Guanghui Huang

Education

- University of Chinese Academy of Sciences, Beijing, China Ph.D. in Computational Mathematics 09/2009 - 07/2014 Thesis: *Reverse time migration for inverse scattering problems* Thesis supervisor: Professor Zhiming Chen
- Central South University, Changsha, China B.S. in Information and Computing Science 09/2

09/2005 - 07/2009

Research Interests

- Acoustic/Electromagetic/Elastic wave inverse scattering problem
- Phaseless data imaging and inversion
- Waveform inversion

A B > A B >

Reverse Time Migration for Inverse Scattering Problems

Guanghui Huang

TRIP, Department of Computational and Applied Mathematics

May 1, 2015, TRIP Annual Meeting

Guanghui Huang

RTM for Inverse Scattering Problems

- 1 Direct Scattering Problem in the Half Space
- 2 Half Space Reverse Time Migration
- 3 Analysis of Half Space RTM
- 4 Numerical Example

э

1 Direct Scattering Problem in the Half Space

- 2 Half Space Reverse Time Migration
- 3 Analysis of Half Space RTM
- 4 Numerical Example

・ 同 ト ・ ヨ ト ・ ヨ ト

Direct Scattering Problem in the Half Space

We consider acoustic wave propagating in the half space with Neumann condition,

$$\Delta u + k^2 u = -\delta_{x_s}(x) \quad \text{in } \mathbb{R}^2_+ \backslash \bar{D}, \tag{1}$$

$$u = 0$$
 on Γ_D , $\frac{\partial u}{\partial x_2} = 0$ on Γ_0 , (2)

$$r^{1/2}\left(\frac{\partial u}{\partial r} - \mathbf{i}ku\right) \to 0 \text{ as } r = |x| \to \infty,$$
 (3)

Here $k = \frac{\omega}{c}$ is the wavenumber. Let $N(x, y) = \Phi(x, y) + \Phi(x, y')$ be the Neumann Green function satisfying the homogeneous Neumann condition on Γ_0 , and $\Phi(x, y)$ be the Green function in the free space.

- < 同 > < 三 > < 三 >

Direct Scattering Problem in the Half Space

2 Half Space Reverse Time Migration

- 3 Analysis of Half Space RTM
- 4 Numerical Example

→ 3 → 4 3

< 🗇 🕨

Half Space Reverse Time Migration

Given the data $u^s(x_r, x_s)$ which is the measurement of the scattered field at $x_r = (x_1(x_r), x_2(x_r))^T$ when the source is emitted at $x_s = (x_1(x_s), x_2(x_s))^T$, $s = 1, \ldots, N_s$, $r = 1, \ldots, N_r$.

• Back-propagation: For $s = 1, ..., N_s$, compute the back-propagation field

$$v_b(z, x_s) = \frac{|\Gamma_0^d|}{N_r} \sum_{r=1}^{N_r} \frac{\partial \Phi(x_r, z)}{\partial x_2(x_r)} \overline{u^s(x_r, x_s)}, \quad \forall \ z \in \Omega.$$

• Cross-correlation: For $z \in \Omega$, compute

$$I_d(z) = \operatorname{Im} \left\{ \frac{|\Gamma_0^d|}{N_s} \sum_{s=1}^{N_s} \frac{\partial \Phi(x_s, z)}{\partial x_2(x_s)} v_b(z, x_s) \right\}.$$

Half Space RTM Half Space RTM Analysis of Half Space RT

Relation with Yu Zhang's True Amplitude Imaging Condition

In Yu Zhang's paper (First Break, 2009), the forward source wavefield is changed into

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta\right)p_F = 0 \tag{4}$$

$$p_F(x, y, z = 0) = \delta(x - x_s) \int_{-\infty}^{t} f(t') dt'.$$
 (5)

And the backpropagated received wavefield is given by

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta\right)p_B = 0 \tag{6}$$

$$p_B(x, y, z = 0; t) = Q(x, y; x_s, y_s; t).$$
(7)

< □ > < 同 >

where Q is the received data.

Relation with Yu Zhang's True Amplitude Imaging Condition

The imaging condition is the conventional cross-correlation condition,

$$I(x) = \int_{\Gamma_s} \int p_F(x,t;x_s) p_B(x,t;x_s) dt dx_s$$
(8)

By integral representation, the forward source wavefield can be written as in the frequency domain,

$$\hat{p}_F = \int_{\Gamma_s} \frac{\partial G(\xi, x)}{\partial \nu} \delta(\xi - x_s) \frac{1}{\mathbf{i}\omega} \hat{f}(\omega) d\xi = \frac{2}{\mathbf{i}\omega} \frac{\partial \Phi(x_s, x)}{\partial x_2(x_s)} \hat{f}(\omega)$$

Also the backproprogation field is given by

$$\hat{p}_B = \int_{\Gamma_r} \frac{\partial \overline{G(x_r, x)}}{\partial \nu} \hat{Q}(x_r, x_s) dx_r = 2 \int_{\Gamma_r} \frac{\partial \overline{\Phi(x_r, x)}}{\partial x_2(x_r)} \hat{Q}(x_r, x_s) dx_r$$

Half Space RTM Half Space RTM Analysis of Half Space RT

Relation with Yu Zhang's True Amplitude Imaging Condition

Recall the Parseval's identity

$$\begin{split} \int_{-\infty}^{+\infty} g(t)h(t)dt &= \int_{-\infty}^{+\infty} \hat{g}(\omega)\overline{\hat{h}}(\omega)d\omega \\ &= 2\mathrm{Re}\int_{0}^{+\infty} \hat{g}(\omega)\overline{\hat{h}}(\omega)d\omega \quad (\text{as } g,h \text{ are real}) \end{split}$$

Hence, Yu Zhang's imaging result is now given by

$$I(x) = 2\operatorname{Re} \int_{\Gamma_s} \int \hat{p}_F(x, x_s) \overline{\hat{p}}_B(x, x_s) d\omega dx_s$$

$$= 8\operatorname{Re} \int_{\Gamma_s} \int_0^{+\infty} \frac{1}{\mathbf{i}\omega} \frac{\partial \Phi(x_s, x)}{\partial x_2(x_s)} \hat{f}(\omega) \int_{\Gamma_r} \frac{\partial \Phi(x_r, x)}{\partial x_2(x_r)} \overline{\hat{Q}(x_r, x_s)} dx_r dx_s d\omega$$

$$= 8 \int_0^{+\infty} \frac{1}{\omega} \operatorname{Im} \left(\int_{\Gamma_s} \int_{\Gamma_r} \frac{\partial \Phi(x_s, x)}{\partial x_2(x_s)} \hat{f}(\omega) \frac{\partial \Phi(x_r, x)}{\partial x_2(x_r)} \overline{\hat{Q}(x_r, x_s)} dx_r dx_s \right) d\omega$$

Single Frequency vs Time domain RTM

Our method:

$$I_d(z) = \operatorname{Im} \left\{ \sum_{s=1}^{N_s} \sum_{r=1}^{N_r} \frac{\partial \Phi(x_s, z)}{\partial x_2(x_s)} \frac{\partial \Phi(x_r, z)}{\partial x_2(x_r)} \overline{u^s(x_r, x_s)} \right\}.$$

Yu Zhang's method:

$$I(x) = 8 \int_0^{+\infty} \frac{1}{\omega} \operatorname{Im} \Big(\int_{\Gamma_s} \int_{\Gamma_r} \frac{\partial \Phi(x_s, x)}{\partial x_2(x_s)} \hat{f}(\omega) \frac{\partial \Phi(x_r, x)}{\partial x_2(x_r)} \overline{\hat{Q}(x_r, x_s)} dx_r dx_s \Big) d\omega.$$

æ

< 臣 > <

A 10

Direct Scattering Problem in the Half Space

2 Half Space Reverse Time Migration

3 Analysis of Half Space RTM

- Point Spread Function
- Resolution Theorem
- Scattering Coefficient

4 Numerical Example

★ ∃ →

1 Direct Scattering Problem in the Half Space

2 Half Space Reverse Time Migration

Analysis of Half Space RTM
 Point Spread Function
 Resolution Theorem
 Scattering Coefficient

4 Numerical Example

★ ∃ →

A >

Point Spread Function

Let the point spread function be

$$J(z,y) = \int_{\Gamma_0} \frac{\partial G(x,z)}{\partial x_2} \overline{N(x,y)} ds(x), \quad \forall z,y \in \mathbb{R}^2_+.$$

Lemma

For any
$$z, y \in \mathbb{R}^2_+$$
, $J(z, y) = F(z, y) + R(z, y)$, where

$$F(z,y) = -\frac{\mathbf{i}}{2\pi} \int_0^\pi e^{\mathbf{i}k(z_1-y_1)\cos\theta + \mathbf{i}k(z_2-y_2)\sin\theta} d\theta,$$
$$R(z,y) = \frac{1}{\pi} \int_k^{+\infty} \frac{e^{-\sqrt{\xi_1^2 - k^2}(z_2+y_2)}}{\sqrt{\xi_1^2 - k^2}} \cos(\xi_1(z_1-y_1)) d\xi_1.$$

 $\begin{array}{l} \text{Moreover, } F(y,y) = -\mathbf{i}/2 \text{ and } |F(z,y)| \leq C(\sqrt{k|z-y|})^{-1}\text{,} \\ |R(z,y)| + k^{-1}|\nabla_y R(z,y)| \leq \frac{1}{\pi k(z_2+y_2)} \text{ uniformly for } z, y \in \mathbb{R}^2_+. \end{array}$

1 Direct Scattering Problem in the Half Space

- 2 Half Space Reverse Time Migration
- Analysis of Half Space RTM
 Point Spread Function
 Resolution Theorem
 Scattering Coefficient
- 4 Numerical Example

→ Ξ →

A >

For any $z \in \Omega$, let $\psi(y, z)$ be the scattering solution to the following problem:

$$\begin{split} &\Delta_y \psi(y,z) + k^2 \psi(y,z) = 0 \quad \text{in } \mathbb{R}^2 \backslash \bar{D}, \\ &\psi(y,z) = -\overline{F(z,y)} \quad \text{on } \Gamma_D. \end{split}$$

Theorem

We have

$$\begin{split} I_d(z) &= \frac{1}{4} \operatorname{Im} \left\{ \int_{\Gamma_D} \frac{\partial (F(z,y) + \psi(y,z))}{\partial \nu(y)} \overline{F(z,y)} ds(y) \right\} + W_{I_d}(z), \\ \text{where } |W_{I_d}(z)| &\leq C(1 + kd_D)^4 ((kh)^{-1/2} + h/d) \text{ uniformly for } z \text{ in } \\ \Omega. \end{split}$$

2

1 Direct Scattering Problem in the Half Space

- 2 Half Space Reverse Time Migration
- 3 Analysis of Half Space RTM
 - Point Spread Function
 - Resolution Theorem
 - Scattering Coefficient
- 4 Numerical Example

→ Ξ →

A >

Physical Interpretation

Definition

For any unit vector $\eta \in \mathbb{R}^2$, let $v^i = e^{ikx \cdot \eta}$ be the incident wave and $v^s = v^s(x, \eta)$ be the radiation solution of the Helmholtz equation:

$$\Delta v^s + k^2 v^s = 0$$
 in $\mathbb{R}^2 \setminus \overline{D}$, $v^s = -e^{\mathbf{i}kx \cdot \eta}$ on Γ_D .

The scattering coefficient $R(x,\eta)$ for $x\in \Gamma_D$ is defined by the relation

$$\frac{\partial (v^s + v^i)}{\partial \nu} = \mathbf{i} k R(x, \eta) e^{\mathbf{i} k x \cdot \eta} \quad \text{on } \Gamma_D.$$

Note that there are some differences between scattering coefficient and reflection coefficient.

・ 同 ト ・ ヨ ト ・ ヨ ト

Physical Interpretation

Now we consider the physical interpretation of the imaging function $\hat{I}_d(z)$ when $z \in \Gamma_D$. Since

$$\overline{F(z,y)} = \frac{\mathbf{i}}{2\pi} \int_0^{\pi} e^{\mathbf{i}k(y-z)\cdot\eta_{\theta}} d\theta, \quad \eta_{\theta} := (\cos\theta, \sin\theta)^T,$$

We obtain from the previous theorem and the definition of scattering coefficient that

$$I_d(z) = -\frac{k}{8\pi} \operatorname{Im} \int_{\Gamma_D} \int_0^{\pi} \overline{F(z, y)} R(y, \eta_{\theta}) e^{ik(y-z) \cdot \eta_{\theta}} d\theta ds(y) + O\left(\frac{1}{\sqrt{kh}} + \frac{h}{d}\right).$$

< ∃ >

э

Physical Interpretation

For the strictly convex $D, \mbox{ the scattering coefficient can be approximated by }$

$$R(x,\eta) = \begin{cases} 2\nu(x) \cdot \eta & \text{If } x \in \partial D_{\eta}^{-} := \{x \in \Gamma_{D} : \nu(x) \cdot \eta < 0\}, \\ 0 & \text{If } x \in \partial D_{\eta}^{+} := \{x \in \Gamma_{D} : \nu(x) \cdot \eta > 0\}. \end{cases}$$

Hence we have

$$I_d(z) \approx \left(\frac{k}{8\pi}\right)^{1/2} \operatorname{Im} \int_0^{\pi} \frac{F(z, y_-(\eta_{\theta}))}{\sqrt{\kappa(y_-(\eta_{\theta}))}} e^{\mathbf{i}k(y_-(\eta_{\theta})-z)\cdot\eta_{\theta} - \mathbf{i}\frac{\pi}{4}} d\theta.$$

∃ >

э

Direct Scattering Problem in the Half Space

- 2 Half Space Reverse Time Migration
- 3 Analysis of Half Space RTM
- 4 Numerical Example

・日本 ・日本 ・日本

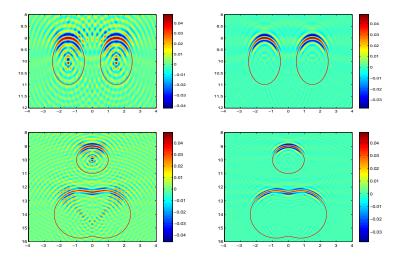


Figure: Left: $k = 4\pi$; Right: nine wavenumbers from $k = 4\pi$ to $k = 6\pi$

22 / 25

æ

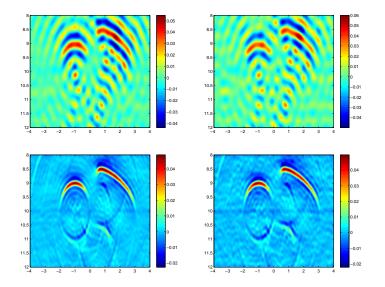


Figure: Noise level 10% (left) and 20% (right); Top row: $k = 2\pi$; Bottom row: nine wavenumbers from $k = \pi$ to $k = 5\pi$ and $k = 2\pi$;

Guanghui Huang

RTM for Inverse Scattering Problems

23 / 25

Related Works

- J. Chen, Z. Chen and G. Huang. Reverse Time Migration for Extended Obstacles: Acoustic Waves. Inverse Problem, 29 (2013) 085005 (17pp);

📎 Z. Chen and G. Huang. Reverse Time Migration for Reconstructing Extended Obstacles in the Half Space. Inverse Problem, 31 (2015) 055007 (19pp);

📎 Z. Chen and G. Huang. Reverse Time Migration for Reconstructing Extended Obstacles in Planar Acoustic Waveguide, to apppear in Sci. China Math.:

📎 J. Chen, Z. Chen and G. Huang. Reverse Time Migration for Extended Obstacles: Electromagnetic Waves. Inverse Problem, 29 (2013) 085006 (17pp);

📎 Z. Chen and G. Huang. Reverse Time Migration for Extended Obstacles: Elastic Waves (in Chinese). Sci. Sin. Math. 2014.

Thanks

- Total E&P USA, for funding me
- The Rice Inversion Project, for supporting me
- TRIP members, for helping me
- All of you, for listening to me

∃ >

э