

Extended Least Squares Migration

Jie Hou

TRIP 2014 Review Meeting

May 1st, 2015

Linearized Inverse Problem

$$Fm = d$$

Linearized Inverse Problem

$$Fm = d$$

Linearized Inverse Problem

Least Squares Migration

Two Problems of LSM

- Sensitive to Velocity Error
- Expensive Computational Cost

Extended LSM

- Sensitive to Velocity Error
- Expensive Computational Cost

7

Computational Cost

- Sensitive to Velocity Error
- Expensive Computational Cost

Acceleration

- Sensitive to Velocity Error
- Expensive Computational Cost

Acceleration

- Sensitive to Velocity Error
- Expensive Computational Cost

Optimization Algorithm

$$J_{LS} = \frac{1}{2} \|Fm - d\|^2 \quad \longleftarrow \quad F^T Fm = F^T d$$

Steepest Descent Algorithm

Optimization Algorithm

Weighted Conjugate Gradient

$$\begin{array}{l} \begin{array}{l} \mbox{Inner}\\ \mbox{Product} \end{array} < < m, F^{\dagger}d >_{model} = < d, Fm >_{data} \end{array}$$

$$\begin{array}{l} \mbox{$m^TW_{model}F^{\dagger}d = m^TF^TW_{data}d$} \end{array}$$

$$\begin{array}{l} \mbox{Adjoint} \qquad F^{\dagger} = W_{model}^{-1}F^TW_{data} \end{array}$$

$$\begin{array}{l} \mbox{Weight} \qquad W_{model}^{-1} = 4v_0^5LP \\ \mbox{$W_{data} = I_t^4D_{z_s}D_{z_r}$} \end{array}$$

Weighted Conjugate Gradient

WCG
$$\langle m, m \rangle_{model} = m^T W_{model} m$$

 $\langle Fm, Fm \rangle_{data} = m^T W_{model} F^{\dagger} Fm$
 $t = \mathbf{I}^{\bullet} \mathbf{I}^{\bullet} \mathbf{I}^{\bullet}$

→ X

2.5-5-30-35 bandpass wavelet

Background Model

Reflectivity Model

Stacked Image from CG

Stacked Image from WCG

Difference with Reflectivity Model

ELSM with 20 iteration CG

ELSM with 20 iteration WCG

Numerical Example - Wrong Velocity Model

Numerical Example - Wrong Velocity Model

ELSM with 20 iteration CG

Numerical Example - Wrong Velocity Model

ELSM with 20 iteration WCG

Velocity Model

Reflectivity Model

ELSM with 20 iteration CG

ELSM with 20 iteration WCG

Stacked Image from WCG

Conclusion & Future Work

Coarse Sampling, Missing Data

Inversion Velocity Analysis

- Fons ten Kroode for inspiring our work
- Jon Sheiman, Henning Kuehl, Peng Shen
- Shell International Exploration & Production
- TRIP Members and Sponsors
- Seismic Unix and Madagascar
- TACC and RCSG
- Thank you for listening

Numerical Example - Offset Range

Conjugate Gradient

$$F^{\dagger} = W_{model}^{-1} F^T W_{data}$$

$$F^T F m = F^T d$$

Weighted Conjugate Gradient

 $< m, m >_{model} = m^T W_{model} m \qquad < d, d >_{data} = d^T W_{data} d$

Reflectivity Model

Stacked Image from WCG