + 1) must have been out of the cache before the thread #p arrives

at (ip, jp− r, kp + 1), p = 0, ..., NT-1, so U_in at (ip, jp, kp + 1) has to be reloaded from

DRAM again.

Figure 5.2: Snapshot of conventional OpenMP thread access. k ranges from 1 to
256. OpenMP forks 8 threads in total. The picture only shows k dimension, but hides
i,j dimensions.

A stencil has 2r+1 points along k dimension, which means almost every U_in data

will be used as a finite difference term along k dimension 2r+1 times, so it has to be

loaded 2r+1 times from DRAM every time step. Table 5.1 summarizes the number of

array loads and stores associated with the stencil kernel every time step in this case.

#loads #stores
(2r+1)×U_in + 1×U_out 1×U_out

Table 5.1: Loads and stores per time step if using conventional OpenMP paralleliza-
tion.

For our test problem, the computation domain is of 2563 excluding boundary

layer of thickness 1. Since stencils of different orders have different thickness of ghost

layers, the cache can hold at most 67 or 73 k-planes of SPFP type for SC16 or SC4

respectively, which is equivalent to 8, 9 k-planes per CPU core. Note that updating

U_out[k][1:NY][1:NX] would require 2r+1 U_in k-planes, and one U_out k-plane. So

mem(SC) size is amount to at least ((NY-r)×NX-1)/(NY×NX)×(2r+2) planes. When

r is 4, mem(SC) is at least 6 planes, less than the quota of 9 planes assigned to each

core; However when r is 8, mem(SC) is at least 17 planes, greater than the quota of
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8 planes assigned to each core, so the entire U_in array will be loaded into cache at

least 17 times every time step. Then the resulting operation intensity becomes

(9× 8 + 2)FLOPs/((17 + 2)× 4) bytes = 0.97FLOPs/byte.

Multiply it by the sustained memory bandwidth to get the performance upper bound:

31.59 GFLOPs/sec. As the U_in data at points with k index near 0 or near NZ will

be accessed less than 17 times every time step, the actual GFLOPs/sec in this case

should be slightly higher than the above value.

Therefore to lift the performance upper bound of the stencil codes, one has to

first avoid multiple acesses of U_in per time step to prevent the operation intensity

from shifting to the left. Then work on maximizing the time steps leaped over per

array access, i.e., reference the array only once over several time steps, so to reduce

bytes moved per FLOP executed, and hence shifting the operation intensity to the

right. The roofline model reveals that this second step is indispensable if one wants

to transform the problem to be compute bound.

So in the following sections, I will first present two methods that aim to avoid

multiple accesses to DRAM for U_in, and then present a third method that blocks

the temporal dimension so that in average the number of array accesses per time step

will be less than once.

5.3 Thread-blocking Method

Note that in the conventional OpenMP parallelization scheme, because of the discrete

thread accessing pattern, the total memory footprint associated with the intermediate

stencil operations of NT threads is NT times mem(SC). If the access locations of these

threads are closer to each other, then some U_in planes can be re-used by multiple
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threads before they get ejected. Consequently, the total memory footprint of those

stencils should be smaller, so the cache may keep U_in data at (ip, jp, kp) in cache

when thread #p arrives at (ip, jp − r, kp + 1).

Based on the above idea, I propose the method of blocking the OpenMP threads

while they are performing stencil operations. This method can be easily implemented

by adding the schedule(static,1) directive in OpenMP pragmas outside k-loops.

With this directive, threads will update NT contiguous k-planes along the increasing k

direction every round and in each round, each thread will deal with only one k-plane.

It ends up that all the threads are updating NT contiguous k-planes simultaneously.

Figure 5.3 visualizes this process.

Figure 5.3: OpenMP thread access pattern when adding schedule(static,1). k

ranges from 1 to 256. OpenMP forks 8 threads in total. The eight green planes are
the k planes currently being updated by these 8 threads. The blue arrow indicates
the moving direction.

Because each thread has the same work load and all the cores are the same, during

a certain period, the threads might be updating U_out at (i, j, k), ..., (i, j, k+ NT− 1)

simultaneously, or at least points very close to these locations. So U_in[k+1][j][i]

loaded for updating U_out[k][j][i] by thread #0 might be used concurrently or very

soon to update U_out[k+1][j][i] by thread #1, or to update U_out[k+2][j][i] by

thread #2, etc. If there is no data reload along i or j direction in the current time

step, then every time step each U_in data will be reused min(NT, r+1) times.

To guarantee there is no data reload along i or j direction, the cache has to

keep at least the amount of data associated with updating two consecutive segments.

The left picture in Fig 5.4 shows the memory footprint involved in updating two
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consecutive segments (U_out[k][j:j+1][1:NX). The left figure shows the memory

footprint involved in updating U_out[k][j:j+1][1:NX]. In the right picture, the

thread is updating U_out[k][j+2][1:NX] (the white chunk inside the red dashed

line), so it loads the U_out and U_in data inside the red dashed region by releasing

the space occupied by the memory inside the black dashed line.

When the thread moves downward to update the next segment (U_out[k][j+2][1:NX]),

the data part inside the dashed red region (U_out[k][j+2][1:NX] and U_in[k][j+2+r][1:NX],

U_in[k][j+2][1-r:0], U_in[k][j+2][NX+1:NX+r]) will be loaded into cache. Mean-

while, the cache will throw out least recently used data to make room for this data

part. Among the data involved in updating the previous two segments, only the data

part inside the dashed black region (U_out[k][j][1:NX] and U_in[k][j-r][1:NX],

U_in[k][j][1-r:0], U_in[k][j][NX+1:NX+r]) might be thrown out of the cache

since they have not been used in updating the second segment (U_out[k][j+1][1:NY]).

Luckily, the amount of data inside the red region is the same as the one inside the

black region, so without throwing out any possible data involved in updating the next

segment, the cache can release the room previously occupied by the data in the black

region and assign it to the data inside the red region. Once the data inside the black

region are thrown out of the cache, they will never be reused in updating the current

k-plane, which indicates that there will be no reloads along i or j direction. Table 5.2

summarizes the number of array loads and stores, as well as the cache size condition

when there is no data reload along i or j direction.

#loads #stores lb(cache)
(2r-min(NT, r + 1))×U_in + 1×U_out 1×U_out ((4+2r)NX+4r)NT

Table 5.2: Loads and stores per time step with thread-blocking. lb(cache) denotes
the minimum cache capacity in order to attain these number of loads and stores, its
unit is “SPFP(4 bytes)”.



34

i

j

Figure 5.4: These two figures are based on SC4. U out data are represented by
white chunks and U in data are represented by green chunks.

Furthermore, if the cache can hold the memory footprint associated with two

consecutive rounds of stencil updates, i.e., 2NT U_out k-planes and (2NT + 2r) U_in

k-planes, then there will be no data reload along k direction in the current time

step. When all the threads proceed to update the next round, only part of the

data related to the first round might be get ejected, making room for loading new

data for the next round. Figure 5.5 visualizes this process. Among all the data

related to the first two rounds, the data encompassed in the black dashed region

(U_out[k:k+NT-1][1:NY][1:NX] and U_in[k-r:k-r+NT-1][1:NY][1:NX]) are ones

most likely being ejected from cache since they have not been used for updating

the second round, and hence they are less recently touched data. To update the

third round, the threads only need to load U_out[k+2NT:k+3NT-1][1:NY][1:NX]

and U_in[k+2NT+r:k+3NT-1+r][1:NY][1:NX] into cache, and the size of which is

equal to the size of the data memory in the blacked dashed region. It means that

without sacrificing any data memory related to the second round, the cached data

can be replaced by the data related to the later two rounds of update. The reason

to avoid any possible ejection of data related to the second round is that since they

are updating the second round simultaneously because of OpenMP parallelization, if

some of them were to be ejected, it might be the ones, e.g., U_in[k+2NT-1][1][1],
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that will be used for updating the third round. Ejecting these planes will result in

extra data reloads.

U_out[k:k+2NT-1][1:NY][1:NX]
U_in[k-r:k+2NT-1+r][1:NY][1:NX]

U_out[k+NT:k+3NT-1][1:NY][1:NX]
U_in[k+NT-r:k+3NT-1+r][1:NY][1:NX]

Figure 5.5: Illustration of thread-blocking when cache capacity meets certain re-
quirement. The upper picture shows the memory footprint associated with two con-
secutive rounds of update, and they are kept in cache concurrently. A white chunk
stores NT U out k-planes, and the green chunk stores U in k-planes. The lower picture
shows that the threads are loading the data for next round (encompassed in the red
dashed region) into cache and gradually releasing the space previously occupied by
the data belonging to the first round (encompassed in the black dashed region).

Note that the memory encompassed in the black dashed region will be no longer

used for later updates in the current time step. Apply the above analysis when the

threads proceed to update U_out planes along increasing k direction, the planes being

ejected along the way will be no longer be used for the corresponding later updates

in the current time step, which means that all the data have been fully reused before

they are out of the cache. Table 5.3 shows the number of array loads and stores per

time step in this optimal case.

#loads #stores lb(cache)
1×U_in + 1×U_out 1×U_out (4NT + 2r) k-planes

Table 5.3: Optimal loads and stores per time step of thread-blocking method.
lb(cache) denotes the minimum cache capacity in order to attain these number of
loads and stores, its unit is “SPFP(4 bytes)”.
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Figure 5.6: Separate-and-exchange method. The stencil is partitioned into two
parts. The first part accumulates the finite difference terms along i, j dimensions
and loops over the computation domain according to the original pattern, while the
second part accumulates the finite difference terms along k dimension and loops over
the computation domain according to the pattern illustrated in the right cubic.

5.4 Separate-and-interchange Method

Dr. Stork (Stork C. personal communication, 2013) demonstrates a novel approach

to reduce cache misses by changing the loop traversal pattern. It partitions the ac-

cumulations of finite difference terms along three dimensions into three different loop

structures. For the accumulation along k-dimension, it exchanges the k-loop and j-

loop, making the stencil operator traverse along j direction last. Extracting this idea

from his code and applying it to my symmetric stencil, I separate the accumulation of

finite difference terms along k dimension, and then do loop interchanging for the two

outermost loops. Figure 5.6 visualizes the procedure and Listing 5.1 demonstrates

the necessary code transformation based on AUTOVEC kernel.

1 //Time loop {

#pragma omp p a r a l l e l f o r p r i va t e ( j , i , i xyz )

3 f o r ( k=1; k<=nz ; k++)//k−loop

f o r ( j =1; j<=ny ; j++){// j−loop

5 f o r ( i =1; i<=nx ; i++)// i−loop−1

U out [ k ] [ j ] [ i ]=−U out [ k ] [ j ] [ i ]+c0∗U in [ k ] [ j ] [ i ] ;

7 f o r ( ixyz=1; ixyz<=r /2 ; ixyz++){// ixyz−loop

#pragma ivdep
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9 f o r ( i =1; i <= nx ; i++)// i−loop−2

U out [ k ] [ j ] [ i ]+=cx [ ixyz ] ∗ ( U in [ k ] [ j ] [ i xyz+i ]+U in [ k ] [ j ] [− i xyz+i ] )

11 +cy [ ixyz ] ∗ ( U in [ k ] [ i xyz+j ] [ i ]+U in [ k ][− i xyz+j ] [ i ] ) }}

13 #pragma omp p a r a l l e l f o r p r i va t e (k , i , i xyz )

f o r ( j =1; j<=ny ; j++)// j−loop −> i n t e r change s with k−loop .

15 f o r ( k=1; k<=nz ; k++)//k−loop

f o r ( ixyz=1; ixyz<=r /2 ; ixyz++)// ixyz−loop

17 f o r ( i =1; i<=nx ; i++)// i−loop

U out [ k ] [ j ] [ i ]+=cz [ ixyz ] ∗ ( U in [ ixyz+k ] [ j ] [ i ]+U in [− i xyz+k ] [ j ] [ i ] ) ;

19 // + proce s s boundary data}

Listing 5.1: Stencil kernel implemented with separate-and-interchange method

For the first partial update, since there is no computation along k axis, as long as

the cache capacity can ensure no data reloads along i, j dimensions, then the data

will be fully used before being ejected. Using similar analysis as in Section 5.3, the

lower bound on the cache capacity is approximately the size of the memory footprint

associated with updating 2NX contiguous stencils per thread, i.e., 2NX × NT U_out

array data and ((2 + 2r)× NX + 4r)× NT U_in array data.

For the second partial update, if the cache can ensure no data reloads along k

dimension, then the data will be fully reused in cache. Similarly, the lower bound on

the cache capacity for this condition is approximately the memory footprint associated

with updating 2 contiguous stencils per thread, i.e., 2NT U_out array data and (2 +

2r)NT U_in array data.

Therefore, if the cache can hold ((4+2r)×NX+4r)×NT SPFP data simultaneously,

then the data in two partial updates can be fully reused before being ejected. Table 5.4

summarizes the number of array loads and stores per time step given that the cache

size is above a certain value.

The drawback of this method is that it needs another traversal over the compu-

tation domain due to two partial updates. For low-order stencil kernels, e.g., NAIVE
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#loads #stores lb(cache)
2×U_in + 2×U_out 2×U_out ((4 + 2r)× NX + 4r)× NT

Table 5.4: Optimal Loads and stores per time step with separate-and-exchange
method. lb(cache) denotes the minimum cache capacity in order to attain these
number of loads and stores, its unit is “SPFP(4 bytes)”.

kernel of second order, updating 2 contiguous U_out k-planes only requires 8 k-planes

(2×U_out +(2 + 4)×U_in) per thread, and previous analysis shows that the quota

for each core is 9 k-planes, so every time step the data can be fully reused, i.e., the

number of loads plus stores is only 3 times per time step. Implementing this loop

interchanging method can hardly benefit from cache reuse but double the number of

loads and stores, which produces more memory traffic and slower code.

5.5 Parallelized Time-skewing Method

The importance of time-skewing method lies in temporal blocking, which reuses data

of several time steps before ejecting them, thus reducing bytes moved between DRAM

and cache per FLOP executed, i.e., increasing operation intensity of the kernel, and

leading to higher GFLOPs/sec.

Inspired by the thread-blocking method that blocked thread accesses can generate

less cache misses than discrete thread accesses, I set the tiling width (spatial blocking

factor) in the time-skewing scheme to be NT, so that at each time step, threads will

update a contiguous chunk of k-planes and every thread gets exactly one k-plane.

Figure 5.7 demonstrates this idea. Each round, NT threads will first update NT U_out

k-planes in time level (t + 1), then update NT U_in k-planes in time level (t + 2),

and then update NT U_out k-planes in time level (t+ 2), etc. Besides, to avoid extra

memory allocation for the temporal values at intermediate time steps, the offset

between the starting k indices of chunks belonging to consecutive time steps in the
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same round is set to be max(NT, r). For example, in Figure 5.7, the offset between

any adjacent green chunks is 8 since both SC4 and SC16 have r ≤ 8.

Figure 5.7: Parallelized time-skewing method. Here assume OpenMP forks 8
threads, with 1 thread per core. One data chunk is composed of 8 k-planes and
processed by 8 OpenMP threads. The hatched chunks are ones already processed in
previous rounds. The green chunks, with labels on the right denoting data sources,
are ones being updated in the current round. Here one round covers three time steps:
t+1, t+2, t+3.

The optimal tiling height (temporal blocking factor, denoted as NTS) is determined

by minimizing data reloads. The ideal scenario is to load and store both arrays only

once every NTS time steps. To achieve this goal, using similar arguments as those

in the above section, the cache has to hold at least all the planes needed for two

consecutive rounds.

When NTS is odd, as shown in the upper picture in Figure 5.8, this memory involves

[(NTS−1)×max(NT, r)+2NT] U_out k-planes, and [(NTS−1)×max(NT, r)+2NT+2r]

U_in k-planes; when NTS is even, as shown in the lower picture in Figure 5.8, this

memory involves [(NTS− 1)×max(NT, r) + 2NT+ r] U_out k-planes, and [(NTS− 1)×

max(NT, r) + 2NT + r] U_in k-planes. Therefore, in both cases, the total memory is

of size [2(NTS− 1)×max(NT, r) + 4NT+ 2r] k-planes. Table 5.5 summarizes the loads

and stores per time step in the optimal case and the minimum cache capacity to hold

this memory.

Although higher temporal blocking factor leads to greater cache miss reduction,

the cache capacity imposes an upper limit on NTS. Denote max(NTS) as the maximum

NTS value that makes the memory related to update two consecutive rounds fit into
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L3 cache. If NTS is greater than max(NTS), then there will be multiple accesses to

both arrays over NTS time steps.

On Xeon E5-2660, with L3 cache of 20 MB, parallelized by 8 OpenMP threads,

in order to keep these planes in cache simultaneously, NTS of SC4 should be less than

2.98, and NTS of SC16 should be less than 2.22. Since there will be some extra room

on chip due to L1/L2 cache, the theoretical optimal NTS for SC4, SC16 on the test

machine is 3, 2 respectively.

U_out
U_in

U_out(t+1)
(t+2)
(t+3)

U_out
U_in

U_out(t+1)
(t+2)
(t+3)
(t+4) U_in

Figure 5.8: This figure is based on a more general case when NT is less than r. It
shows the range of U out and U in k-planes associated with two consecutive rounds.
The solid double-arrow lines mark the ranges of U out k-planes, while the dashed
double-arrow lines mark the ranges of U in k-planes. When NT is greater than r,
similar analysis would apply.

#loads #stores
1/NTS×U_in + 1/NTS×U_out 1/NTS×U_in + 1/NTS×U_out

lb(cache)
[2(NTS-1)×max(NT, r) + 4NT+2r] k-planes

Table 5.5: Optimal Loads and stores per time step with parallelized time-skewing
method. lb(cache) denotes the minimum cache capacity in order to attain these
number of loads and stores, its unit is “SPFP(4 bytes)”.
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Results and Discussion

In this section we will conduct a series of tests with various kernels to investigate the

effectiveness of different optimization techniques.

6.1 Experiment Setup

Our test device is an Intel Xeon E5-2660 Sandy Bridge processor, containing 8 cores

of frequency 2.2GHz. Each core has 32KB L1 cache, 256KB L2 cache, and a 20MB

L3 cache is shared among 8 cores. DRAM associated with this processor is 32GB.

The computation domain size is 2583 (including boundary layer of size one). The

array data is of SPFP type. The total array memory will be 140MB∼161MB, which is

significantly larger than the shared L3 cache size but smaller than the socket DRAM,

making the DRAM to cache memory latency and bandwidth be the major memory

bottleneck.

The total number of time steps is 5001, which is chosen to restrict the total run

time within 10 mins, meanwhile keeping the computation overhead negligible.

All the OpenMP threads are pinned to a specific core at the beginning of the

program by setting the environment variables KMP_AFFINITY=verbose,compact (for
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icc), and GOMP_CPU_AFFINITY=0-7 (for gcc).

Each kernel is tested with both icc 14.0.0 and gcc 4.8.2. Compiler options passed

into two compilers are:

icc -openmp -xAVX[-xSSE4.2] -O3 -funroll-loops

gcc -fopenmp -march=native -O3 -funroll-loops

All the event counts are measured by Perf (see Perf Setup at Appendix F). Every

event count presented in the following charts is the mean value collected from three

test runs.

6.2 Vectorization

Experiments in this section will present the vectorization results and performance

improvement of stencil codes vectorized by both manual and automatic vectorization

approaches. Besides, the effectiveness of basic vectorization, memory alignment, and

explicit loop unrolling in accelerating code speed will be evaluated and compared.

For comparison purpose, I tested the SIMD instruction composition (Figure 6.1),

L3 cache misses (Figure 6.2) and kernel run time (Figure 6.3) of the following kernels:

• EXTEND [v, u/a] kernel (Section 3.3): based on NAIVE kernel (Listing 3.1),

with its coefficient loops fully unrolled, making i-loop be the innermost loop. It

is also used in the old IWAVE acd package. [u] indicates unaligned memory and

[a] indicates aligned memory. [v] means adding Intel pragma ivdep to remove

compiler-assumed data dependencies (icc only).

• SIMD kernels [u/a], including AVX# or SSE# (Section 4.2): based on

NAIVE kernel, coded with intrinsics. # is the unrolling factor. There is no

GCC version of SSE# kernel because “-march=native” option makes GCC be

aware of the machine can generate AVX, so GCC generates AVX only.
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• AUTOVEC kernel [u/a] (Section 4.3): based on NAIVE kernel, with rear-

ranged loop structure and ivdep pragma to remove data dependencies assumed

by icc.

• NAIVE kernel [u] (Section 3.3): with unaligned memory.

Figure 6.1: Stacked bar chart of SIMD instruction composition of each kernel.
max(std-dev/mean) is less than 0.06%. SIMDSS: number of scalar SIMD instruc-
tions; SIMD128: number of packed SSE instructions; SIMD256: number of packed
AVX instructions.

SIMD instruction composition results (Figure 6.1) reveal that:
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1. No matter whether the array memory is aligned or not, EXTEND without ivdep

cannot be vectorized by either compiler.

2. SIMD kernels of various unrolling factors, EXTEND with ivdep, and aligned

AUTOVEC kernel are all fully vectorized by both compilers.

3. Unaligned AUTOVEC kernel will generate a portion of scalar instructions when

compiled by icc, but not by gcc.

Figure 6.2: L3 cache misses of each kernel. max(std-dev/mean) is less than 1.39%.

In L3 cache miss results (Figure 6.2), I have discovered a pattern:

For low-order SC, the number of cache misses for the aligned version is greater

than that of its unaligned version; for high-order SC, except SSE1 and AUTOVEC

kernels, the number of cache misses for the aligned version is smaller than that of its

unaligned version.
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The problem may result from the array padding implementation. For low-order

stencils, to pass alignment property from U_in[k][j][NX] to U_in[k][j+1][1], use-

less memory is padded in between. When the hardware prefetching engine arrives at

the virtual layer, as all the data elements before it are used by CPU, the engine will

assume this piece of useless memory is also useful and load it. As a result, memory

that will be used later may get ejected from the cache, hence increasing cache misses.

For high-order stencils, the virtual layers are thick enough that there is no memory

padded in between but only front padding. It means that memory alignment is more

efficient for high-order SC.

There are two observations I can’t explain theoretically: one is that SSE1[a] pro-

duces far more cache misses compared with SSE1[u], the other is that for high-order

SC, AUTOVEC[a] produces more cache misses than AUTOVEC[u].

Figure 6.3: Run time of each kernel. Maximum deviation is less than 1 sec.
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Kernel run time results (Figure 6.3) show that:

1. EXTEND with assumed dependency removed, SIMD kernels (except aligned

SSE1) of various unrolling factors, and AUTOVEC[u/a] attain similar run time

results. It means that loop unrolling, and memory alignment barely affect

the final results, even if they do affect vectorization and cache misses. More

importantly, now it seems unnecessary to hand-vectorize codes using intrinsics

or align the memory, since AUTOVEC[u] can produce codes with comparable

performance as tuned intrinsic codes.

2. When using SSE with aligned memory, the kernel needs to be explicitly unrolled

at least twice in order to attain similar run time as other fully vectorized kernels.

3. When compiling the same kernel, gcc always produces slower code than icc. But

for intrinsic codes and AUTOVEC kernel, the run time difference due to two

different compilers is not much.

6.3 Cache Optimization

Since one L3 cache miss will result in a memory access, the number of L3 cache

misses can be an indicator of the memory traffic. The following benchmark results

reveal the effectiveness of each optimization method in reducing memory traffic, and

how the reduction in memory traffic would affect run time results. Besides aligned

AUTOVEC as the reference, other kernels are:

• AUTOVECz: aligned AUTOVEC implemented with separate-and-divide method.

• AUTOVEComp: aligned AUTOVEC implemented with thread-blocking method.

• AUTOVECts: aligned AUTOVEC implemented with parallelized time-skewing

method. NTS is chosen as 3 for SC4, and 2 for SC16.
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Table 6.1 is the L3 cache miss result of each kernel. Results from both compilers

follow the same pattern: as expected, AUTOVECz only reduces cache misses for

high-order stencil, but incurs more cache misses for low-order stencil; AUTOVEComp

slightly reduces cache misses for low-order stencil, and for high-order stencil, it reduces

the cache misses by 55%∼62%; For both low- and high-order cases, the cache misses

of AUTOVECts is about one third of it of AUTOVEComp kernel.

SC4 SC16
Kernel [I]Miss [G]Miss [I]Miss [G]Miss

AUTOVEC 2.27e9 2.38e9 1.23e10 1.12e10
AUTOVECz 4.95e9 5.32e9 8.09e9 5.95e9

AUTOVEComp 2.05e9 2.13e9 2.73e9 2.91e9
AUTOVECts 7.17e8 7.36e8 1.07e9 1.15e9

Table 6.1: L3 cache misses of different kernels. Miss is the number of L3 cache line
misses measured by Perf. [I] represents the kernel is compiled by icc 14.0.0, and [G]
represents the kernel is compiled by gcc 4.8.2.

Figure 6.4 verifies my analysis for optimal temporal blocking factor in Section 5.5.

For SC4, the cache misses and run time will approach their own minimums when NTS

goes to 3, while for SC16, the optimal blocking factor is 2. Note that AUTOVEComp

has higher cache misses than AUTOVECts when NTS is 1 because for AUTOVECts, it

updates ghost boundary layers once it finishes updating the values near the boundary,

so the mirror values may still reside in cache, and hence it has lower cache misses.

Again, even if this factor contributes to cache miss reduction, the run time doesn’t

improve as much.

Figure 6.2 shows the run time of each kernel. Run time results of AUTOVECz and

AUTOVEComp almost match their cache miss results: more reduction in cache misses

produces shorter run time. However the run time improvement by implementing

parallelized time-skewing method is not obvious, even though it significantly reduces

the cache misses compared to AUTOVEComp.
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Figure 6.4: Cache misses and run time of the stencil kernels when implemented
with parallelized time-skewing methods with various NTS.
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SC4 SC16
Kernel [I]Time(s) [G]Time(s) [I]Time(s) [G]Time(s)

AUTOVEC 36 47 200 241
AUTOVECz 65 72 97 156

AUTOVEComp 35 41 84 133
AUTOVECts 31 39 82 131

Table 6.2: Run time results of different kernels. Notations are the same as the ones
used in Table 6.1.

6.4 Summary

Figure 6.5 evaluates the effectiveness of vectorization, thread-blocking, parallelized

time-skewing methods in terms of improving the SC’s GFLOPs/sec and Mstencil/sec

(Million stencils per second).

Note that without any cache optimization methods, the GFLOPs/sec of SC4 is

about 50.72 (icc), which matches the roofline model prediction in Section 5.1, and it

indicates that for SC4, the number of array loads and stores are indeed 3 times per

time step, so only cache optimization methods involving temporal blocking can further

increase its performance. The GFLOPs/sec of SC16 without any cache optimization

methods is about 33.14 (icc), and this value matches my theoretical prediction in

Section 5.2 based on the condition that U_in array is loaded 17 times per time step.

For low-order SC, vectorization alone can give near-peak performance, the com-

bined cache optimization methods only provide 1.2x speed up for fully-vectorized

codes; for high-order SC, both vectorization and thread-blocking method are indis-

pensable, and they can provide about equal speed up for SC.

Time-skewing is implemented with the greatest effort, yet except for providing

moderate performance gain for low-order SC, the contribution of it to high-order SC

is negligible. This fact suggests that it might not worth implementing time-skewing

for high-order SC.
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Figure 6.5: Contribution of each optimization method. Unaligned NAIVE ker-
nel performance as the base, SIMD represents the performance gain due by using
AUTOVEC kernel, blocking represents the performance gain due to thread-blocking
method, time-skewing represents the performance gain by using time-skewing method.

Since the machine peak is 281.6 GLOPs/sec, depending on compiler in use, the

final best tuned SC4 attains 16%∼21% of the machine peak, 22%∼28% of the algo-

rithmic peak; SC16 achieves 18%∼28% of the machine peak, 24%∼37% algorithmic

peak.
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Conclusion

In this work, I have optimized the acoustic constant density wave equation based

FDTD stencil of size 2563 on a Sandy Bridge Xeon E5-2660 processor. I have imple-

mented two categories of optimizations: vectorization and cache optimization, and

compared the effectiveness of each method to SC in terms of GFLOPs/sec and Ms-

tencil/sec increment.

To obtain fully-vectorized stencil codes of any order, I have manually vectorized

the code using intrinsic functions with explicit loop unrolling, and I have changed the

loop structure and added compiler pragmas to facilitate compiler auto-vectorization.

By padding the array memory, I make boundary alignment an available option.

The final experiments show that both intrinsic and auto-vectorized codes are fully-

vectorized, and the auto-vectorized ones achieve comparable performance as the in-

trinsic ones, which suggests that the effort required to code with intrinsics might

not necessary for SC. In addition, my experiments show that except for aligned SSE

codes, explicit loop unrolling achieves little performance gain for intrinsic codes. Also,

even though memory alignment enables the compiler to produce greater unrolling fac-

tor, less load/store instructions, and higher vectorization ratio, this trick also barely

affects the final run time. Lastly, I have benchmarked the tuned EXTEND kernel,
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which is widely adopted in scientific applications including IWAVE but lacks the flex-

ibility of changing stencil order. This kernel cannot be vectorized by gcc 4.8.2, but

it can be vectorized by icc 14.0.0, and its run time is similar to that of my intrinsic

and auto-vectorized kernel.

The second part of optimizations focus on hiding the long memory latency and

limited memory bandwidth. I have used the roofline model to verify that SCs of both

orders are bandwidth bound on Xeon E5-2660 processor. To hide memory latency,

I updates the stencil first along the unit-stride dimension, and left this dimension

uncut when performing blocking so as to have the hardware prefetching constantly

work at its peak. To break the limited bandwidth bottleneck, I proposed two methods:

one is thread-blocking method, the other is parallelized time-skewing that combines

the features of both conventional serial time-skewing with thread-blocking scheme.

I also presented the separate-and-interchange method extracted from flexSIMD.cpp

(Stork), which targets on high-order SC optimizations. My experiments show that

parallelized time-skewing method can further speed up fully-vectorized low- and high-

order SC by 1.2x and 2x respectively. However, in high-order SC case, it is the thread-

blocking that makes the major contribution to this additional speed up, and the

contribution of time-skewing is negligible. Separate-and-interchange method provides

similar improvement for high-order SC as thread-blocking method, but it slows down

low-order SC.

The final best tuned kernels works with both icc 14.0.0 and gcc 4.8.2 compiler and

achieve 20%∼30% peak performance of the machine.



Appendix A

Xeon E5-2660 Latency Curve

FigIn Figure A.1, each line represents the averaged observed latency in fetching
each data element from an array of varying size. The line property “stride” is the
address distance between any of two adjacent array elements. The experiment is
tested on our test device with hardware prefetching only, benchmarked by lmbench
[McVoy and Staelin, 1996]. The cache line size is 64 KB.

Initially the array resides in DRAM. If the array is small enough to fit into a
certain cache, then after it is traversed once, it will leave a copy in that cache. The
height of each “stair” reflects the observed latency related to the cache which has the
least capacity to hold the entire array with size in a fixed range. Since it takes longer
time to access data from cache far away from CPU, “jumps” appear in the latency
curve no matter which stride it uses. The height of the highest stair in each curve
relates to the DRAM.

Another observation is that the curve with shorter stride has relatively lower
observed DRAM latency. This could be explained by the hardware prefetching engine
is engaged by short-stride accessing. When stride size exceeds 256 bytes, no hardware
prefetching is present, the observed latency reflects the real DRAM to CPU latency,
about 90 ns; when stride size is less or equal than 128 bytes, hardware prefetching is
automatically enabled and it helps to reduce observed memory latency; when stride
size decreases to 32 bytes, doubling of cache hits per cache line further helps the
reduction, and now the observed DRAM latency is very close to the observed L2
cache latency at lower “stair”, which is less than 10 ns.
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Figure A.1: Xeon E5-2660 latency curve. This experiment demonstrates that (1)
accessing data from an array of size exceeding L3 cache will result in longer observed
latency; (2) short-stride memory layout can engage hardware prefetching to reduce
the latency.



Appendix B

Finite Difference Coefficients

Based on central finite difference scheme approximating the second order derivative,
the following table presents coefficients of finite difference terms at various offsets and
for various truncation error orders.

Error Order Cofficients at Offset 0, 1, 2, ...
2 −2 1
4 −5

2
4
3
−1
12

8 −205
72

8
5
−1
5

8
315

−1
560

16 −1671
547

16
9
−14
45

112
1485

−7
396

112
32175

−2
3861

16
315315

−1
411840

For example, the fourth-order finite difference computation along X axis is:

∂2u(x, y, z, t)

∂x2
= {−5

2
u(x, y, z, t) +

4

3
[u(x+ ∆x, y, z, t) + u(x−∆x, y, z, t)]

− 1

12
[u(x+ 2∆x, y, z, t) + u(x− 2∆x, y, z, t)]}/∆x2 +O(∆x4)



Appendix C

Boundary Effects

The following table shows the time spent in computing the boundary condition. When
codes get optimized, the part computing the boundary is untouched. This table
records the run time of AUTOVEComp kernel. “With boundary” indicates the kernel
is implemented with boundary condition, while “Without boundary” is not. The
difference between two records in each column reflects the boundary computation
time under different order or compiler.

SC4 SC16
Kernel [I]Time(s) [G]Time(s) [I]Time(s) [G]Time(s)

With boundary 35 41 84 133
Without boundary 32 39 77 128

Table C.1: AUTOVEComp run time with(out) boundary.

The observation is that the time spent in computing the boundary is less than
10% in the total run time of the second fastest kernel – AUTOVEComp.



Appendix D

Sandy Bridge Instruction Table

The two tables below are cropped from Fog’s instruction table for Sandy Bridge
architecture (pp147-160, [Fog, 2013]).

Table1: Floating Point X87 Instructions
Instruction Latency Throughput
FADD/FSUB 3 1
FMUL 5 1
Table2: Floating Point XMM and YMM Instructions
Instruction Latency Throughput
ADDSS/SUBSS/ADDPS/
SUBPS/VADDPS/VSUBPS

3 1

MULSS/MULPS/VMULPS 5 1

Latency is the number of clock cycles taken in executing an instruction.
Throughput is the number of same instructions output from the pipeline per

cycle.
SIMD scalar instructions are denoted with suffix “SS”, and vector instructions

are denoted with “PS”. 256-bit vector instructions are denoted with prefix “V”, the
rest of the vector instructions are 128-bit. All the values listed here are measured for
inter-register operations.

Since the latency and throughput are the same in executing 256-bit vector in-
struction and its 128-bit or scalar equivalent, choosing 256-bit instructions can boost
GFLOPS.



Appendix E

Effects of Memory Alignment on Compiler

Auto-vectorization

This appendix uses a code snippet (Listing E.1) from AUTOVEC kernel to demon-
strate that if both compilers have been notified of memory alignment, they can issue
fewer instructions. In particular, Intel compiler will unroll the loop statement more
aggressively so that more vector registers will be in use. In addition, it has been
observed that the Intel compiler uses register data more efficiently and it can make
SIMD instruction directly work on memory data, which to some extent explains why
code compiled by the Intel compiler runs faster than the gcc one.

Listing E.1 is the i-loop-1 in AUTOVEC.

1 out tmp=&U out [ k ] [ j ] [ 1 ] ;
in tmp=&U in [ k ] [ j ] [ 1 ] ;

3 f o r ( i = 0 ; i < nx ; i++)
out tmp [ i ] = c0∗ in tmp [ i ] − out tmp [ i ] ;

Listing E.1: i-loop-1 in AUTOVEC.

E.1 Effects of Memory Alignment on gcc Auto-

vectorization

When the memory addresses of out_tmp[0] and in_tmp[0] are unaligned, or the
compiler is unaware of aligned memory, the compiler would generate assembly codes
as shown in Listing E.2. An eight SPFP data chunk is loaded (stored) into (from) a
YMM register in two batches, four SPFP per batch. A single 256-bit vectorization of
the statement in L4 in Listing E.1 is executed by 9 instructions Listing E.2 (L3, 4, 5,
6, 8, 9, 13, 15). The assembly code also reveals that the compiler has unrolled L4 in
Listing E.1 8 times to keep all the YMM registers busy, which can be deducted from
the number of vbroadcastss instruction.

%The comments only show the f i r s t v e c t o r i z a t i o n proce s s .
2 . L207

vmovups 4(%r11 ,%r13 ) , %xmm1 #load in tmp [ i : i +3] to xmm1.
4 vbroadcas t s s 40(%r14 ) , %ymm0 #s t o r e c0 to ymm0.
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vmovups 4(%rax ,%r13 ) , %xmm4 #load out tmp [ i : i +3] to xmm4.
6 v i n s e r t f 1 2 8 $0x1 , 20(%r11 ,%r13 ) , %ymm1, %ymm2 #load in tmp [ i +4; i +7] and xmm1 to

ymm2, now ymm2 = in tmp [ i : i +7] .
vmulps %ymm0, %ymm2, %ymm3 #compute c0∗ in tmp [ i : i +7] .

8 vmovups 36(%rax ,%r13 ) , %xmm11 #load out tmp [ i +8: i +11] to xmm11 .
v i n s e r t f 1 2 8 $0x1 , 20(%rax ,%r13 ) , %ymm4, %ymm5 #load out tmp [ i +4: i +7] and xmm4 to

ymm5, now ymm5 = out tmp [ i : i +7] .
10 vsubps %ymm5, %ymm3, %ymm6 #compute c0∗ in tmp [ i : i +7]−out tmp [ i : i +7] and s t o r e

the new out tmp [ i : i +7] in ymm6.
vmovups 68(%rax ,%r13 ) , %xmm0 #load out tmp [ i +16: i +19] to xmm0.

12 v i n s e r t f 1 2 8 $0x1 , 52(%rax ,%r13 ) , %ymm11, %ymm12 #load out tmp [ i +12: i +15] and
xmm11 to ymm12, now ymm12 = out tmp [ i +8: i +15] .

v i n s e r t f 1 2 8 $0x1 , 84(%rax ,%r13 ) , %ymm0, %ymm3 #load out tmp [ i +20: i +23] and xmm0
to ymm3, now ymm3 = out tmp [ i +16: i +23] .

14 vmovups %xmm6, 4(%rax ,%r13 ) #s t o r e out tmp [ i : i +3] from ymm6 back to memory .
v ex t ra c t f 128 $0x1 , %ymm6, 20(%rax ,%r13 ) #s t o r e out tmp [ i +4: i +7] from ymm6 back

to memory .
16 vmovups 36(%r11 ,%r13 ) , %xmm7

vbroadcas t s s 40(%r14 ) , %ymm9
18 v i n s e r t f 1 2 8 $0x1 , 52(%r11 ,%r13 ) , %ymm7, %ymm8

vmulps %ymm9, %ymm8, %ymm10
20 vsubps %ymm12, %ymm10, %ymm13

vmovups 100(%rax ,%r13 ) , %xmm9
22 v i n s e r t f 1 2 8 $0x1 , 116(%rax ,%r13 ) , %ymm9, %ymm10

vmovups %xmm13, 36(%rax ,%r13 )
24 vex t ra c t f 128 $0x1 , %ymm13, 52(%rax ,%r13 )

vmovups 68(%r11 ,%r13 ) , %xmm14
26 vbroadcas t s s 40(%r14 ) , %ymm1

v i n s e r t f 1 2 8 $0x1 , 84(%r11 ,%r13 ) , %ymm14, %ymm15
28 vmulps %ymm1, %ymm15, %ymm2

vsubps %ymm3, %ymm2, %ymm4
30 vmovups 132(%rax ,%r13 ) , %xmm1

v i n s e r t f 1 2 8 $0x1 , 148(%rax ,%r13 ) , %ymm1, %ymm2
32 vmovups %xmm4, 68(%rax ,%r13 )

vex t ra c t f 128 $0x1 , %ymm4, 84(%rax ,%r13 )
34 vmovups 100(%r11 ,%r13 ) , %xmm5

vbroadcas t s s 40(%r14 ) , %ymm7
36 v i n s e r t f 1 2 8 $0x1 , 116(%r11 ,%r13 ) , %ymm5, %ymm6

vmulps %ymm7, %ymm6, %ymm8
38 vsubps %ymm10, %ymm8, %ymm11

vmovups %xmm11, 100(%rax ,%r13 )
40 vex t ra c t f 128 $0x1 , %ymm11, 116(%rax ,%r13 )

vmovups 132(%r11 ,%r13 ) , %xmm12
42 vbroadcas t s s 40(%r14 ) , %ymm14

v i n s e r t f 1 2 8 $0x1 , 148(%r11 ,%r13 ) , %ymm12, %ymm13
44 vmulps %ymm14, %ymm13, %ymm15

vsubps %ymm2, %ymm15, %ymm0
46 vmovups %xmm0, 132(%rax ,%r13 )

vex t ra c t f 128 $0x1 , %ymm0, 148(%rax ,%r13 )
48 vbroadcas t s s 40(%r14 ) , %ymm5

vmovups 164(%r11 ,%r13 ) , %xmm3
50 vmovups 164(%rax ,%r13 ) , %xmm7

v i n s e r t f 1 2 8 $0x1 , 180(%r11 ,%r13 ) , %ymm3, %ymm4
52 vmulps %ymm5, %ymm4, %ymm6

vmovups 196(%rax ,%r13 ) , %xmm14
54 v i n s e r t f 1 2 8 $0x1 , 180(%rax ,%r13 ) , %ymm7, %ymm8

vsubps %ymm8, %ymm6, %ymm9
56 vmovups 228(%rax ,%r13 ) , %xmm5

v i n s e r t f 1 2 8 $0x1 , 212(%rax ,%r13 ) , %ymm14, %ymm15
58 v i n s e r t f 1 2 8 $0x1 , 244(%rax ,%r13 ) , %ymm5, %ymm6

vmovups %xmm9, 164(%rax ,%r13 )
60 vex t ra c t f 128 $0x1 , %ymm9, 180(%rax ,%r13 )

vmovups 196(%r11 ,%r13 ) , %xmm10
62 vbroadcas t s s 40(%r14 ) , %ymm12

v i n s e r t f 1 2 8 $0x1 , 212(%r11 ,%r13 ) , %ymm10, %ymm11
64 vmulps %ymm12, %ymm11, %ymm13
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vsubps %ymm15, %ymm13, %ymm1
66 vmovups %xmm1, 196(%rax ,%r13 )

vex t ra c t f 128 $0x1 , %ymm1, 212(%rax ,%r13 )
68 vmovups 228(%r11 ,%r13 ) , %xmm2

vbroadcas t s s 40(%r14 ) , %ymm0
70 v i n s e r t f 1 2 8 $0x1 , 244(%r11 ,%r13 ) , %ymm2, %ymm3

vmulps %ymm0, %ymm3, %ymm4
72 vsubps %ymm6, %ymm4, %ymm7

vmovups %xmm7, 228(%rax ,%r13 )
74 vex t ra c t f 128 $0x1 , %ymm7, 244(%rax ,%r13 )

addq $256 , %r13
76 cmpq $1024 , %r13

jne . L207

Listing E.2: Memory unaligned gcc assembly codes.

When the two array bases are aligned and the compiler is aware of it, gcc assembly
codes are shown in Listing E.3. Now a single 256-bit vectorization of L4 in Listing
E.1 can be completed by only 4 instructions in the assembly codes (L3, 4, 5, 6). Also,
gcc has unrolled the statement 8 times to keep all the YMM registers busy.

%The comments only show the f i r s t v e c t o r i z a t i o n proce s s .
2 . L207 :

vbroadcas t s s 40(%r14 ) , %ymm0 #load c0 to ymm0
4 vmulps (%rcx ,%r13 ) , %ymm0, %ymm1 #compute c0∗ in tmp [ i : i +7]

vsubps (%rax ,%r13 ) , %ymm1, %ymm2 #compute c0∗ in tmp [ i : i +7]−out tmp [ i : i +7]
6 vmovaps %ymm2, (%rax ,%r13 ) #s t o r e out tmp [ i : i +7] back to memory

vbroadcas t s s 40(%r14 ) , %ymm3
8 vmulps 32(%rcx ,%r13 ) , %ymm3, %ymm4

vsubps 32(%rax ,%r13 ) , %ymm4, %ymm5
10 vmovaps %ymm5, 32(%rax ,%r13 )

vbroadcas t s s 40(%r14 ) , %ymm6
12 vmulps 64(%rcx ,%r13 ) , %ymm6, %ymm7

vsubps 64(%rax ,%r13 ) , %ymm7, %ymm8
14 vmovaps %ymm8, 64(%rax ,%r13 )

vbroadcas t s s 40(%r14 ) , %ymm9
16 vmulps 96(%rcx ,%r13 ) , %ymm9, %ymm10

vsubps 96(%rax ,%r13 ) , %ymm10, %ymm11
18 vmovaps %ymm11, 96(%rax ,%r13 )

vbroadcas t s s 40(%r14 ) , %ymm12
20 vmulps 128(%rcx ,%r13 ) , %ymm12, %ymm13

vsubps 128(%rax ,%r13 ) , %ymm13, %ymm14
22 vmovaps %ymm14, 128(%rax ,%r13 )

vbroadcas t s s 40(%r14 ) , %ymm15
24 vmulps 160(%rcx ,%r13 ) , %ymm15, %ymm0

vsubps 160(%rax ,%r13 ) , %ymm0, %ymm1
26 vmovaps %ymm1, 160(%rax ,%r13 )

vbroadcas t s s 40(%r14 ) , %ymm2
28 vmulps 192(%rcx ,%r13 ) , %ymm2, %ymm3

vsubps 192(%rax ,%r13 ) , %ymm3, %ymm4
30 vmovaps %ymm4, 192(%rax ,%r13 )

vbroadcas t s s 40(%r14 ) , %ymm5
32 vmulps 224(%rcx ,%r13 ) , %ymm5, %ymm6

vsubps 224(%rax ,%r13 ) , %ymm6, %ymm7
34 vmovaps %ymm7, 224(%rax ,%r13 )

addq $256 , %r13
36 cmpq $1024 , %r13

jne . L207

Listing E.3: Memory Aligned gcc Assembly Codes.
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E.2 Effects of Memory Alignment on Intel Auto-

vectorization

When array bases are unaligned or the compiler is unaware of the memory alignment,
Intel assembly codes shown in Listing E.4 reveal that the compiler will complete a
vectorized statement with 5 instructions (L3, 4, 5, 6, 7). Like icc compiler, Intel
compiler also moves 8 SPFP to a vector register in two batches of equal size. But
Intel compiler only unrolls the statement 2 times. In consequence, YMM11 to YMM15
registers are not in use.

Unlike gcc, Intel compiler can perform AVX arithmetic instructions on memory
address directly (see L6, vsubps operates on out_tmp[i:i+7] from memory), elim-
inating the process of loading data to register. In addition, icc loads the coefficient
variable in YMM4 in advance, while in gcc codes, the coefficient variable is loaded
into a register multiple times (see the number of broadcastss). These two features
of Intel codes could probably explain why Intel AUTOVEC codes runs faster than
gcc AUTOVEC codes despite its failure in unrolling the statement.

1 %The comments only show the f i r s t v e c t o r i z a t i o n proce s s .
. . B1 . 2 2 5 :

3 vmovups 4(%rcx ,%rbx , 4 ) , %xmm0 #load in tmp [ i : i +3] to xmm0
v i n s e r t f 1 2 8 $1 , 20(%rcx ,%rbx , 4 ) , %ymm0, %ymm1 #load in tmp [ i +4: i +7] and

xmm0 to ymm1, now ymm1 = in tmp [ i : i +7]
5 vmulps %ymm1, %ymm4, %ymm2 #compute c0∗ in tmp [ i : i +7]

vsubps (%rdi ,%rbx , 4 ) , %ymm2, %ymm6 #compute c0∗ in tmp [ i : i +7] −out tmp [ i :
i +7]

7 vmovups %ymm6, (%rdi ,%rbx , 4 ) #s t o r e the new out tmp [ i : i +7] back to
memory

vmovups 36(%rcx ,%rbx , 4 ) , %xmm7
9 v i n s e r t f 1 2 8 $1 , 52(%rcx ,%rbx , 4 ) , %ymm7, %ymm8

vmulps %ymm8, %ymm4, %ymm9
11 vsubps 32(%rdi ,%rbx , 4 ) , %ymm9, %ymm10

vmovups %ymm10, 32(%rdi ,%rbx , 4 )
13 addq $16 , %rbx

cmpq %r s i , %rbx
15 jb . . B1 .225

Listing E.4: Memory Unaligned Intel Assembly Codes.

When array bases are aligned and the Intel compiler is aware of it, as shown in
Listing E.5, the compiler now vectorizes the statement by only 3 instructions (L3, 4,
5), and unrolls it 8 times, so that all the YMM registers are employed.

1 %The comments only show the f i r s t v e c t o r i z a t i o n proce s s .
. . B1 . 1 6 0 :

3 vmulps (%r11 ,%rcx , 4 ) , %ymm10, %ymm0 #compute c0∗ in tmp [ i : i +7]
vsubps (%rbx ,%rcx , 4 ) , %ymm0, %ymm1 #compute c0∗ in tmp [ i : i +7]−out tmp [ i : i

+7]
5 vmovups %ymm1, (%rbx ,%rcx , 4 ) #s t o r e new out tmp [ i : i +7] back to memory

vmulps 32(%r11 ,%rcx , 4 ) , %ymm10, %ymm2
7 vsubps 32(%rbx ,%rcx , 4 ) , %ymm2, %ymm3

vmovups %ymm3, 32(%rbx ,%rcx , 4 )
9 vmulps 64(%r11 ,%rcx , 4 ) , %ymm10, %ymm4

vsubps 64(%rbx ,%rcx , 4 ) , %ymm4, %ymm5
11 vmovups %ymm5, 64(%rbx ,%rcx , 4 )

vmulps 96(%r11 ,%rcx , 4 ) , %ymm10, %ymm6
13 vsubps 96(%rbx ,%rcx , 4 ) , %ymm6, %ymm7

vmovups %ymm7, 96(%rbx ,%rcx , 4 )
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15 vmulps 128(%r11 ,%rcx , 4 ) , %ymm10, %ymm8
vsubps 128(%rbx ,%rcx , 4 ) , %ymm8, %ymm11

17 vmovups %ymm11, 128(%rbx ,%rcx , 4 )
vmulps 160(%r11 ,%rcx , 4 ) , %ymm10, %ymm12

19 vsubps 160(%rbx ,%rcx , 4 ) , %ymm12, %ymm13
vmovups %ymm13, 160(%rbx ,%rcx , 4 )

21 vmulps 192(%r11 ,%rcx , 4 ) , %ymm10, %ymm14
vsubps 192(%rbx ,%rcx , 4 ) , %ymm14, %ymm15

23 vmovups %ymm15, 192(%rbx ,%rcx , 4 )
vmulps 224(%r11 ,%rcx , 4 ) , %ymm10, %ymm0

25 vsubps 224(%rbx ,%rcx , 4 ) , %ymm0, %ymm1
vmovups %ymm1, 224(%rbx ,%rcx , 4 )

27 addq $64 , %rcx
cmpq $256 , %rcx

29 jb . . B1 .160

Listing E.5: Memory Aligned Intel Assembly Codes.

E.3 Memory Alignment and Event Counters

Memory alignment only reduces the number of data movement instructions. The
number of arithmetic floating point instructions (vaddps, vsubps and vmulps) stays
the same. Since Perf SIMD256 event counts only the number of arithmetic operations,
SIMD256 value will not decrease due to memory alignment.



Appendix F

Perf Setup

Perf is a profiling tool available from linux kernel source code. It can gather event
counts from the hardware counters.

The main reason for choosing Perf instead of PAPI for our profiling analysis is
that Perf can give event counts for 128-bit and 256-bit vectorizations separately, while
PAPI bundles these two different events together to a single event (PAPI_VEC_SP),
making it impossible to tell the portion of 256-bit vectorization in total vectorizations.

Nikolic described here ([Nikolic, 2013a], [Nikolic, 2013b]) on how to use showevtinfo
and check_events to find the Perf code names for hardware events. We are partic-
ularly interested in the following events:

Code Name Event Name Description
r530110 FP_COMP_OPS_EXE:X87 Number of X87

uops
r532010 FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE Number of 128-

bit scalar SPFP
uops

r534010 FP_COMP_OPS_EXE:SSE_PACKED_SINGLE Number of 128-
bit packed SPFP
uops

r530111 SIMD_FP_256:PACKED_SINGLE Number of 256-
bit packed SPFP
uops

r53012e L3_LAT_CACHE:MISS Number of L3
cache misses

Then run the following command to gather event counts:

perf stat -e r530110,r532010,r534010,r530111,r53012e ./main

Denote the counts gathered for previous events by X87, SCALAR, SIMD128, SIMD256,
L3MISS, then the total FLOPs for main is: X87+SCALAR+ 4∗SIMD128+ 8∗SIMD256.
Since X87 is order of magnitude smaller than the sum of remaining terms, this term
is omitted in FLOPs computations in this work.
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