Lei Fu

Department of Earth Science, Rice University Cell: (713) 586-9211 E-mail: lei.fu.rice@gmail.com

- EDUCATION
 - PhD student, Rice University Geophysics
 - MS, University of Utah Electromagnetic Modeling and Inversion
 - *BS*, University of Science and Technology of China Geophysics, seismology

RESEARCH

Subsurface offset extended seismic full waveform inversion

Reducing the cost of extended waveform inversion by multiscale adaptive methods

Marine 3-D seismic data of Galicia rifted margin

 Image: 2011 - present

 Image: 2009 - 2011

 Image: 2005 - 2009

Reducing the cost of extended waveform inversion by multiscale adaptive methods

Lei Fu, William W. Symes

The Rice Inversion Project (TRIP)

May 1, 2015

Objective

Recover Earth model by waveform inversion with extension

Problems

Computational cost

Solution

Multiscale method

Adaptive approach

Lei Fu, William W. Symes (TRIP)

Abstract setting for forward map $\mathcal{F}:\mathcal{M}\rightarrow\mathcal{D}$

$$F[m] = d$$

F: forward modeling operator m: model (v, r)d: sampled pressure data at receivers

In order to fit the data, thus avoiding cycle-skipping.

Extended forward map $\bar{\mathcal{F}}: \bar{\mathcal{M}} \to \mathcal{D}$

$$\bar{F}[\bar{m}] = d$$

 $\bar{F}:$ extended forward modeling operator

 $\bar{m}:$ extended model ($v(\mathbf{x})\text{, }\bar{r}(\mathbf{x},\mathbf{h})\text{, }\ldots\text{)}$

Subsurface Extension: 2h = distance between subsurface scattering points (subsurface offset)

Physical meaning: action at a distance

u - reference (incident) pressure field $\left(\frac{1}{v^{2}(\mathbf{x})}\frac{\partial^{2}}{\partial t^{2}} - \nabla^{2}\right)u(t, \mathbf{x}; \mathbf{x_{s}}) = w(t)\delta(\mathbf{x} - \mathbf{x_{s}})$ (1)

 δu - scattered (perturbation) pressure field

$$\left(\frac{1}{v^2(\mathbf{x})}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\delta u(t, \mathbf{x}; \mathbf{x_s}) = \frac{\partial^2}{\partial t^2} \int_{-H}^{H} d\mathbf{h} \frac{2\bar{r}(\mathbf{x}, \mathbf{h})v(\mathbf{x})}{v(\mathbf{x} + \mathbf{h})v^2(\mathbf{x} - \mathbf{h})}u(t, \mathbf{x}; \mathbf{x_s})$$
(2)

v: P-wave velocity \mathbf{x} : positionw(t): source function, t: time \mathbf{x}_s : source location \mathbf{h} : horizontal subsurface offsetH: limit of \mathbf{h} $\bar{r}(\mathbf{x}, \mathbf{h}) = \frac{\delta \bar{v}(\mathbf{x}, \mathbf{h})}{v(\mathbf{x})}$: extended reflectivity ($\delta \bar{v}(\mathbf{x}, \mathbf{h})$: extended velocity perturbation)

Extended full waveform inversion (EFWI)

Objective function:

$$min_{v,\bar{r}}J[v,\bar{r}] = \frac{1}{2}\|\bar{F}_H[v]\bar{r} - d\|^2 + \frac{\alpha^2}{2}\|A\bar{r}\|^2$$

A: annihilator, differential semblance operator, multiplication by $h.~\alpha=0$, can fit data with any $v;~\alpha>0$, penalty for non-focus.

Separable least-squares, solved with variable projection method [Golub and Pereyra, 1973]. The inverse problem is solved by a nested optimization approach:

Inner loop, optimize $J[v, \bar{r}]$ over \bar{r} .

Outer loop, optimize reduced objective function $J[v, \bar{r}[v]]$ over v.

Gradient of the objective function $J[v, \bar{r}]$ with respective to \bar{r} :

$$\nabla_{\bar{r}}J[v,\bar{r}] = \bar{F}_H[v]^*(\bar{F}_H[v]\bar{r} - d) + \alpha^2 A^* A\bar{r}$$

where * denotes adjoint.

Setting the gradient function to zero, least-squares extended reverse time migration (LSERTM) is solved by a linear iterative method, e.g. conjugate gradient method.

$$(\bar{F}_H[v]^*\bar{F}_H[v] + \alpha^2 A^* A)\bar{r} = \bar{F}_H[v]^*d$$

The gradient of the reduced objective function $J[v,\bar{r}[v]]$ respect to v:

$$\nabla_v J[v, \bar{r}[v]] = \Lambda^{-2s} D\bar{F}_H[v]^T \left(\bar{r}[v], \bar{F}_H[v]\bar{r}[v] - d\right)$$
(3)

where Λ^{-2s} is a smoothing operator for positive s [Symes and Kern, 1994].

Why $\bar{F}_H[v]\bar{r}$ expensive?

Recall equation 2:

$$\left(\frac{1}{v^2(\mathbf{x})}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\delta u(t, \mathbf{x}; \mathbf{x_s}) = \frac{\partial^2}{\partial t^2}\int_{-H}^{H} d\mathbf{h} \frac{2\bar{r}(\mathbf{x}, \mathbf{h})v(\mathbf{x})}{v(\mathbf{x} + \mathbf{h})v^2(\mathbf{x} - \mathbf{h})}u(t, \mathbf{x}; \mathbf{x_s})$$

Computational cost

Increase with number of grid points in
$$h (N_h = \frac{2H}{dh})$$

 $N_h \downarrow \Leftarrow dh \uparrow \text{ coarse grid} \Leftarrow \text{ multiscale method}$

 $N_h \downarrow \leftarrow H \downarrow$ How to choose and decrease H?

Single reflector example

2D constant density acoustic 2-8 order finite difference code

Source	Ricker wavelet $f_{peak} = 15 Hz$
Source position $\mathbf{x}_{\mathbf{s}}$	x:300-2700m every $40m$, $z=0m$
Receiver position $\mathbf{x}_{\mathbf{r}}$	$x:0-3000\ m$ every $20\ m$, $z=0\ m$
Subsurface offset h	$-1500 \ m \leqslant h \leqslant 1500 \ m$
Space and time	x = 3000 m, $z = 2500 m$, $t = 1.6 s$
Grid size	dx = dh = dz = 20 m, $dt = 2 ms$
Background velocity	$v_{true} = 3.0 \ km/s$

Figure : (a) Extended reflectivity \bar{r} at h = 0 m (b) data at shot 31 at the center

Lei Fu, William W. Symes (TRIP)

Multiscale adaptive in EFWI

Single reflector example

Figure : Inverted \bar{r} , 20 iterations of CG, $\alpha = 0$. (a) $v = v_{true}$ (b) $v = 1.3v_{true}$

Inverted \bar{r} at x = 1500 m for different v

Figure : 20 iterations of CG (a) $v = 0.9v_{true}$, (b) $0.8v_{true}$, (c) $0.7v_{true}$, (d) $1.1v_{true}$, (e) $1.2v_{true}$, (f) $1.3v_{true}$ Lei FU, William W. Symes (TRIP) Multiscale adaptive in EFWI May 1, 2015

Relationship between H and $\Delta d_H = \|\bar{F}_H[v]\bar{r} - d\|$

Figure : 20 iterations of CG, $v = 0.7 v_{true}$ (a) inverted \bar{r} (b) H vs relative Δd_H

Relationship between H and Δd_H at different v

Figure : Inverted \bar{r} , 20 iterations of CG

1. Given d, w, and v, choose:

lowest frequency, filter

 $d\boldsymbol{x}\text{, }d\boldsymbol{h}\text{ and }d\boldsymbol{z}$

CFL condition, $\ensuremath{\mathit{dt}}$

initial H

2. Solve LSERTM by CG, $(\bar{F}_H[v]^*\bar{F}_H[v] + \alpha^2 A^*A)\bar{r} = \bar{F}_H[v]^*d$

3. Compute $\Delta d_H = \|\bar{F}_H[v]\bar{r} - d\|$ and $\Delta d_{H/2} = \|\bar{F}_{H/2}[v]\bar{r} - d\|$

Multiscale adaptive method for determining H

- 1. $d_{obs}, w \leftarrow \mathsf{low-pass}(f_{min} f)$ on d_{obs} and w
- 2. $\bar{r} \leftarrow \mathsf{Solve} \mathsf{LSERTM}$
- 3. $\Delta d_{H/2}, \Delta d_H \leftarrow \bar{r}$
- if $\Delta d_H < X$ and $\Delta d_{H/2} < X$ then

 $(dh, H, d\mathbf{x}, dt) \leftarrow (dh/2, H/2, d\mathbf{x}/2, dt/2), f \leftarrow 2f$, go to 1

else if $\Delta d_H < X$ and $\Delta d_{H/2} \geqslant X$ then

exit

else

$$H \leftarrow 2H$$
, go to 2

end if

 $//\Delta d_{H/2} \ge \Delta d_H \ge X$

2D constant density acoustic 2-8 order finite difference code

Source wavelet	bandpass $3 - 30 Hz$
Source position \mathbf{x}_{s}	$x: 0-3 \ km$ every $0.1 \ km$, $z=0 \ m$
Receiver position $\mathbf{x}_{\mathbf{r}}$	$x: 0 - 3 \ km$ every $12.5 \ m$, $z = 0 \ m$
Space and time	$x = 3 \ km$, $z = 2.5 \ km$, $t = 2.4 \ s$
Grid size	dx = dh = dz = 12.5 m, dt = 2 ms
Background velocity	$v_{true} = 3.0 \ km/s$

Layer model

Figure : Extended reflectivity \bar{r} at h = 0 m

Data

Figure : (a) original data (b) filtered data (f: 3 - 8 Hz)

Step 1: $v = 2.4 \ km/s$

 $\begin{array}{l} \Delta d_{250} \geqslant \Delta d_{500} \geqslant X \text{, } H \leftarrow 2H = 1000 \ m \\ \Delta d_{1000} < X \text{ and } \Delta d_{500} \geqslant X \text{, exit} \end{array}$

Figure : Step 1: dh = dx = dz = 50 m, f : 3 - 8 Hz, dt = 8 ms (a) LSERTM result of 30 CG iterations, (b) the relative data residual

Lei Fu, William W. Symes (TRIP)

Step 2: $v = 2.8 \ km/s$

 $\Delta d_{1000} < X$ and $\Delta d_{500} < X$, $(dh, H, d\mathbf{x}, dt) \leftarrow (dh/2, H/2, d\mathbf{x}/2, dt/2)$, $f \leftarrow 2f$ $\Delta d_{500} < X$ and $\Delta d_{250} \ge X$, exit

Figure : Step 2: dh = dx = dz = 25 m, f : 3 - 16 Hz, dt = 4 ms, (a) LSERTM result of 22 CG iterations, (b) the relative data residual

Lei Fu, William W. Symes (TRIP)

Step 3: $v = 2.9 \ km/s$

 $\Delta d_{500} < X$ and $\Delta d_{250} < X$, $(dh, H, d\mathbf{x}, dt) \leftarrow (dh/2, H/2, d\mathbf{x}/2, dt/2)$, $f \leftarrow 2f$ $\Delta d_{250} < X$ and $\Delta d_{125} \ge X$, exit

Figure : Step 3: dh = dx = dz = 12.5 m, dt = 2 ms, the original data and source function (a) LSERTM result of 35 CG iterations, (b) the relative data residual

Summary

Reduce computational cost

Nonadaptive algorithm with largest H and finest dh, dt cost:

 $N_{outer} * N_{inner} * Cost_{inner}, Cost_{inner} \propto N_h * N_x * N_z * N_t$

Our method cost:

$$(1\cdot \frac{1}{4^4} + \frac{1}{2}\cdot \frac{1}{2^4} + \frac{1}{4}\cdot 1)/3 \approx 8\%$$

Methods:

- Use data residual to determine sufficient H
- Multiscale method
- Adaptive approach

Future work

- Good preconditioner
- Update v
- Implementation in IWAVE

Outer loop, update v

The gradient of the reduced objective function $J[v, \bar{r}[v]]$ respect to v:

$$\nabla_v J[v, \bar{r}[v]] = \Lambda^{-2s} D\bar{F}_H[v]^T \left(\bar{r}[v], \bar{F}_H[v]\bar{r}[v] - d\right)$$

where Λ^{-2s} is a smoothing operator for positive s [Symes and Kern, 1994].

Source	Ricker wavelet $f_{peak} = 15 Hz$
Source position $\mathbf{x}_{\mathbf{s}}$	$x: 0-6 \ km$ every $60 \ m$, $z=0 \ m$
Receiver position $\mathbf{x}_{\mathbf{r}}$	$x: 0-6 \ km$ every $20 \ m$, $z=0 \ m$
Subsurface offset h	$-500 \ m \leqslant h \leqslant 500 \ m$
Space and time	$x = 6 \ km$, $z = 2 \ km$, $t = 2.4 \ s$
Grid size	dx = dh = dz = 20 m, $dt = 3 ms$
Initial velocity	$v = 3.0 \ km/s$
Number of iteration	30
inner loop	

Table : Lens model

Lens model

Figure : (a) background velocity (b) extended reflectivity at h = 0 m

Data

Figure : Data of shot 51 at the center

Lei Fu, William W. Symes (TRIP)

Multiscale adaptive in EFWI

Inverted \bar{r} with v_{init}

Figure : 30 CG iterations

Inverted \bar{r} with v_2

Figure : 30 CG iterations

Thanks to TRIP sponsors and members

- Golub, G., and V. Pereyra, 1973, The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate: SIAM Journal on Numerical Analysis, **10**, 413–432.
- Symes, W., and M. Kern, 1994, Inversion of reflection seismograms by differential semblance analysis: Algorithm structure and synthetic examples: Geophysical Prospecting, **in press**.
- Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical Prospecting, **56**, 765–790.