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Seismic Inverse Problems: Recent Developments

in Theory and Practice

William W. Symes

ABSTRACT

The widely used least-squares approach to seismic inversion may fail due to in-
sufficient data spectrum. The model extension modification to least-squares in-
version can eliminate this full bandwidth requirement. For linearized extended
modeling about smooth background parameters, a geometric-optics based anal-
ysis explains the increased robustness of extended inversion, and relates its char-
acteristics explicitly to those of travel-time inversion.

INTRODUCTION

Inference of earth structure from seismic data may be formulated as an inverse prob-
lem, via a choice of earth model domain M , data range D, and forward or modeling
map F : M → D. M and D may be (subsets of) Hilbert spaces. and the inverse
problem set as a nonlinear least squares problem: given d, choose m to minimize

JOLS[m; d] =
1

2
‖F [m]− d‖2. (1)

Specific choices of M , D, and F appropriate for seismology are suggested below. For
now, note that seismic measurements are time series, so that D consists of functions
of time, amongst other experimental variables, with definite and limited bandwidth.

This formulation, along with many variations and refinements, has been studied
since the late ’70s. In the last ten years, 3D computational realizations have become
feasible, and successful least squares inversions have revealed subsurface maps of
unprecedented clarity - see for example Virieux and Operto (2009); Plessix et al.
(2010); Vigh et al. (2010). However, the oscillatory nature of seismic data combines
with the nonlinearity of F [m] to create numerous stationary points of JOLS, most of
which are uninformative about earth structure . Because of problem size, only rapidly
convergent iterations related to Newton’s method are computationally feasible. These
are local optimization methods, finding stationary points, whereas only the global
minimizer or a close approximation contains useful information. Low frequency data
helps by providing a larger region of attraction for the global minimizer, but it is not
always possible to acquire data with sufficiently high signal/noise ratio at sufficiently
low frequencies to take advantage of this observation (Plessix et al., 2010).
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2 Symes

This paper focuses on two ideas for modification of JOLS to produce optimization
tasks more amenable to calculus-based methods: (i) relaxation via extension, that is,
enlargement of the domain of F , and (ii) linearization and scale separation, which
permit analysis of the extended inverse problem via high frequency asymptotics. Both
ideas originate in industrial seismic data processing; the specific replacement for (1)
presented here is a variant of Wave Equation Migration Velocity Analysis, or WEMVA.
Our principal result is this: the objective Hessian at a consistent model-data pair
constrains perturbations in travel time slopes. That is, this variant of WEMVA
is related to stereotomography (Billette and Lambaré, 1998), at least in quadratic
approximation. Similar assertions seem to be widely believed of WEMVA in general,
but so far as I know this paper sketches the first explicit demonstration.

The extension described below is only one of many possible. See Symes (2009),
Symes (2008) for other possibilities and extensive overview.

The abbreviated discussion to follow glosses over many details of analysis and
physics, not all of which are trivial or acknowledged explicitly.

EXTENSION AND LINEARIZATION

The simplest useful physical description of seismic wave propagation is provided by
constant density acoustics, in which earth structure is characterized by a sound ve-
locity v(x), a positive function of position x ∈ R3, or equivalently by m = v−2. The
extension discussed here replaces m with a bounded coercive self-adjoint operator m̄
on L2(R3). In this extended acoustics, the pressure field p resulting from a point
isotropic radiator with time dependence w(t) located at position xs is the solution of
the initial value problem(

m̄
∂2p

∂t2
−∇2p

)
(x, t; xs) = w(t)δ(x− xs),

p(x, t; xs) = 0, t << 0. (2)

The physical significance of this extension is the relaxation of the “no action at a
distance” axiom of continuum mechanics. Abusing notation by writing m̄ also for
the distribution kernel of m̄, if (x,y) ∈ supp m̄, then a change in volume at x may
result in a change in pressure at y. Stolk (2000) and Blazek et al. (2013) show that
problems like (2) have sensible solutions, depending smoothly on the coefficient m̄ in
an appropriate sense. Define the extension operator E by Em(x,y) = m(x)δ(x,y):
that is, E maps a function of x into the corresponding multiplication operator. Then
with m = v−2 ∈ L∞(R3) and m̄ = Em (the “physical” case), (2) becomes the
ordinary acoustic wave equation.

A simplified model of seismic data is the trace of p on a horizontal surface {x :
x1 = zr} (that is, x1 is the depth coordinate, traditionally denoted z - thus zr for the
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constant depth of recording). I will ignore all issues arising from finite sampling, and
regard the receivers as occupying a continuum of dimension n−1. Likewise, regard the
positions of the sources as occupying a continuum, for convenience a subset of another
horizontal surface {x : x1 = zs}. Denote the horizontal coordinates by (x2, ..., xn) =
x′, and the source and receiver coordinate vectors by xr = (zr,x

′
r),xs = (zs,x

′
s).

With these conventions, the data recorded in a seismic survey define a function of
m̄, the the forward map or modeling operator F :

(F [m̄])(x′r, t; x
′
s) = χr,s(x

′
r,x
′
s)χt(t)p((zr,x

′
r), t; (zs,x

′
s)) (3)

in which χr,s ∈ C∞0 (R2(n−1)) and χt ∈ C∞0 (R) account for the finite extent of source
and receiver positions and duration of recording. Write Fδ[m̄] for the special case
defined by w = δ in (2). Then Fδ[m̄] is the distribution kernel of an operator closely
related to the Dirchlet-to-Neumann map which plays a role in many inverse problems.

Introduce the linearization about a physical coefficient m:

Fδ[m] = DFδ[E[m]], F [m] = w ∗ Fδ[m] (4)

and the “horizontal offset” constraint: apply F only to operator perturbations of
m satisfying m̄(x,y) = m̄′(x1,x

′,y′)δ(x1 − y1). That is, a volume perturbation can
only result in a pressure perturbation at the same depth. [This constraint can be
weakened]. We assume from now on that m is smooth, so that solutions of (2) can be
approximated by geometric optics. Then under certain conditions on the geometry
of bicharacteristics,

1. Fδ[m] is a bounded operator on L2(R5);

2. Fδ[m]∗Fδ[m] is a member of the class OPS0 of pseudodifferential operators of
order 0, elliptic in the conic set of “illuminated reflectors”. In fact, for any
pseudodifferential operator P of order 0, Fδ[m]∗PFδ[m] is pseudodifferential.
Similarly, for any pseudodifferential P of order 0, Fδ[m]PFδ[m]∗ is also a pseu-
dodifferential operator of order 0. The symbols of both operators, hence the
operators themselves, depend smoothly on m.

3. For each smooth m, δm, there exists a pseudodifferential operator Q[m, δm] of
order 1, for which

DFδ[m, δm] = D2Fδ[E[m]](E[δm], ·) = Fδ[m]Q[m, δm].

Q is essentially skew-symmetric:

Q[m, δm] +Q[m, δm]∗ = R[m, δm] ∈ OPS0(R5).

Q is smooth in m, linear in δm.

The necessary geometric conditions, and the meaning of “illuminated reflector”, are
explained for example by Stolk et al. (2009) and ten Kroode (2012). The first result in
item 2 is well-known, the second is peculiar to extended modeling. The factorization
of DF does not seem to have been described in the prior literature.
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A WELL-POSED INVERSE PROBLEM

The linearized version of the inverse problem introduced earlier is: given δd = d −
F [m], find m, δm to minimize ‖F [m]E[δm] − δd‖. Introduce a linear map A on
the space of distribution kernels whose kernel equals the range of E. For example,
under the “horizontal offset” condition, a natural choice would be Am̄ = [x′, m̄′]. In
terms of distribution kernels, Aδm̄ = (x′ − y′)m̄′(x1,x

′,y′). This choice of A acts
on the kernel of m̄ as a pseudodifferential operator of order 0. For consistent data,
δd = F [m]δm̄, Aδm̄ = 0, the solution m, δm̄ minimizes

JDS[m, δm̄] =
1

2

(
‖F [m]δm̄− δd‖2 + α2‖Aδm̄‖2

)
.

for any positive α.

JDS is just as likely to exhibit severe nonconvexity as is JOLS - indeed the former
includes the latter as a section. Kern and Symes (1994) observed that for this type
of problem, the reduced objective

J̃DS[m] = minδm̄JDS[m, δm̄]

is smooth, independently of the spectrum of w - in fact even for limit case w = δ.
This conclusion follows immediately from the facts cited above. The normal operator

N [m] = Fδ[m]∗Fδ[m] + α2A∗A ∈ OPS0

is microlocally elliptic, and can be made elliptic and indeed invertible with suitable
regularization of Fδ - assume that this has been done. Then

J̃DS[m] = JDS[m, δm̄[m]], δm̄[m] = N [m]−1Fδ[m]∗δd.

Thus J̃DS[m] can be rewritten as a sum of terms of the form 〈d, Fδ[m](...)Fδ[m]∗d〉:
the elided factors are products of pseudodifferential operators depending smoothly on
m, whence the second fact cited in item 2 implies the claimed smoothness.

Remark: The analogue of Fδ[m](...)Fδ[m]∗ for ordinary, rather than extended, mod-
eling is not pseudodifferential, which implies that the linearized problem stated at the
beginning of this section has non-smooth objective for w = δ, leading to the observed
proliferation of stationary points for band-limited w.

As J̃DS is smooth, it is well-approximated near a global minimizer m∗ by its
Hessian quadratic form. This form is easiest to analyze in case the data is consistent
with m∗, that is, F [m∗]δm̄[m∗] = δd, Aδm̄[m∗] = 0. A page or so of algebra, in which
one systematically makes use of consistency to drop various terms, results in

D2J̃DS[m∗](δm1, δm2) = 〈[A,Q[m∗, δm1]]δm̄[m∗], [A,Q[m∗, δm2]]δm̄[m∗]〉.

To understand the significance of this expression, it is necessary to compute the princi-
pal symbol q1 of Q, a smooth function on the punctured cotangent bundle T ∗(R5)\{0},
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homogeneous in the fiber variables ζ, ξ′, η′. In the simplest case, in which each source
or receiver point is connected by a unique ray to any point in the domain of δm̄, a
computation of the type pioneered by Beylkin (1985), Rakesh (1988) yields

q1[m, δm](x1,x
′,y′, ζ, ξ′, η′) = iζ(DT [m, δm](x,x′r(x1,x

′,y′, ζ, ξ′, η′))

+DT [m, δm](y,x′s(x1,x
′,y′, ζ, ξ′, η′))). (5)

In (5), DT is the perturbation of geometrical-optics traveltime along the ray (assumed
unique) between x and (zr,x

′
r) or (zs,x

′
s), with x′r and x′s defined as follows (see ten

Kroode (2012) for more on this construction).

Denote by X′r(x, ξ̂) the horizontal coordinates of the intersection, if any, with
x1 = zr of the ray of geometric optics with initial data (x, ξ̂). Define X′s(x, ξ̂) sim-
ilarly. The notation reminds the reader that the ray, hence the location and time
of surface arrival, depends only on the unit vector ξ̂ of ξ. For an open conic set of
(x1,x

′,y′, ζ, ξ′, η′), there exist unique data (x, ξ(x1,x
′,y′, ζ, ξ′, η′)) and (y, η(x1,x

′,y′, ζ, ξ′, η′))
so that

1. ζ = ξ1 + η1

2. m(x)|ξ|2 = m(y)|η|2

3. ξ1, η1 > 0

4. ξi = ξ′i, ηi = η′i for i > 1

Then

x′r(x1,x
′,y′, ζ, ξ′, η′) = Xr(x, ξ̂(x1,x

′,y′, ζ, ξ′, η′))

x′s(x1,x
′,y′, ζ, ξ′, η′) = Xs(y, η̂(x1,x

′,y′, ζ, ξ′, η′)) (6)

The symbol of the “annihilator” A is simply a0(x1,x
′,y′, ζ, ξ′, η′) = x′ − y′. Ac-

cording to the calculus of pseudodifferential operators (for instance Taylor (1981)),
the principal symbol of [A,Q] is

−i{a0, q1} = −i(∇ξ′ −∇η′)q1

= ∇x′rDTr · ∇ξ̂Xr · ζ(∇ξ′ −∇η′)ξ̂

+∇x′sDTs · ∇η̂Xs · ζ(∇ξ′ −∇η′)η̂ (7)

in which the subscripts on DT signify the collections of arguments at which it is to
be evaluated, per (5).
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It follows from the calculus, in particular from G̊arding’s inequality, that for suf-
ficiently oscillatory δm̄ - that is, for a sufficiently dramatic separation of scales - the
Hessian form is positive definite on subspaces of δm for which {a0, q1} is nonvanishing
in the support of δm̄. The expression (7) suggests the meaning of this condition. The
first factor in each of the two summands can be interpreted as the slope of arrival time
curves - all of them, not just a few that are picked for analysis. The second factor
in each case is proportional to a geometric amplitude (see for example Zhang et al.
(2003)). This factor must be present: if the amplitudes are zero, then the presence or
absence of reflectors (that is, support of δm̄) cannot furnish the data with information
about kinematics. The third factor is a real symbol of order zero, as the derivatives
of the unit vector are homogeneous of order −1.

CONCLUSION

Apparently, under certain circumstances, the WEMVA objective function described
in this paper is sensitive to the same aspects of the model m as is slope tomography
(Billette and Lambaré, 1998; Chauris and Noble, 2001), but without requiring the
picking of travel times. Picking is implicitly accomplished by data weighting, via
the presence of the perturbational model δm̄ and geometric amplitude in the Hessian
kernel. The explicit symbol computation (5), (7) suggest that a detailed analysis of
the Hessian singular spectrum may be feasible.

The computations presented here relied on strict ray geometric assumptions, which
may to some extent be relaxed - see ten Kroode (2012) for a closely related discussion.
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An Approximate Inverse to the Extended Born

Modeling Operator

Jie Hou and William W. Symes

ABSTRACT

Given a correct (data-consistent) velocity model, reverse time migration (RTM)
correctly positions reflectors but generally with incorrect amplitudes and wavelet.
Iterative least squares migration corrects amplitude and wavelet by fitting data
in the sense of Born modeling, that is, replacing migration by Born inversion.
However, least squares migration also requires a correct velocity model, and may
require many migration/demigration cycles. In this paper, we modify RTM in
the subsurface offset domain to create an asymptotic (high-frequency) approxima-
tion to extended least squares migration. This extended Born inversion operator
outputs extended reflectors (depending on subsurface offset as well as position
in the earth) with correct amplitude and phase, in the sense that similarly ex-
tended Born modeling reproduces the data to good accuracy. While the theo-
retical justification of the inversion property relies on ray-tracing and stationary
phase, application of the weight operators does not require any computational
ray-tracing at all. The computation expense of the extended Born inversion op-
erator is roughly the same as that of extended RTM, and the inversion (data
fit) property holds even when the velocity is substantially incorrect. The ap-
proximate inverse operator differs from extended RTM only in the application of
data- and model-domain weight operators, and takes the form of an adjoint in
the sense of weighted inner products in data and model space. Since the Born
modeling operator is approximately unitary with respect to the weighted inner
products, a weighted version of conjugate gradient iteration dramatically acceler-
ates the convergence of extended least squares migration. An approximate least
squares migration may be extracted from the approximate extended least squares
migration by averaging over subsurface offset.

INTRODUCTION

Reverse time migration (RTM) (Baysal et al., 1983; Loewenthal and Mufti, 1983;
Whitmore, 1983) produces kinematically accurate short-scale reflectivity, with reflec-
tors positioned as accurately as migration velocity permits. RTM images may be
degraded by amplitude anomalies, low-frequency noise, and wavelet side-lobes (Bed-
nar and Bednar, 2006; Mulder and Plessix, 2004). Least squares migration (LSM)

9
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(Nemeth et al., 1999; Dutta et al., 2014) compensates for all of these defects to some
extent. LSM is actually a linearized inversion (Bourgeois et al., 1989), that is, a
method for choosing short-scale reflectivity as a perturbation of the migration ve-
locity model so as to achieve a sample-by-sample mean square best-fit to data via
Born modeling. It has been formulated as an iterative process involving repeated
migrations and demigrations (Nemeth et al., 1999; Dutta et al., 2014), in asymptotic
approximation via Generalized Radon Transform (GRT) inversion (Beylkin, 1985;
Bleistein, 1987; De Hoop and Bleistein, 1997), and as a true amplitude modification
of wave-equation migration, using both one-way (Zhang et al., 2005) and two-way
(Zhang et al., 2007) propagators.

In the following pages we describe a modification of RTM that approximately inverts
the space shift extension of Born forward modeling (Rickett and Sava, 2002; Symes,
2008). That is, it produces an image volume depending not just on position in the
subsurface but also on a subsurface offset parameter (vector, in 3D). By analogy
with the usual terminology, one might term this approximate linearized inversion an
extended LSM. Averaging the output over offset with a weight equal to one at zero
offset produces an approximate inversion of the ordinary Born modeling operator,
that is, an approximate LSM, provided that the velocity model is consistent with the
data.

A concise mathematical description of this approximate inversion operator takes the
form

F̄ †[v0] = Wmodel[v0]F̄ ∗[v0]Wdata[v0]. (1)

In this formula,

• F̄ †[v0] is the approximate inverse of the extended Born modeling operator F̄ [v0]
at background velocity v0;

• F̄ ∗[v0] is the extended RTM operator, that is, the adjoint or transpose of the
modeling operator F̄ [v0]

• Wmodel[v0] and Wdata[v0] are model- and data-domain weighting operators, de-
fined in detail in the Theory section.

The central result of this paper is that an approximate inverse in the sense of high
frequency asymptotics takes this form, with weighting operators having explicitly
computable integral forms, depending only on phase space variables and the velocity
field. The derivation of this remarkable fact is sketched in the Theory section and
recounted in detail in the appendices. It is a feature of space-shift extended modeling,
and has no precise analogue for ordinary Born modeling.

ten Kroode (2012) described the construction of such an operator for 3D extended
Kirchhoff modeling (that is, modeling reflections from interfaces, rather than from
perturbations in the material parameter fields). Our work is directly inspired by
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his. The construction described in ten Kroode (2012) approximately inverts both a
space-shift extended Kirchhoff operator and an angle-domain analogue, via the Radon
transform relation between space-shift and scattering angle described first by Sava
and Fomel (2003). Ten Kroode suggests that an inverse is possible in the unfocused
case, in which image energy is spread over subsurface offset (or nontrivially dependent
on scattering angle). Zhang and co-workers (Bleistein et al., 2005; Zhang et al., 2007;
Zhang and Sun, 2008; Xu et al., 2011; Tang et al., 2013) have described an analogous
construction of an inversion operator that produces accurate images and angle-domain
extended gathers in the focused case. In all of these works (and in ours), geometric
optics/acoustics (ray theory) justifies the inversion construction - but no ray theory
constructions appear in the final result! The critical observation at the root of this
remarkable fact is due to Bleistein et al. (2005): the Hessian (“Beylkin”) determinants
arising in stationary phase approximation of the normal operator F ∗[v0]F [v0] factor
into reciprocal geometric amplitudes and other, ray-independent, terms. These geo-
metric amplitude factors cancel the geometric amplitudes present in the propagating
fields. The remaining expressions are free of ray-theoretic quantities.

Our results differ in several respects from those cited in the last paragraph. Unlike ten
Kroode (2012), we base our construction on Born (rather than Kirchhoff) modeling,
to produce an approximate extended LSM operator. The underlying mechanism of
the inverse construction is somewhat clearer in this case. Also, just as Born modeling
is the linearization of the full-waveform modeling operator, extended Born model-
ing is the linearization of an extended version of full-waveform modeling (Symes,
2008), and the approximate inverse may be useful in accelerating gradient-based,
image-domain full waveform inversion algorithms (Sun and Symes, 2012; Biondi and
Almomin, 2014). While most of the cited work concerns the scattering angle exten-
sion, the link between the angle domain and the subsurface offset domain is simply
a transform (Sava and Fomel, 2003). There being no intrinsic additional information
content in the angle representation, we present our results exclusively in terms of
subsurface offset. Unlike much previous work (for instance, (Xu et al., 2011), see dis-
cussion surrounding equation (10)), we do not assume that the background velocity
v0 is kinematically correct. Like the Kirchhoff inversion of ten Kroode (2012), our
Born inversion operator produces extended models with accurate amplitudes even
when the image volume is unfocused. Such accurate extended inversion is critical for
the success of image-domain velocity updating schemes (Kern and Symes, 1994; Liu
et al., 2013, 2014; Lameloise et al., 2014).

We give implementation details and numerical illustrations for the 2D constant-
density acoustics version of an approximate inversion taking the form given in equa-
tion (1). Our work seems to be the first to confirm explicitly, by numerical example,
that this operator is actually an inversion of the Born modeling operator F [v0]: that
is, that the output of the inversion operator, input to the modeling operator, repro-
duces the data with reasonable accuracy.

The form of the approximate inverse (1), with symmetric positive definite weight
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operators, also seems to be new, and has a remarkable implication: for norms in
model and data spaces given by the weight operators, F̄ [v0]† is the adjoint of F̄ [v0].
That is, the extended modeling operator is approximately unitary with this choice of
norms. The authors have verified the consequent drastic convergence acceleration for
extended Least Squares Migration via Krylov subspace iteration. These results will
be reported elsewhere.

As other authors have suggested, a 3D approximate inversion operator may be writ-
ten in precisely the same form (equation (1)), with a virtually identical derivation.
However, explanation of the theory is somewhat simpler in 2D, the computation im-
plementation is a good deal simpler, examples are less demanding, and results are
easier to present.

We end this overview with two caveats. First, we have considered only very idealized
acquisition geometry (and that in 2D): we have neglected the implications of coarse
sampling, more complex source receiver geometry such as OBS recording, broadband
technology, and availability of direct measurements of quantities other than pressure
for formulation of RTM-based approximate inversion operators. Others have ad-
dressed some of these issues (Tang et al., 2013); some or all will arise in any practical
application. Second, while our derivation produces an inverse regardless of focusing,
the model-domain weight operator Wmodel[v0] simplifies greatly in the focused case (or
equally well for laterally homogeneous velocities), and the examples presented here
are limited to these special cases. The Discussion section describes the additional
steps required to implement full image-volume inversion.

The next section describes space-shift linearized modeling and migration, and the
construction of the approximate inverse operator. The following section presents
several 2D examples and illustrates the features of the approximate inverse mentioned
above. We follow the examples with a brief discussion of various possibilities for
modification or extension of these results.

THEORY

In this section, we will first review the concepts of extended Born modeling operator,
its adjoint operator and their high frequency approximations. We will then modify
the adjoint operator into an approximate inverse operator. Finally, we will discuss
implementation details for the inverse operator.
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Extended Born Modeling Operator and its Adjoint

The 2D constant density acoustic wave equation with causal initial condition is :

1

v2(x)

∂2u

∂t2
(x, t)−∇2u(x, t) = f(t,x,xs); u(x, t) ≡ 0, t� 0 (2)

Here x denotes position within a model of the Earth, v(x) is the acoustic veloc-
ity, u(x, t) is the acoustic potential, and f(t,x,xs) is the source term. We assume
throughout this paper that v is constant in the half-space z < 0, that is, that z = 0
is an absorbing surface.

In the Born approximation, the velocity model is split into a smooth part v0 and a
singular or oscillatory part δv:

v(x) = v0(x) + δv(x) (3)

These two parts respectively correspond to a smooth long-wavelength, large scale
background model, which will not produce reflections, and a short-wavelength, small
scale perturbation model, which contains all the high resolution features.

Of course, one can construct a perturbation expansion for any decomposition of v
into two summands, however the corresponding perturbation approximation to the
acoustic field is most accurate when the scales are separated, that is, δv has very
small mean over distances on which v0 varies significantly (Symes, 2009).

The first order perturbation in the acoustic potential field δu corresponding to δv may
be expressed in terms of the causal Green’s function G(x,y, t) for a given background
model v0. Restricting δu to the source and receiver positions xs,xr results in an
integral operator expression for the Born modeling operator F [v0] :

(F [v0]δv)(xs,xr, t) =
∂2

∂t2

∫
dxdτG(xs,x, τ)

2δv(x)

v0(x)3
G(x,xr, t− τ) (4)

The adjoint operator F [v0]∗ is the operator implemented by one common variant of
Reverse Time Migration: it is applied to a set of data trace perturbations δd(xs,xr, t)
by

(F ∗[v0]δd)(x) =
2

v0(x)3

∫
dxsdxrdtdτG(xs,x, τ)G(x,xr, t− τ)

∂2

∂t2
δd(xs,xr, t) (5)

An appropriate version of subsurface offset extended Born modeling introduces depen-
dence of δv (but not v0) on an additional parameter, h, essentially the offset between
sunken source and sunken receiver in Claerbout’s survey-sinking imaging condition
(Claerbout (1985), Symes (2008), Stolk et al. (2009b)). In terms of Green’s functions,
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the subsurface extended Born Modeling Operator and its adjoint (applied to a data
perturbation δd) are :

(F̄ [v0]δv̄)(xs,xr, t) =
∂2

∂t2

∫
dxdhdτG(xs,x− h, τ)

2δv̄(x,h)

v0(x)3
G(x + h,xr, t− τ) (6)

(F̄ ∗[v0]δd)(x,h) =
2

v0(x)3

∫
dxsdxrdtdτG(xs,x− h, τ)G(x + h,xr, t− τ)

∂2

∂t2
δd(xs,xr, t)

(7)
In Claerbout’s original conception, the subsurface offset h is horizontal. ten Kroode
also adopts this convention, and we follow it here. Thus we write h rather than h for
the (scalar) horizontal subsurface offset in 2D.

High Frequency Approximation

The progressing wave approximation (Courant and Hilbert (1962)) of the Green’s
function is

G(xs,x, t) ' a(xs,x)S(t− T (xs,x)). (8)

In equation (8), the amplitude a(xs,x) and the travel time T (xs,x) solve the transport
and eikonal equation respectively, and S(t) is a singular, causal waveform, the choice
of which depends on the space dimension. The approximation (8) is only valid locally,
between the source point and the nearest caustic or conjugate (multipath) point.
The conclusions we draw below are valid more globally, however, provided that the
Traveltime Injectivity Condition holds: a two-way traveltime along a reflected ray
pair determines the one-way traveltimes of source and receiver rays. ten Kroode
(2012) gives a detailed justification for the global validity of similar conclusions in
the 3D case. We confine ourselves in this paper to numerical evidence for global 2D
results.

In 2D case, the leading singularity is proportional to the generalized function S(t) =

t
−1/2
+ = t−1/2H(t). Replacing the Green’s function by the progressing wave approxi-

mation (8) in the expression (6) for the extended Born modeling operator and using
the identity (Gel’fand and Shilov (1958)),

t
−1/2
+ ∗ t−1/2

+ = (Γ(
1

2
))2H(t) = πH(t) (9)

we obtain

(F̄ [v0]δv̄)(xs,xr, t) '
∂

∂t

∫
dxdhasarδ(t− Ts − Tr)

2πδv̄(x, h)

v0(x)3
(10)

in which we have denoted amplitudes a(xs,x−h), a(x+h,xr) as as, ar and traveltime
T (xs,x − h), T (x + h,xr) as Ts, Tr. We can also give the same treatment to the
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migration operator :

(F̄ [v0]∗δd)(x, h) ' 2π

v0(x)3

∫
dxsdxrasar

∂

∂t
δd(xs,xr, Ts + Tr) (11)

Asymptotic Inverse Operator

The derivation of the inverse operator starts from understanding the high frequency
leading order behavior of the normal operator F̄ ∗F̄ . Both a bit of foresight and
simplification of the computations suggest examining the modified normal operator
(ItF̄ )∗(ItF̄ ) instead, with It the causal indefinite time integration operator, inverse
to ∂/∂t. Combining equations (10) and (11) yields an integral representation for
(ItF̄ )∗(ItF̄ ). Appendix A sketches a lengthy but standard computation based on
the Principle of Stationary Phase, showing that this integral representation has an
asymptotic (high frequency, short scale) approximation in the form of an oscillatory
integral:

(ItF̄ )∗(ItF̄ )δv̄(x, z, h) ≈ −
∫
dkxdkzdkhe

i(kxx+khh+kzz)δ̂v(kx, kh, kz)

×

[
2πv−5

0

kxzkhz
Pa2

ra
2
s

(
∂αs
∂xs

∂αr
∂xr

)−1
] (12)

The integrand factor in brackets will be explained below; if it were identically = 1,
then up to nuisance factors the right-hand side would recover the velocity perturbation
δv̄, accurately at short length scales.

The remainder of this section explains how the factor in brackets simplifies, all ray-
trace dependent quantities cancel, additional filtering and scaling operators applied
to data (input) and model (output) lead to an approximate identity, and precisely
how it comes to have the form of the main result, equation (1).

The integrand in equation (12) is a function of the extended phase space variables
(x, z, h, kx, kz, kh). Several of its factors are related to source and receiver rays traced
from (x± h, z) to the surface. These include

• source and receiver geometric amplitudes (spreading factors) as and ar;

• rates of change of receiver ray angle (with the vertical) αr with respect to
receiver coordinate xr;

• rates of change of source ray angle (with the vertical) αs with respect to source
coordinate xs;
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The initial slowness vectors ks of the source ray (at (x− h, z)) and kr of the receiver
ray (at (x+ h, z)) solve the system of equations

kx =
krx + ksx

2

kh =
krx − ksx

2

kz =
krz + ksz

2
v(x+ h, z)2((krx)

2 + (krz)
2) = v(x− h, z)2((ksx)

2 + (ksz)
2)

(13)

The first three conditions in the system (13) follow from the stationary phase condi-
tions (A-6), as explained in the Appendix A. The last condition expresses the equal-
ity of temporal frequency along source and receiver rays. These conditions together
amount to a version of Snell’s Law appropriate for space-shift extended modeling.

Rays with initial conditions (x+h, z, krx, k
r
z) and (x−h, z, ksx, ksz) intersect source and

receiver datums at points (xs, zs) and (xr, zr), thus making xr, xs functions of the
extended phase space variables (x, z, h, kx, kz, kh), and therefore also the geometric
amplitudes ar and as. The ray angles are as well, since for instance tanαr = krx/k

r
z ,

therefore so are their derivatives with respect to source and receiver coordinates.

The other factors in the bracketed integrand factor in (12) are explicit, algebraic
functions of the phase variables, whose definition does not require ray tracing at all.
The (x, z) and (h, z) wavenumbers are defined as

kxz = (k2
x + k2

z)
1
2 , khz = (k2

h + k2
z)

1
2 . (14)

The remaining factor P is homogeneous of degree zero in (kx, kz, kh), and depends
algebraicaly on these frequency variables and on v(x − h, z), v(x, z) and v(x + h, z).
A full definition of P is given in Appendix A. For now, note that P = 1 when h = 0.

Next, we invoke the result of Appendix B, relating geometric amplitudes to angular
rates of change:

a2
r =

1

8π2

vr
cosθr

dαr
dxr

a2
s =

1

8π2

vs
cosθs

dαs
dxs

(15)

In these expressions, θr and θs are arrival angles of receiver and source rays at receiver
and source. Since the receiver and source ray data are functions of the phase variables,
so are θr and θs.

Remarkably, the amplitudes and angular rates of change in (12) cancel due to (15).
This cancellation of both geometric amplitudes occurs only for extended modeling.
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The analogous computation for single shot records, for example, leads to cancellation
of the receiver ray amplitude ar only. In that setting, inversion requires an additional
operator, essentially Claerbout’s division imaging condition (Stolk et al., 2009a), to
compensate for the source amplitude field. For the horizontal offset extension, the
additional integrations over the subsurface offset variable lead to an additional αs
derivative via stationary phase, thus canceling the source amplitude as well. See
Xu et al. (2011) for a version of this argument using scattering angle rather than
subsurface offset.

Taking advantage of this observation and simplifying, equation (12) becomes

(ItF̄ )∗(ItF̄ )δv̄(x, z, h) ≈ −
∫
dkxdkzdkhe

i(kxx+khh+kzz)δ̂v(kx, kh, kz)

×
[

v−5
0

32π3kxzkhz
P

vs
cos θs

vr
cos θr

] (16)

The integrand on the right hand side still appears entangled with ray-theoretic con-
structions, namely the arrival angles θr, θs. To eliminate these, a further modification
of the normal operator is necessary. The expression (10) for the modeling operator
using asymptotic Green’s functions implies that

∂

∂zr
ItF̄ [v0]δv̄(xs,xr, t) ≈ −

∫
dxdhasar

∂Tr
∂zr

∂δ

∂t
(t− Ts − Tr)

2πδv̄(x, h)

v0(x)3

= − ∂

∂t

∫
dxdhasar

∂Tr
∂zr

δ(t− Ts − Tr)
2πδv̄(x, h)

v0(x)3
(17)

From the eikonal equation,
∂Tr
∂zr

= −cos θr
vr

(18)

Combine equations (17) and (18), use the abbreviations Dzr = ∂/∂zr, and cancel the
two time derivatives with time integrations to obtain

ItDzrItF̄ [v0]δv̄(xs,xr, t) '
∫
dxdhasar

cos θr
vr

δ(t− Ts − Tr)
2πδv̄(x, h)

v0(x)3
(19)

Precisely the same manipulations with the source-related quantities lead to

ItDzsItDzrItF̄ [v0]δv̄(xs,xr, t) ≈
∫
dxdhasar

cos θr
vr

cos θs
vs

δ(t− Ts − Tr)
2πδv̄(x, h)

v0(x)3

(20)
The right-hand side of equation (20) defines an operator differing from ItF̄ [v0] only
in having additional receiver- and source-dependent factors multiplying the ampli-
tudes. Therefore the stationary phase computations in Appendix A combined with
the amplitude-angle relations of Appendix B lead to an asymptotic approximation
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similar to (16):

(ItF̄ )∗(ItDzsItDzrItF̄ )δv̄(x, z, h) ≈ −
∫
dkxdkzdkhe

i(kxx+khh+kzz)δ̂v(kx, kh, kz)

×
[

v−5
0

32π3kxzkhz
P

] (21)

The source wavefield is downgoing, the receiver wavefield upcoming (again, we assume
a homogeneous velocity in z < max(zs, zr)). Therefore if d = F̄ [v0]δv̄ is in the range
of the extended Born modeling operator,

ItDzrItd(xr, t;xs) =

1

8π3

∫
dksdkrdω exp(i(ksxs + krxr + ωt))

+

√
1

v2
0

−
(
kr
ω

)2
 Îtd(kr, ω; ks). (22)

ItDzsItd(xr, t;xs) =

1

8π3

∫
dksdkrdω exp(i(ksxs + krxr + ωt))

−
√

1

v2
0

−
(
ks
ω

)2
 Îtd(kr, ω; ks). (23)

(this observation is due to ten Kroode (2012)). It follows from (22), (23) that the
operator −(It)

∗(ItDzs)(ItDzr)It has the same effect on data output by the forward
map F̄ [v0] as the positive definite symmetric operator Wdata[v0], defined by

Wdata[v0]d(xr, t;xs) = (It)
∗ 1

8π3

∫
dksdkrdω

× exp(i(ksxs+krxr+ωt))

√ 1

v2
0

−
(
kr
ω

)2
√ 1

v2
0

−
(
ks
ω

)2
 (Îtd)(kr, ω; ks). (24)

Explicitly,
Wdata[v0]F̄ [v0] = −(It)

∗ItDzsItDzrItF̄ [v0]. (25)

Note that Wdata[v0] depends only on the values of v0 near the sources and receivers:
it is completely independent of the behaviour of v0 for z > max(zr, zs).

Oscillatory integral operators of the type appearing on the right-hand side of equation
(21) have come to be called pseudodifferential, and have a number of important prop-
erties, of which we must use several. For example, the product of two such operators
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is another such: the Fourier representation amplitude (or symbol) of the product is
the product of the symbols of the operator factors, up to an asymptotically negligible
error. It follows that such operators (on scalar functions) commute up to an asymp-
totically negligible error. An operator with nonvanishing symbol is asymptotically
invertible, and the symbol of the inverse is the reciprocal of the symbol. See for
instance Taylor (1981) for an account of the calculus of pseudodifferential operators.

It follows that we can write the right-hand side of equation (21) as

≈ (Wmodel[v0]−1δv̄)(x, z, h) (26)

in which

Wmodel[v0]−1u(x, z, h) =
1

8π3

∫
dkxdkhdkz exp(i(kxx+ khh+ kzz))

v0(x, z)−5

4kxzkhz
× P (x, z, h, kx, kz, kh)û(kx, kz, kh).

(27)

As follows from the facts mentioned above,

Wmodel[v0]u(x, z, h) =
1

8π3

∫
dkxdkhdkz exp(i(kxx+ khh+ kzz))

4v0(x, z)5kxzkhz
P (x, z, h, kx, kz, kh)

× û(kx, kz, kh).
(28)

Combining equations (21), (25), and (26) establishes the main conclusion of our paper,
equation (1), with Wmodel defined in equation (28) and Wdata defined in equation (24).

We end this section by describing how the approximate inverse operator (1) defines an
approximate (non-extended) least squares migration. Given a velocity perturbation
δv(x, z), the corresponding extended model is

δv̄(x, z, h) = δv(x, z)δ(h),

Let
δd = F [v0]δv

be the corresponding Born data. Then

δv̄ = Wmodel[v0]F̄ [v0]∗Wdata[v0]δd,

whence

δv(x, z) =

∫
dhφ(h)(Wmodel[v0]F̄ [v0]∗Wdata[v0]δd)(x, z, h) (29)

for any weight function φ(h) satisfying φ(0) = 1.

The arbitrariness of the weight function φ(h), subject only to the constraint φ(0) = 1,
might seem strange. Viewing the formula (29) in terms of the related angle-domain
image volume, as in (Sava and Fomel, 2003), suggests an alternate meaning for this
formula. Via the Radon transform, a weighted average over offset is equivalent to a
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weighted average over angles of the corresponding angle-domain volume. A weight
function φ(h) spread uniformly over the offset range, as we have used in the examples
of the next section, corresponds to an angle domain weight function concentrated near
zero (scattering angle). For well-focused noise-free data, inversion using a small range
of scattering angles should be reasonably accurate, as indeed the examples presented
in the next section attest. On the other hand, a choice of φ(h) concentrated near
h = 0 would correspond to estimating δv as a stack over a wide range of scattering
angles. One might expect the estimate so obtained to be less sensitive to incoherent
or numerical noise.

Implementation Details

In the implementation of the asymptotic inverse operator, any suitable time- or
frequency-domain method can be used to approximate F̄ and F̄ ∗. We have used
a time-domain centered difference scheme of order 2 in time and 8 in space to solve
the acoustic wave equation, and the well-known adjoint state method (Plessix, 2006)
to approximate F̄ ∗.

For Wdata, equation (25) shows that for model-consistent data, either the definition
(24) in terms of one-way operators, or the equivalent expression in terms of source and
receiver vertical derivatives (dipole source/receiver) produces the same result, at least
in principle. In the numerical experiments reported in the next section, we have chosen
the dipole approach. To avoid explicitly computing dipole responses, we have used
a trick available for streamer geometry with free surface and relatively shallow tow
depth: the ghost sources and receivers automatically supply scaled dipoles. Assuming
the source tow depth to be zs, the free surface Green’s function Gfree is related to the
full space (absorbing boundary) Green’s function G by

Gfree(x, z, t;xs, zs) = G(x, z, t;xs, zs)−G(x, z, t;xs,−zs) ≈ 2zsDzsG(x, z, t;xs, 0)
(30)

By reciprocity, a similar approximation applies to the receiver. In application, if F̄ [v0]
is computed with absorbing boundary, then F̄ [v0]∗ can be caculated with free surface,
or vis-versa - in either case, with appropriate inclusion of It factors, an approximation
to Wdata for the absorbing surface problem ensues.

This approximation proved quite convenient and produced consistent results as the
central finite different implementation (Hou and Symes, 2014) for a first round of
numerical experiments. It might even be applied to actual streamer data with shallow
and uniform tow depth. However it is is only good to perhaps half of the notch
frequency, so strictly limits resolution. For more or less arbitrary but uniform source
and receiver depths and sampling, the one-way propagator construction (24) would be
preferable. As mentioned in the introduction, more sophisticated streamer geometry,
OBS recording, and less favorable sampling all would require modification of even the
3D version of our computations.
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Application of the weight operator Wmodel[v0] in principle requires the evaluation of an
oscillatory integral (28). However in two special cases, the factor P may be ignored:
as established in Appendix A, P = 1 if either h = 0 or if v0 is independent of x.
The first case applies to approximate least-squares migration: if model and data are
consistent, then image energy focuses at h = 0 and the values of P for nonzero h do
not contribute to leading order in frequency (more technically, this is the pseudolocal
property of F̄ [v0]∗Wdata[v0]F̄ [v0] and Wmodel[v0]: both are pseudodifferential, and the
image of a physically consistent input is asymptotically negligible away from h = 0).

Accordingly, we have set P = 1 in our examples, which fall into one of these two
classes. Then

Wmodel[v0] ∼ 4v5
0L, (31)

where L is the filter defined in the Fourier domain by kxzkhz: in other words,

L =
√
−∇2

x,z

√
−∇2

h,z. (32)

With these approximations to Wdata and Wmodel, the computational cost of the ap-
proximate inverse operator F̄ [v0]† very similar to that of the extended RTM operator
F̄ [v0]∗.

NUMERICAL EXAMPLES

In this section, we will use three numerical examples to illustrate the effectiveness of
the inverse operator.

The first model, shown in Figure 1(a), combines three flat reflectors at z = 1, 1.5, 2 km
with a constant (2500 m/s) background velocity model. The spatial sampling interval
of the model is 10 m for both x and z axis. A (2.5-5-35-40) Hz bandpass wavelet with
1 ms time interval is used to simulate the Born data (2-8 Finite Difference Scheme).
76 shots are evenly spread on the surface (z = 0) every 40 m. All the shots will be
recorded by 301 receivers deployed every 10 m on the surface.

One shot Born data (xs = 1500 m) shown in Figure 1(b) is calculated using Equation
(6). Both extended RTM (Equation (7)) and the new inverse operator (Equation
(1)) are applied on the Born data. Comparing the migrated image (Figure 2(a)) and
inverted reflectivity model (Figure 2(b)), we can clearly see the inverse operator can
focus the energy much better than extended RTM. It has many least squares migration
qualities, such as improved amplitudes, tighter wavelet. Thus, the inverse operator at
least plays the role of space deconvolution. However, we can never recover the reflector
perfectly due to the lack of the low frequency data. The inverted reflectivity model
will not be a good standard for the effectiveness of the inverse operator. A good way
to evaluate the inverse operator would be to compare the “observed” data of the true
model (Figure 1(b)) and the resimulated data of inverted reflectivity model (Figures
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(a)

(b)

Figure 1: (a) Reflectivity Model (δv) with a constant background model
(v0 = 2500 m/s) (b) One-shot (xs = 1500 m) Simulated Born Data

appinv/Fig/layer layermodel,layerdata
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3(a)). The comparisons (Figure 3) show that the data resimulated from the inverted
reflectivity model is almost same as the original data. The degree of approximation
shows clearly in the comparison of middle traces of original and resimulated data,
Figure 7(a).

Another point worth noting is that the inverse operator is valid, that is, produces a
data-fitting model, no matter whether the background velocity is correct or not. Same
comparison between the extended RTM and the inverse operator has been carried out
with incorrect background velocity model (90% of true velocity), see Figure 4. The
comparison indicates the above analysis is true even in the presence of velocity error.
The resimulation is displayed in Figure 5(a), which should be compared to Figure
1(b). The difference appears in Figure 5(b). Some divergence is unavoidable near the
boundary as a result of the acquisition geometry. Apart from that, the resimulation
matches the original Born data extremely well. We conclude that the operator defined
in equation (1) is an accurate approximate inverse to the extended Born modeling
operator, at least for data arising from physical (non-extended Born) modeling.

We call the process defined by equation (29) non-extended approximate inversion, for
the purposes of this section. In our examples, we use the simplest choice of weight
function, φ ≡ 1, that is, stacking along the h-axis. Both the full volume (Figure 6) and
middle trace comparisons in Figure 7(b) illustrate the precision of the non-extended
approximate inversion, and the generally low frequency nature of the error.

The simple geometrical optics computation of previous section will fail in the presence
of caustics (or multipathing). The second example will show that the conclusions ex-
pressed by equations (1) and (29) are still valid even in the presence of multipathing.
The background velocity model for the second example contains a low velocity Gaus-
sian lens. A flat horizontal reflector is placed right below the lens at the depth of 2
km. This model is very similar to the one used by Nolan and Symes (1996) and Stolk
and Symes (2004). The numerical implementation has the same configuration as the
first example. Because of the Gaussian lens, the rays will certainly focus and form
a triplication after going through the lens. The rays and wavefronts are shown in
Figure 8(b). We can clearly see that this model produces multipathing and caustics.

The inverse operator defined in equation (1) produces the reflectivity model shown
in Figure 9(a). From the image perspective, we clearly reproduce the flat reflector
below the lens with no kinematic artifacts (Stolk and Symes, 2004), consistent with
kinematic prediction in Stolk et al. (2009b). Resimulation with Born modeling oper-
ator from the inverted reflectivity model predicts data very close to the input data
(Figure 10(a), 11(a)).

Finally, we apply our approximate inversion to Born data for the Marmousi Model.
We smooth the velocity model as the background model and take the difference as the
reflectivity model, shown in Figure 12(a) and 14(a). Born data for Marmousi model
has 231 common shot gathers every 40 m and each shot has 921 receivers every 10 m
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(a)

(b)

Figure 2: (a) Extended RTM image (b) Extended Inverted Reflectivity Model

appinv/Fig/layer layerimagrtm,layerimag
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(a)

(b)

Figure 3: (a) Resimulated Data of the Inverted Reflectivity Model (b) Difference be-

tween the resimulated data and original data appinv/Fig/layer layerinvdata,datadiff
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(a)

(b)

Figure 4: (a) Extended RTM image (b) Extended Inverted Reflec-
tivity Model, both using an incorrect background velocity model
appinv/Fig/layer layerimagrtmwrong,layerimagwrong
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(a)

(b)

Figure 5: (a) Resimulated Data of the Inverted Reflectivity Model using an incorrect
background velocity (b) Difference between the resimulated data and original data

appinv/Fig/layer layerdatawrong,datadiffwrong
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(a)

(b)

Figure 6: (a) Non-extended Inverted Reflectivity Model (
∑
h

i(x, h), where (i(x, h)

is the extended Inversion result) (b) Difference between the non-extended inversion

result and original reflectivity model appinv/Fig/layer layerstack,refdiff
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(a)

(b)

Figure 7: One trace comparison (x = 1500 m) between the observed data (blue
solid line) and predicted data from inverted reflectivity model (green dashed line).
The difference is shown as the red solid line. (b) One trace comparison (x = 1500
m) between the reflectivity model (blue solid line) and non-extended inverted re-
flectivity model (green dashed line). The difference is shown as the red solid line.

appinv/Fig/layer onetrace,onetraceref
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(a)

(b)

Figure 8: (a) Gaussian lens background velocity model with a reflector at
2 km (b) The rays and wavefronts in the Gaussian lens velocity model

appinv/Fig/gauss vmod,gasswray
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(a)

(b)

Figure 9: (a) Extended Inverted Reflectivity Model (b) Non-extended Inverted Re-

flectivity Model appinv/Fig/gauss image,stack
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(a)

(b)

Figure 10: (a) One-shot (xs = 1500 m) Resimulated Born Data (b) Difference between

the resimulated data and original data appinv/Fig/gauss invdata,gassdatadiff



An Approximate Inverse Operator 33

(a)

(b)

Figure 11: One trace comparison (x = 1500 m) between the observed data (blue
solid line) and predicted data from inverted reflectivity model (green dashed line).
The difference is shown as the red solid line. (b) One trace comparison (x = 1500
m) between the reflectivity model (blue solid line) and non-extended inverted re-
flectivity model (green dashed line). The difference is shown as the red solid line.

appinv/Fig/gauss gassonedata,gassoneref
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(fixed spread). The inverse operator has been applied on the Born data (middle shot
shown in Figure 15(a)). The non-extended (stacked) inversion (Figure 14(b)) result
is very similar visually to the reflectivity used in data synthesis (Figure 14(a)) - note
that the grey scales used in these plots are identical.

The approximate inversion (Figure 14(b)) is only an approximateion, of course. On
the one hand, the inverse operator is only asymptotically correct. We can see this
point from the fact that the difference between input and resimulated data is mainly
low frequency. On the other hand, the theory leading to the conclusion in equation
(29) explicitly ignores the possibility of scattering over π, that is, refraction. Some of
the remaining energy in the residual data panel (Figure 15(c)) is refracted.

We further compare the approximate inverse operator with ELSM (Extended Least
Squares Migration), that is, extended Born inversion via an iterative method (we use
conjugate gradient iteration), in the same spirit as LSM (Nemeth et al., 1999; Dutta
et al., 2014). A coarser grid (20 m for the spatial grid interval and 2 ms for the time
interval) has been used to reduce the computational cost of ELSM. The approximate
inverse operator yields the reflectivity model in Figure 17(a). Starting from the
approximate inversion as an initial guess, we conduct 20 iterations ELSM (Figure
17(b)). On a visual comparison basis, the approximate inversion result displays no
dramatic difference from ELSM result, except suffering from some low frequency noise
in the shallow part. However, a quantitative study shown in the misfit comparison
(Figure 18) reveals the significant difference in terms of data misfit. The approximate
inversion result produces around 40% relative misfit (black dashed line), while the 20
iteration ELSM starting from the approximate inversion result achieves roughly 10%
fit error (black solid line). Note that the approximate inverse operator has almost
the same computational cost as a single application of extended RTM, whereas 7 or 8
iterations of ELSM (each involving a migration/demigration pair) starting from zero
reflectivity were required to achieve the same 40% error reduction.

As mentioned in the introduction, the weighted adjoint form of the approximate
inverse operator invites inclusion in a weighted conjugate gradient algorithm. Here,
we merely present the convergence history of this algorithm, applied to the same
problem. This algorithm, starting from zero reflectivity, achieves an error reduction
of 10% in 6 or 7 iterations, as opposed to the 20 equally expensive iterations of
ELSM starting from the approximate inversion result, or many more iterations of
ELSM starting from zero reflectivity. In 20 iterations, the weighted conjugate gradient
iteration reaches an RMS error reduction factor of 3.5%. The authors will discuss
this algorithm in more detail elsewhere.

DISCUSSION

The obvious application of this construction is to accelerate iterative Least Squares
Migration (LSM), both extended and non-extended variants. As mentioned in the
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(a)

(b)

Figure 12: (a) Smoothed Background Velocity Model (b) Reflectivity Model

appinv/Fig/marm marmbvel,marmref

Figure 13: Extended Inverted Reflectivity Model appinv/Fig/marm marmimag
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(a)

(b)

Figure 14: (a) Reflectivity Model (b) Non-extended Inverted Reflectivity Model

appinv/Fig/marm marmref,marmstack
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(a)

(b)

(c)

Figure 15: (a) One-shot (xs = 4600 m) Born Data (b) One-shot (xs = 4600 m)
Resimulated Born Data (c) Difference between the resimulated data and original

data appinv/Fig/marm marmdataone,marmdataf,marmdatadiff
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(a)

(b)

Figure 16: (a) One trace comparison (x = 4600 m) between the reflectivity model
(blue solid line) and non-extended inverted reflectivity model (green dashed line).
(b) One trace comparison (x = 4600 m) between the observed data (blue solid
line) and predicted data from the inverted reflectivity model (green dashed line).

appinv/Fig/marm marmonecom,marmonedatacom
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(a)

(b)

Figure 17: (a) Approximately inverted reflectivity model (b) 20 iterations ELSM
image starting from the approximate inversion, plotted on same grey scale
appinv/Fig/marm imag,imaglsm
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Figure 18: Relative Misfit as a function of the number of iterations: the black dashed
line is the approximate inversion result; the blue solid line is the ELSM result using
Conjugate Gradient algorithm and starting from zero reflectivity; the black solid line
is the ELSM result using Conjugate Gradient and starting from the approximate
inversion; the red solid line is the ELSM result using Weighted Conjugate Gradient
(WCG) iteration. appinv/Fig/marm misfit
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introduction, the form of the approximate inverse provides a straightforward acceler-
ation mechanism, as it shows that the extended Born modeling operator is approx-
imately unitary in specific, computable weighted norms. The main question in this
regard is the necessary extent of the subsurface offset range. We have emphasized
that this operator is negligibly more computationally intensive than extended RTM,
however extended RTM is considerably more expensive than ordinary RTM: the ad-
ditional expense comes in the sums over offset implicit in the definition of extended
modeling or migration, and is roughly proportional to the extent of the offset axis. If
an accurate velocity is available, which focuses the data, this problem is mitigated,
of course. In this case, weight function φ appearing in (29) is in principle constrained
only by the requirement that φ(0) = 1, except for finite-frequency effects. Since a
weighted stack over subsurface offset is equivalent to a weighted stack over scattering
angle, the choice of φ will have important ramifications even for the focused case:
stacking with φ = 1 is equivalent (roughly) to using only the zero scattering angle, or
zero offset data, and would likely lead to suboptimal noise suppression. The design of
an optimal weight φ in the focused case, and the necessary extent of the offset range
for the unfocused case and effective algorithms for determining it, are important open
questions.

The operator defined in equations (1), (24), (28) approximately inverts the extended
Born modeling operator, therefore may be used to estimate the extended reflectivity
in automated velocity model building methods that depend on extended inversion
(Liu et al., 2013, 2014; Lameloise et al., 2014), or for AVO studies. Note however
that in our examples we have adopted the approximation P = 1, which strictly
speaking is accurate only if the image energy focuses at h = 0 (that is, the velocity
and data are compatible) or v0 is laterally homogeneous. In general, P is not ≡ 1
in the full extended phase space volume. It is actually quite possible to remove this
final impediment to asymptotic inversion: P is defined explicitly in Appendix A as
a function of phase variables, and pseudodifferential operators such as Wmodel are
effectively of low rank computable with relative efficiency, in comparison to a general
matrix multiplication of the same dimension (Bao and Symes, 1996; Demanet and
Ying, 2011). The improvement obtainable by using one of these techniques to drop
the approximation P = 1 remains to be investigated. Any such computation involves
the Fourier transform of the extended model, or a transform of equivalent complexity.
In 2D, this is already a 3D transform, while for 3 spatial dimensions, the transform
is of dimension 5, which is a daunting prospect. However transformation to the angle
domain after Sava and Fomel (2003), considered by many authors to be an essential
step (ten Kroode, 2012; Tang et al., 2013), is usually accomplished via the Fourier
transform hence involves the same computational load.
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CONCLUSION

A simple modification of subsurface offset extended RTM produces an asymptotic
inverse to the extended Born scattering operator. Implementation of straightforward,
and numerical experiments suggest that within its domain of applicability, this inver-
sion operator is quite accurate. The asymptotic inverse takes the form of the adjoint
of the modeling operator with respect to weighted norms in model and data spaces,
hence offers the possibility of greatly enhancing the convergence of iterative methods
for extended Born inversion.
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APPENDIX A

PSEUDODIFFERENTIAL EXPRESSION OF THE
NORMAL OPERATOR

The goal of this appendix is an expression for the slightly modified normal operator
(ItF̄ [v0])∗ (ItF̄ [v0]) in the form of an oscillatory integral

(ItF̄ [v])∗(ItF̄ [v])δv̄(x, h) ≈
∫
dkA(x,k)eik·xδ̂v(k)

over the frequency variables k = (kx, kh, kz), modulo errors decaying faster than the
amplitude A at large frequency. In fact we will express the amplitude as a product of
two factors, one depending on ray-trace quantities, the other depending only on values
of velocity and the phase variables. The ray-dependent quantities are eventually
eliminated via the identities proved in Appendix B and some further modifications of
the normal operator, leading to the main result of this paper.

Begin by combining the asymptotic expressions (10) and (11), eliminating the time
integral in the delta functions, and taking into account the fact that I∗t = −It to
obtain an integral expression for the modified normal operator introduced at the
beginning of the Theory section:

(ItF̄ )∗(ItF̄ )δv̄(x, h)

' − 4π2

v0(x, z)6

∫
dxsdxrasar

∫
dx′dh′a′sa

′
rδ(φ(xs, xr, x, h, z)−φ(xs, xr, x

′, h′, z′))δv̄(x′, h′)

(A-1)
where φ(xs, xr, x, h, z) = T (xs, x− h, z) + T (xr, x+ h, z) is the two way traveltime.

We recall the abbreviations

Ts = T (xs, x− h, z), Tr = T (xr, x+ h, z),

and note that
∂Ts
∂h

= −∂Ts
∂x

,
∂Tr
∂h

=
∂Tr
∂x

,

An asymptotic evaluation of this integral follows along the lines pioneered Beylkin
(1985), as recast by Symes (1998). Account for the delta function δ(φ(xs, xr, x, h, z)−
φ(xs, xr, x

′, h′, z′)) by writing z′ as a function of x, h, z, x′, h′, xs, xr - as it will turn
out, this possibility assumes that energy propagates vertically and reflectors are sub-
horizontal, otherwise other space variables should be treated as dependent - then
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rewrite using the inverse Fourier transform:

(ItF̄ )∗(ItF̄ )δv̄(x, h) '− 4π2

v0(x, z)6

∫
dxsdxrasar

∫
dx′dh′a′sa

′
rδ(z

′ − Z(xs, xr, x, h, z, x
′, h′))

×
∣∣∣∣ ∂φ∂z′

∣∣∣∣−1
1

8π3

∫
dkx′dkz′dkh′ δ̂v(kx′ , kh′ , kz′)e

i(kx′x
′+kh′h

′+kz′z
′)

(A-2)
The principle of stationary phase (Guillemin and Sternberg, 1979; Bleistein et al.,
2001) is used to evaluate the multiple integral for large wavenumber. This result
approximates the integral of a rapidly fluctuating function g(y)eiωψ(y) for large ω by
a sum of terms, one for each stationary phase point y∗ (that is ∇ψ(y∗) = 0). The
general form can be written as :∫

Rm

dyg(y)eiωψ(y)

≈
∑

∇ψ(y∗)=0

(
2π

ω

)m
2

e
πi
4

sgn Hess ψ(y∗)|det Hessψ(y∗)|−
1
2 g(y∗)eiωψ(y∗)

(A-3)

Employing this approximation, the right-hand side of equation (A-2) is∫
dkx′dkz′dkh′ δ̂v(kx′ , kh′ , kz′)

∫
Rm

dyg(y)eikz′ψ(y) (A-4)

where in the general statement of the stationary phase principle (A-3) we have set

m = 4,y = (xs, xr, x
′, h′)

g(y) = − 1

2πv0(x, z)6
asara

′
sa
′
r

∣∣∣∣ ∂φ∂z′
∣∣∣∣−1

ψ(y) =
kx′

kz′
x′ +

kh′

kz′
h′ + Z(xs, xr, x, h, z, x

′, h′)

(A-5)

and kz′ plays the role of large parameter ω. To employ this approximation, the
Hessian

Hess ψ(y∗) =

(
∂2ψ

∂yi∂yj

)m
i,j=1

must be nonsingular at each stationary phase point, and we must compute the sig-
nature and determinant of the Hessian at each such point. After standard simplifica-
tions, the stationary phase conditions are

x = x′, h = h′

(kx′ , kz′) is parallel to ∇(x′,z′)φ

(kh′ , kz′) is parallel to ∇(h′,z′)φ

(A-6)

During the calculation of the Hessian, the integrations are naturally paired as (x, xr)
and (h, xs). Each pair of integrals gives rise to a Hessian determinant factor.
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The Hessian of the phase ψ can be expressed as :

Hess =



∂2Z

∂x2
r

∂2Z

∂xr∂xs

∂2Z

∂xr∂x′
∂2Z

∂xr∂h′

∂2Z

∂xs∂xr

∂2Z

∂x2
s

∂2Z

∂xs∂x′
∂2Z

∂xs∂h′

∂2Z

∂x′∂xr

∂2Z

∂x′∂xs

∂2Z

∂x′2
∂2Z

∂x′∂h′
∂2Z

∂h′∂xr

∂2Z

∂h′∂xs

∂2Z

∂h′∂x′
∂2Z

∂h′2


(A-7)

In computing the Hessian, all derivatives must be performed before the stationary
phase identities (A-6) are applied. The solution z′ = Z(xs, xr, x, h, z, x

′, h′) must
satisfy the Two-way Traveltime Equation

φ(xs, xr, x
′, h′, z′) = φ(xs, xr, x, h, z) (A-8)

So we differentiate this equation, regarding x′ as independent of x etc., and afterwards
combine with the stationary phase condition (A-6) to obtain:

∂2Z

∂x2
r

= 0,
∂2Z

∂x2
s

= 0,
∂2Z

∂xr∂xs
= 0 (A-9)

Also
∂2φ

∂xr∂x′
+

∂2φ

∂xr∂z′
∂Z

∂x′
+
∂φ

∂z′
∂2Z

∂xr∂x′
= 0

∂2φ

∂xr∂h′
+

∂2φ

∂xr∂z′
∂Z

∂h′
+
∂φ

∂z′
∂2Z

∂xr∂h′
= 0

∂2φ

∂xs∂x′
+

∂2φ

∂xs∂z′
∂Z

∂x′
+
∂φ

∂z′
∂2Z

∂xs∂x′
= 0

∂2φ

∂xs∂h′
+

∂2φ

∂xs∂z′
∂Z

∂h′
+
∂φ

∂z′
∂2Z

∂xs∂h′
= 0

(A-10)

Note that the upper left hand 2 × 2 block of the Hessian consists of zeroes, and of
course the Hessian is symmetric. That is, the Hessian has the block structure:

Hess ∼
(

0 A
AT B

)
(A-11)

This special structure implies that the Hessian at the stationary point has exactly the
same number of positive as negative eigenvalues, that is, the signature of the Hessian
is zero. For details of this argument see Symes (1998).

The block structure (A-11) also allows us to reduce the determinant to that of a 2×2
matrix, squared:

det Hess = −

∣∣∣∣∣∣∣
∂2Z

∂x′∂xr

∂2Z

∂x′∂xs
∂2Z

∂h′∂xr

∂2Z

∂h′∂xs

∣∣∣∣∣∣∣
2

(A-12)
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The four elements of this matrix have similar structure and can be analyzed in the
same way. Take the first element as an example. Substitute equation A-10 into the
first element, we get

∂2Z

∂x′∂xr
= −

(
∂φ

∂z′

)−2(
∂2φ

∂xr∂x′
∂φ

∂z′
− ∂2φ

∂xr∂z′
∂φ

∂x′

)

= −
(
∂φ

∂z′

)−2

det

 ∂

∂xr
∇x′φ

∇x′φ

 (A-13)

Applying same analysis on other elements, and using the stationary phase conditions
x′ = x, h′ = h, z′ = z (since all derivatives have been computed) leads to

|det Hess|−1/2 =


(
∂φ

∂z

)−4


det

 ∂

∂xr
∇(x,z)φ

∇(x,z)φ

 det

 ∂

∂xs
∇(x,z)φ

∇(x,z)φ


det

 ∂

∂xr
∇(h,z)φ

∇(h,z)φ

 det

 ∂

∂xs
∇(h,z)φ

∇(h,z)φ







−1

(A-14)

Write s = 1/v0 for slowness, s± = s(x± h, z). Note that the eikonal equation asserts
that

∇x,zTs · ∇x,zTs = s2
−, ∇x,zTr · ∇x,zTr = s2

+. (A-15)

Since the lengths of the traveltime gradients are independent of the source and receiver
coordinates, their derivatives with respect to these coordinates must be orthogonal
to the gradients. A simple way to express this fact is to write

∇x,zTs = s−(sinαs, cosαs) (A-16)

∇x,zTr = s+(sinαr, cosαr) (A-17)

so
∂

∂xs

∂Ts
∂x

=
∂Ts
∂z

∂αs
∂xs

,
∂

∂xs

∂Ts
∂z

= −∂Ts
∂x

∂αs
∂xs

∂

∂xr

∂Tr
∂x

=
∂Tr
∂z

∂αr
∂xr

,
∂

∂xr

∂Tr
∂z

= −∂Tr
∂x

∂αr
∂xr

(A-18)

The elements of the matrix in (A-14) simplify due to (A-18): for example, the (1,1)
element becomes∣∣∣∣∣∣∣

∂

∂xr

∂Tr
∂x

∂

∂xr

∂Tr
∂z

∂Tr
∂x

+
∂Ts
∂x

∂Tr
∂z

+
∂Ts
∂z

∣∣∣∣∣∣∣ =
∂αr
∂xr

∣∣∣∣∣∣∣
∂Tr
∂z

−∂Tr
∂x

∂Tr
∂x

+
∂Ts
∂x

∂Tr
∂z

+
∂Ts
∂z

∣∣∣∣∣∣∣ = s2
−+∇x,zTr ·∇x,zTs
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by virtue of the eikonal equation (A-15). Evaluating the other elements similarly,

|det Hess|−1/2 =

(
∂φ

∂z

)4 [
∂αs
∂xs

∂αr
∂xr

∣∣∣∣ s2
+ +∇x,zTr · ∇x,zTs s2

− +∇x,zTr · ∇x,zTs
s2

+ +∇x,zTr · ∇h,zTs −s2
− −∇x,zTr · ∇h,zTs

∣∣∣∣]−1

= −1

2

(
∂φ

∂z

)4(
∂αs
∂xs

∂αr
∂xr

)−1 [
(s2
−s

2
+ + (∇x,zTr · ∇x,zTs)(∇x,zTr · ∇h,zTs)

+ (s2
− + s2

+)(∇x,zTr · ∇x,zTs +∇x,zTr · ∇h,zTs))
]−1

= −1

2

(
∂φ

∂z

)4(
∂αs
∂xs

∂αr
∂xr

)−1
[(

s2
−

(
∂Tr
∂z

)2

+ s2
+

(
∂Ts
∂z

)2
)

+ (s2
− + s2

+)

(
∂Ts
∂z

∂Tr
∂z

)]−1

(A-19)

Apart from the angle derivatives, this expression is actually algebraic in the phase
variables and s±. To see this, invoke the remaining stationary phase conditions (A-6)
pertaining to the phase variables. Adding and subtracting ratios equivalent to these
conditions, obtain

∂Tr
∂x

=
1

2

kx + kh
kz

∂φ

∂z
∂Ts
∂x

=
1

2

kx − kh
kz

∂φ

∂z
(A-20)

Then the eikonal equation implies that

s2
+ −

1

4

[
kx + kh
kz

]2(
∂φ

∂z

)2

=

(
∂Tr
∂z

)2

s2
− −

1

4

[
kx − kh
kz

]2(
∂φ

∂z

)2

=

(
∂Ts
∂z

)2

(A-21)

For convenience, set

a± =
1

4

[
kx ± kh
kz

]2

, ζ± =
∂Tr
∂z
± ∂Ts

∂z

so ζ+ = ∂φ/∂z.

Adding the two equations (A-21), and rearranging, obtain ζ2
− in terms of ζ2

+:

ζ2
− = 2(s2

+ + s2
−)− [2(a+ + a−) + 1]ζ2

+. (A-22)

Subtracting the two equations (A-21), squaring the result, eliminating ζ2
− using

(A-22), and rearranging yields a quadratic equation for ζ2
+:

a(ζ2
+)2 + bζ2

+ + c = 0, (A-23)
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in which

a = (a+ − a−)2 + 2(a+ + a−) + 1 =
k2
xzk

2
hz

k4
z

, (A-24)

b = −2

[
(s2

+ − s2
−)
kxkh
k2
z

+ (s2
+ + s2

−)

]
, c = (s2

+ − s2
−)2. (A-25)

Since we have assumed from the beginning that ∂φ/∂z > 0 in the region of interest,
also when h = 0 so that s+ = s−, the choice of root is fixed:(

∂φ

∂z

)2

= ζ2
+ =

−b+
√
b2 − 4ac

2a
. (A-26)

Remark: A very similar argument occurs in ten Kroode (2012), leading up to equa-
tion A-10.

We can now assemble the amplitude in the stationary phase approximation (A-3),
using the integrand given in equation (A-5), the expression for the Hessian, and the
frequency factor: we obtain for the integrand in (A-3)

2πs6

k2
z

a2
ra

2
s

(
∂φ

∂z

)−1

| det Hess|−1/2 =
a2
ra

2
s

k2
z

(
∂αs
∂xs

∂αr
∂xr

)−1

P̃ (x, h, z, kx, kh, kz) (A-27)

in which

P̃ = −πs4

(
∂φ

∂z

)3
[((s−

s

)2
(
∂Tr
∂z

)2

+
(s+

s

)2
(
∂Ts
∂z

)2
)

+

((s−
s

)2

+
(s+

s

)2
)(

∂Ts
∂z

∂Tr
∂z

)]−1

(A-28)

From the defining relations (A-19), (A-21), (A-24), (A-25), and (A-26), it follows
that P̃ is homogeneous of order zero in the phase variables kx, kh, kz. The various
components of P̃ simplify considerably when h = 0 (important because physical
reflectivities are supported there): The term in brackets in (A-28) becomes precisely
(∂φ/∂z)2, so

P̃ (x, z, 0, kx, kh, kz) = −πs4∂φ

∂z
= −2πs5 k2

z

kxzkhz
(A-29)

Dividing P̃ by the right hand side in (A-29) produces P , also homogeneous of order
zero in the frequency variables and ≡ 1 for h = 0. Thus we arrive at the integral
representation (12) in the theory section, with amplitude:

2πs6

k2
z

a2
ra

2
s

(
∂φ

∂z

)−1

| det Hess|−1/2 = − 2πs5

kxzkhz
Pa2

ra
2
s

(
∂αs
∂xs

∂αr
∂xr

)−1

(A-30)

Note that all factors on the RHS are functions of the phase variables, though some of
them are apparently to be determined by ray tracing, as was claimed at the beginning
of this appendix.
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APPENDIX B

ANALYSIS OF GEOMETRIC AMPLITUDES

As far as we know, the relation explained in this appendix was appeared first in Zhang
et al. (2005)). We rederive the relation in this appendix from a different perspective
for the convenience of the reader.

The derivation starts from the transport equation. The transport equation in diver-
gence form is :

∇ · (a2∇τ) = 0 (B-1)

Consider a region R formed by two rays radiating from the same point. Truncate this
region with two lines l and L normal to the rays. Denote by α the angle subtended
between the first ray and the vertical.

xdx
θ

dα
l

L

B

B

R

Figure B-1: Sketch of geometric amplitudes analysis appinv/. amp

Apply the 2D divergence theorem in the enclosed region R. We can get

x

R

∇ · (a2∇τ)dR =

∮
C

a2∇τ · ndC = 0 (B-2)

where n is the outward normal vector to the boundary C = B ∪ l ∪ L

• For x on B, the normal vector is perpendicular to the ray, ∇τ · n = 0

• For x on l and L, n is parallel to the ray, ∇τ · n = ±|∇τ |

Therefore, ∫
L

A2|∇τ |dL =

∫
l

a2|∇τ |dl (B-3)
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which immediately leads to

A2 = a2V

v

dl

dL
= a2V

v

dl

dα

1

cos θ

dα

dx
(B-4)

We have denoted the velocity and amplitude near where the ray starts as v, a and
those near where the ray terminates as V,A. In the vicinity of the starting point, the
2D geometric amplitude has the constant-velocity approximation

a2 ' v

8π2r
=

v

8π2

dα

dl
(B-5)

So in particular for the receiver ray,

a2
r =

1

8π2

vr
cos θr

dαr
dxr

(B-6)

and similarly for the source ray:

a2
s =

1

8π2

vs
cos θs

dαs
dxs

(B-7)
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ABSTRACT

Seismic full waveform inversion (FWI) is a nonlinear least squares data-fitting
problem, which may have many stationary points apart from its global mini-
mizer. A widely studied variant groups model parameters into coefficients of
long and short scale shape functions (relative to a typical seismic wavelength),
and linearizes the influence of the short scale parameters on predicted data. The
resulting separable nonlinear least squares problem can be reduced to a prob-
lem in long scale parameters only, by solution of the quadratic minimization for
the short scale parameters. The resulting problem still has many local minima.
Then we introduce suitable nonphysical degrees of freedom to the short scale pa-
rameters, and augment the least squares objective with an appropriate quadratic
penalty for the nonphysical parameters. The reduced problem for this extended
separable FWI problem tends to have only stationary value near the global min-
imum. Therefore efficient local optimization algorithms (variants of Newtons
method) could give the global optimum. Analytic properties of the prediction
operator lead to efficient approximations of the reduced gradient. The goal of this
thesis is to develop and demonstrate some of these efficient gradient calculations,
and embed them in a robust optimization algorithm for solution of the seismic
inverse problem.
We use acoustic constant density modeling as an example to illustrate the theory:
the frequency stability, the shape of the reduced objective function and its relation
with parameter choices and to show inversion results from synthetic data. These
studies also suggest directions for future work.

INTRODUCTION

Seismic full waveform inversion (FWI) is a tool that is used to infer the interior
structure of the earth from observed seismic waves. It is defined as a least squares
problem with the prediction operator related to the solution operator of the initial
and boundary values problem for a wave equation with spatially varying coefficients.
The structure of the earth is described by these variable coefficients, which are called
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models. In contrast to the fact that wave propagation problem is usually called
forward modeling, the problem of finding model parameters to predict the observed
data which is recorded along the surface of the earth or the top or the bottom of the
sea is called full waveform inversion (FWI).

In order to know the subsurface structure of a local part of the earth, exploration
geophysisists usually perform many experiments. Each seismic experiment uses a
localized energy source (”shot”) to initiate the motion of the ground (generate waves
to propagate through the earth). Part of these waves will be reflected when they
encounter discontinuities (reflectors) of the earth and another part will be refracted
due to the earth model variation at different places. Part of these reflected and
refracted waves will travel back to the surface and recorded by geophones (land) or
hydrophones (marine). The recorded data is usually the displacement of particles or
pressure field. Data is usually recoded separately for each shot.

Noises in data contribute to the inconsistency of these redundant data. Due to high
redundancy in the observed data, FWI is over-determined, and because of the incon-
sistency of the data, it is usually difficult to drive FWI objective to a small value.
The observed data contain a set of time series at different recording locations for
different sources or shots. These time series are band-limited since they lack usu-
ally information at both very low and high frequency components. The wavelength
of these time series are finite and bounded away from zero. Data could be divided
into subsets (”gathers”) based on positions of shots that evoke the propagation of
waves. A localized change in wave velocity sufficient to induce a travel-time shift
by a wavelength between some source receiver pairs typically affects the data fit for
some shots but not for others, and may generate spuriously good local fits (“cycle
skipping”). Thus the least-squares data fitting function has many local minima far
from its global minimum, which is equivalent to say that FWI could not give a good
estimated model unless the initial model guess is close enough to the true model. The
density of local minima increases, and the size of the basin of attraction of each local
minimum decreases, as the central frequency of the data increases. That is, the least
squares objective function is not stable with respect to data frequency content.

If we use different models to fit different shots data, the least squares objective func-
tion becomes much easier to drive to a global minimizer. Seismic data are usually
recorded at a much smaller subset of the spatial domain of interest, such as only
record data at a line ( 2D seismic) or a surface (3D seismic) along the top boundary
of the model, or sometimes drill wells downward and record data inside wells. This is
restricted by economic or environmental reasons. Thus one shot data is not enough
to constrain the model. It is usually easy to adjust wave velocity locally to change the
arrival time to each receiver position. In principle, FWI objective function with only
one shot data could have minimum value 0. Fitting different shots data with different
models results in a shot-dependent model (model with shot coordinate extension). A
shot-dependent model is not physical, since the earth is unique and does not change
for different experiments within seismic survey time; it is an example of an extended
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model. There are many other types of extension (ways of introducing nonphysical
degrees of freedom into the model parameters). Inversion for a shot-dependent model
(or any extension) by data fitting is underdetermined. Data will be easily over-fitted
in this case, i.e. error between predicted data and observed data is smaller than noise
level in the observed data. An extra constraint must be imposed to model parameters
to suppress the nonphysical degrees of freedom, and thus recover some control over
the model estimate. This extra constraint is usually referred to as semblance, which
has a value zero at a physical model for some choices, or stacking power , which has
a maximum value at physical model for other choices.

FWI theory is first introduced by Tarantola (1984) and then Gauthier et al. (1986)
shows that FWI is computationally feasible and the ”Camembert” example, created
in this paper shows the local minima phenomenon. Jannane and coworkers show
that intermediate wavelengths change in model is hard to be captured in seismic
data, due to acquisition geometries (the arrangement of sources and receivers during
seismic experiments) and band-limited feature of the source (Jannane et al., 1989).
Santosa and Symes did a comprehensive study of the capacity of the least-squares
inversion for band-limited common shot data ( data divided according to different
source) with a layered velocity model (Santosa and Symes, 1989). More theories and
applications of FWI can be found in this review paper by Virieux and Operto (2009).
The method discribed in this paper aims at avoiding the local minima problem of
FWI and producing a frequency stable objective function, the key to which is the
extended model concept.

Inversion based on full wave extended modeling has been studied by a number of
authors. Sun proposed a low frequency control method for extended full waveform
inversion: use an artificial low-frequency data as control variables to minimize the non
physicality of the extended model (Sun, 2012). The constrain has two terms: first one
is the extended least squares misfit function between the nonlinear forward map (with
low frequency data predicted) and the observed data plus a low-frequency data, which
is the control variable; second one is a semblance penalty term. Numerical results
suggest that the method is potential to recover the model from kinematically wrong
starting model. Instead of minimizing the semblance term, Biondo and Almomin
minimize the sum of a semblance penalty term and the extended least squares misfit
function, and show numerically that this method is able to converge to a global
minimal (Biondi and Almomin, 2012). There are still a lot of research need to be
done to fully evaluate the extended FWI (could it really avoid cycle skipping? to what
extend? why? and test it using more numerical experiments on complex models) and
to make it practical (develop computationally efficent workflow). Although we will
not disscuss more of this topic in this proposal, it could be an interesting future
work. This extended FWI has a very similar form with our objective function and
the semblance penalty term is pretty much the same as what we use in the proposal.

At the same time, the bulk of work on the extended model concept has concerned
linearized extended modeling and related inversion algorithms , which is also the main
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focus of this proposal. For linearized extended modeling, the model is split into long-
scale components (smoothly varying part of the model, referred to as the velocity)
and short-scale components (oscillatory part of the model, referred to as the reflec-
tivity). The recovery of the velocity is very important but usually difficult. Once the
velocity is correct, the estimation of reflectivity is usually relatively easy. After scale
separation of the model, the long scale components remain physical. Only the oscil-
latory components are extended (allowed to depend on parameters other than spatial
coordinates). The predicted data is modeled via linearization (Born approximation),
viewing the short-scale components as perturbation about the long-scale model. Both
the long scale (velocity) and the short scale components (reflectivity) are to be de-
termined through optimization methods. Differential semblance optimization (DSO)
was first introduced by Symes (1986), in which the objective is to minimize how far
away the reflectivity model is from a physical model. Here the reflectivity model
depends on the smooth velocity model in some sense. Symes and Carazzone (1991)
formulated the objective function as the sum of a data misfit term and a differential
semblance term, and we use the same formulation as an intermediate function to get
our objective function in this proposal, as Kern and Symes (1994) did. Formula-
tions specific for layered earth model and plane-wave data were derived in Symes and
Carazzone (1991) and both synthetic and field data examples shown that the method
could produce reasonably good velocity and reflectivity model.

Due to the fast development in high performance computing, more and more re-
searchers became interested in this subject in the most recent decade and various
variations of this method have been studied. Most of these works focused on differ-
ential semblance objective function, a modified version of it or linear combinations of
them. Some of them were dealing with surface offset model extension, which allow the
model to depend on the distance between positions of sources and receivers (Chauris
and Noble, 2001; Mulder and ten Kroode, 2002). Large percentage of most recent
works were on subsurface offset model extension (Shen, 2012; Shan and Wang, 2013;
Weibull and Arntsen, 2013; Tang and Biondi, 2011). Results from both subsurface
offset domain and angle domain (reflection angle at discontinuities of the model)
model extensions were shown in Shen and Symes (2008). Biondi and Zhang (2013)
proposed to maximize the stack of the angle domain common image gathers (each
gather is a function of depth and reflection angle, and is corresponding to a slice
of the extended reflectivity at a position on the surface), by using an intermediate
parameter to project the non-flatness of gathers along the angle axis to the update
of the model. Differential semblance method was also applied to recover models with
anisotropy (Weibull and Arntsen, 2014). Most of these reviewed articles above used
short scale model (reflectivity) computed either from some kind of imaging operator,
for example, reverse time migration operator (the adjoint of the linearized forward
map), or by high frequency asymptotic approximate. The common feature of them is
that their reflectivities inside the semblance term do not fit the data. Works using the
computed short scale model (reflectivity) that could fit the data shown only prelimi-
nary numerical results (Kern and Symes, 1994; Liu et al., 2013). This proposal also
uses the inverted reflectivity that could fit the data, at a given long scale model. We
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will study the efficeincy of computing the short scale model using iterative methods
and suggest several potential speed up strategies. The implementation of an inversion
workflow will use shot coordinate model extension, which is not widely used in recent
literature.

Some papers parametrized the long scale smooth velocity model by a B-spline. This
parametrization reduced the dimension of the smooth velocity space and help to con-
trol smoothness automatically by changing the coarseness of the grid space (Chauris
and Noble, 2001; Shen and Symes, 2008). We choose to enforce the smoothness to the
inverted velocity model by assume the velocity is in a Sobolev space. The linearized
extended waveform inversion method is designed to deal with primary only reflection
data: first order approximation to the forward modeling operator. It was also tested
with the full waveform data: all parts of the observed data or the data generated
by prediction operator in synthetic case, and gave reasonably good results (Shen and
Symes, 2008; Weibull and Arntsen, 2013). An extensive reference list may be found in
Symes (2008b), where it is argued that these methods address the inverse problem im-
plicitly posed by migration velocity analysis. Biondi and Almomin (2014) presented
a nested optimization scheme to solve a linearized extended inversion. They updated
the model by first updating separately the background velocity and reflectivity us-
ing a scale mixed gradient, and then used them to update the non-separated model.
Chauris and Plessix (2013) extended the DSO method to data with multiple reflec-
tions and a 1-D example was shown in the paper. Dealing with multiple reflections
is a very important topic, but is outside the scope of this proposal.

Extended modeling relaxes the data fit criterion; a physicality constraint (for example
DSO) suppresses the non-physical extension. The tension between the two is resolved
at a physical model fitting the data. An objective function combining penalties for
data misfit and non-physicality would seem an obvious approach to inversion, but
contains the data misfit function so is frequency-dependent and just as likely to suffer
from spurious local minima as is the standard least-squares objective.

The key to frequency-stable smoothness and unimodality is the reduced objective,
which comes from a linearized data misfit and a linear inversion for short scale model
(reflectivity) and thus depends only on the velocity (Kern and Symes, 1994; Liu et al.,
2013). It is this reduced objective which is smooth and frequency-stable, though only
for certain choices of physicality constraints (Stolk and Symes, 2003). The reduced
objective may also be viewed as an example of variable projection (van Leeuwen and
Mulder, 2009).

The crucial fact, underlying both the smoothness and the unimodality of the ob-
jective function studied here, turns out to be a very special property of the normal
operator, or the composition of the adjoint of the linearized forward map with itself
evaluated at a long scale model: it is (essentially, and under some circumstances)
a pseudodifferential operator (Taylor, 1981), a type of oscillatory integral operator
for which the high-frequency oscillations (or singularities) are in the same spatial
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position for both input and output, or the wavefront set of the output is a subset
of the wavefront set of the input. This observation underlies asymptotic (“Kirch-
hoff”) inversion methods (Stolk, 2000; Burridge et al., 1998; ten Kroode et al., 1998;
Nolan and Symes, 1997; Beylkin and Burridge, 1990; Rakesh, 1988; Bleistein, 1987;
Beylkin, 1985), but is equally important for understanding the behavior of inversion
algorithms not based explicitly on ray computations. Smoothness of the extended in-
version objective functions discussed here required that the constraint on non-physical
parameters, essential for turning extended modeling into a tool for inversion, must
also be pseudo-differential (Stolk and Symes, 2003).

In this proposal, we will review the extended modeling concept, then explain what
is the reduced objective function, how do we get this objective. Then we will derive
the gradient of this reduced objective function in a Sobolev space and use acoustic
constant density modeling as an example to illustrate the frequency stability, the
shape of the reduced objective function and its relation with parameter choices and
to show inversion results from synthetic data.

Extended modeling has an abstract form that encompasses all of its concrete in-
stances. The first section to follow introduces extended modeling in this abstract
form. The second section presents our major results, formulated abstractly, how
smooth objective functions of model parameters arise from data misfit and extended
modeling, augmented with a particular type of constraint. And the third section
illustrates them numerically via the acoustic shot coordinate model extension. The
proposal ends with a discussion and proposed project.

EXTENDED MODELING

Denote byM = {m(x)} the physical model space and by M̄ = {m̄(x, h)} the extended
model space, which contains the physical models as a subspace. The variable h is a
parameter, such as shot coordinate, offset, ray parameter (for plane wave data) or
parameter vector, subsurface offset, or scattering angle, which characterizes additional
degrees of freedom in the extended model space, over and above position in the
subsurface. Denote by D the data space. Assume the physical domain of the earth
that we are interested in is Ω ⊂ Rn, with n = 2 or 3. We require M = L2(Ω),
M̄ = L2(Ω ×R) and data space is D = L2([0, T ] × Σs,r), with Σs,r = {(xs,xr)} the
collection of source receiver position pairs. All of these spaces are Hilbert spaces,
each with an appropriate (possibly weighted) inner product.

M is identified with a subset of M̄ - the identification is characteristic for each type
of extended model. For the shot coordinate extension mentioned in the introduction,
m̄(x, h) defines a member of M if it’s independent of h. For the subsurface offset
extension (Prucha et al., 1999), physical models are focused at h = 0, that is, take
the form m̄(x, h) = m(x)δ(h).
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Denote by F : M 7→ D the forward map, or prediction operator, and by F̄ : M̄ 7→ D
the extended forward map. F̄ is an extended modeling operator because for m ∈M ,

F̄ [m] = F [m].

The abstract inverse problem may be formulated: given data d ∈ D, find m ∈ M so
that

F [m] ' d⇐⇒ F̄ [m̄] ' d, m̄ ∈M. (1)

The model is separated into a long scale background model ml and a short-scale
reflectivity model δm: m ' ml + δm. The reflectivity is treated as a perturbation of
the background model for modeling purposes:

F [m] ' F [ml] +DF [ml]δm.

Here DF denotes the linearized forward map, or Born approximation.

The abstract linearized inverse problem may be formulated as: given data d ∈ D,
find ml, δm ∈M so that

DF [ml]δm ' δd = d− F [ml]. (2)

The same is done with extended models, with one difference: the background model
will always be physical. Thus m̄ ' ml + δm̄, and

F̄ [m̄] ' F [ml] +DF̄ [ml]δm̄

That is, we approximate the extended forward map with its Born approximation
at a physical background model, but with extended reflectivity. Thus the extended
linearized inverse problem is: given d, find ml ∈M, δm̄ ∈ M̄ so that

DF̄ [ml]δm̄ ' δd = d− F [ml]. (3)

As noted in the introduction, and illustrated below, this problem is highly under-
determined.

LINEARIZED EXTENDED WAVEFORM INVERSION

Reduced Objective Function

As mentioned in the introduction, an additional ingredient is needed to drive extended
models toward physical (non-extended) models. One approach, by far the most ex-
plored, is to introduce an operator which “measures” physicality by mapping physical
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models to the zero vector, and penalizing the size of its output. Such operators have
come to be called annihilators (Brandsberg-Dahl et al., 2003).

Thus introduce an operator A on extended model space M̄ , satisfying the abstract
annihilator property:

Aδm = 0 for all δm ∈M.

We will introduce a concrete annihilator in the next section for shot coordinate model
extension.

The solution to the basic linearized inverse problem (2) is a solution of the extended
linearized inverse problem for which δm̄ is physical, hence mapped to the zero vector
by A. Thus (3) is equivalent to the system

DF̄ [ml]δm̄ ' δd

Aδm̄ ' 0. (4)

Define:

J [ml, δm̄] =
1

2
‖DF̄ [ml]δm̄− δd‖2 +

α2

2
‖Aδm̄‖2, (5)

The weight α controls emphasis on physicality: as α →∞, the minimizer of J [ml, ·]
tends to the solution δm of (2), interpreted as a least squares problem, for fixed ml, d.

The reduced objective J̃ [ml] is the least value attained by J [ml, δm̄] over the model
space of reflectivity δm̄.

J̃ [ml] = min
δm̄

J [ml, δm̄]. (6)

Here minimum is used instead of infimum when the block operator

(
DF̄ [ml]
αA

)
is

bounded and coercive, which is not usually true for many choice of A and some kind
of preconditioning and regularization may need, which will be discussed in details in
the Proposed Project section. We assume temporarily that the block operator has
been preconditioned and regularized and proceed as if it is bounded and coercive.

The analysis of J̃ begins with the observation that it is the minimum value of J over
δm̄ for fixed ml, δd. Since J is quadratic in δm̄, its solution is the solution of a linear
system. Define the normal operator (or Hessian)

N [ml] = DF̄ [ml]
TDF̄ [ml] + α2ATA.

Then the minimum value of J is attained at

δm̄ = N [ml]
†DF̄ [ml]

T δd. (7)

For some choice of A, N [ml] is invertible and in this case N [ml]
† = N [ml]

−1. In the
case that N [ml] is not invertible, N [ml]

† is a pseudo-inverse. The numerical solution
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of δm̄ involves an iterative process, which was referred to as PICLI method in Ehinger
and Lailly (1993) for shot coordinate depended operator A.

Using formula (7) we can write an explicit expression for J̃ [ml]:

J̃ [ml] =
1

2
‖(DF̄ [ml]N [ml]

†DF̄ [ml]
T − I)δd‖2 +

α2

2
〈δd,DF̄ [ml]N [ml]

†ATAN [ml]
†DF̄ [ml]

T δd〉. (8)

The significance of the formula (8) lies in a fact about the normal operator N [ml]:
under some circumstances, it is closely related to a pseudo-differential operator, a
type of oscillatory integral operator. This is so principal because the modeling Hes-
sian DF̄ [ml]

TDF̄ [ml] has this property when the source of the forward map F̄ is an
impulse. This property of the normal operator leads to the smoothness of the reduced
objective function (8). Numerical results will be included in the Example section for
illustration. This relationship is contingent on kinematic and dynamic assumptions
on the model and data: for example, for some extensions (for example, shot-record)
multiple ray paths connecting sources and receivers with scattering points may not
occur (Rakesh, 1988; Symes, 1998).

Gradient of Reduced Objective Function

Since from last section, the reduced objective function (8) is smooth on ml, gradient
method could be applied to minimize (8).

Given a perturbation dml, we get the directional derivative by chain rule:

DJ̃ [ml]dml = DmlJ [ml, δm̄]dml +Dδm̄J [ml, δm̄]Dmlδm̄dml.

If δm̄ satisfies equation (7) , the second term in the above equation vanishes and we
get

DJ̃ [ml]dml = 〈D2F̄ [ml][δm̄, dml], DF̄ [ml]δm̄− δd〉.

The second order derivative D2F̄ [ml] is the Hessian of the extended forward operator
F̄ [ml]. It takes two arguments and is a bilinear operator. Then define a bilinear
operator D2F̄ [ml]

T on space M̄ ×D such that it satisfies for dml ∈M , dm̄ ∈ M̄ and
d ∈ D

〈D2F̄ [ml][dm̄, dml], d〉 = 〈dml, D
2F̄ [ml]

T [dm̄, d]〉. (9)

D2F̄ [ml]
T is called tomographic operator, or WEMVA operator in geophysics litera-

ture (Biondi and Sava, 2004; Biondi and Almomin, 2012). Note that both D2F̄ [ml]
and D2F̄ [ml]

T depend on the long scale smooth model parameter.
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Then the directional derivative becomes

DJ̃ [ml]dml = 〈dml, D
2F̄ [ml]

T [δm̄,DF̄ [ml]δm̄− δd]〉,

In the L2 sense, the gradient of J̃ [ml] becomes

∇J̃ [ml] = D2F̄ [ml]
T [δm̄,DF̄ [m]δm̄− δd]. (10)

NOTE: in the above derivation, we assume equation (7) is solved exactly. However,
in practice, it is usually not true, since the solution δm̄ are solved iteratively. Thus,
we will perform gradient accuracy tests in the Example section.

Based on scale separation and various other reasons, we require the background model
to be smooth in some sense, and thus the gradient too. One way to enforce smoothness
is using B-spline to parametrize the velocity model into a low-dimensional space as a
lot of researchers did. The choice here is to impose smoothness by a different inner
product in the smooth velocity space.

Assume we consider the problem in 2-dimensional space. The discrete anisotropic
Laplace operator on dm is defined as

(Ldm)i,j = ω2
x

dmi+1,j − 2dmi,j + dmi−1,j

dx2
+ ω2

z

dmi,j+1 − 2dmi,j + dmi,j−1

dz2
.

If we choose the boundary condition appropriately, the operator L could be diago-
nalized by the discrete Fourier operator F , which is unitary. That is there exists an
diagonal operator Σ such that

FTΣF = L.

L is a uniform elliptic operator and −L is a nonnegative operator with Dirichlet
boundary condition. Thus the square root of I − L exists and is invertible, with I
being the identity operator. Define

Λ = (I − L)
1
2 .

Thus Λ = FT (I − Σ)
1
2F and (I − Σ)

1
2 has diagonal approximately (1 + ω2

xk
2dx2 +

ω2
z l

2dz2)
1
2 for small wave number kdx, ldz (number of waves that exist over the

distance dx for x direction). Define the s inner product on the Sobolev space of the
velocity model:

〈dm1, dm2〉s = 〈Λsdm1,Λ
sdm2〉,

where 〈·, ·〉 is the ordinary inner product on the model space. Let Q be an operator
which maps the model dm to some finite dimensional function space by discretization.
QT is its dual operator in L2 sense, i.e.

〈Qdm, φ〉l2 = 〈dm,QTφ〉.
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with 〈·, ·〉 the ordinary L2 norm in L2 function space and 〈·, ·〉l2 the l2 inner product
in the finite dimensional space. Then we have

〈Qdm, φ〉l2 = 〈dm,Q∗φ〉s = 〈Λsdm,ΛsQ∗φ〉 = 〈dm,Λ2sQ∗φ〉

Thus the adjoint operator of Q in the s-inner product sense is

Q∗ = Λ−2sQT .

Using the s-inner product, the gradient of J̃ becomes

∇J̃ [ml] = Λ−2sD2F̄ [ml]
T [δm̄k, DF̄ [m]δm̄k − δd]. (11)

We will test how accurate is this gradient numerically in the Example section.

EXAMPLE: EXTENDED 2D CONSTANT DENSITY
ACOUSTICS

The simplest useful model for simulation of seismic data is the constant density acous-
tic wave equation. The model space is a set of velocities, or more conveniently, squared
velocities: M = {c2(x)}. For this problem, we use shot coordinate xs as the extended
coordinate and the extended model space is M̄ = {c̄2(x,xs)}. The pressure field is
causal, and solves the constant density acoustic wave equation. The right-hand side
represents an isotropic point radiator source with time-dependence w(t):

(
∂2

∂t2
− c2(x)∇2

x

)
u(x,xs, t) = δ(x− xs)w(t),

u(x,xs, t) = 0, t << 0. (12)

The value of both the extended and non-extended forward map for the model c2(x)
is the result of sampling the pressure field at a prescribed set of receiver points for
the various source positions in the survey:

F̄ [c2] = F [c2] = {u(xr,xs, t)}.

Linearization, or extended Born approximation, results from sampling a pressure
field perturbation δu of a background pressure field ul, the solution of (1) with the
background squared velocity c2 = c2

l , resulting from an extended squared-velocity
perturbation δc̄2(x,xs). Thus the extended Born approximation model space is M =
{c2
l (x), δc2(x,xs)}. The perturbational pressure δu solves(

∂2

∂t2
− c2

l (x)∇2
x

)
δu(x,xs, t) = δc̄2(x,xs)∇2ul(x,xs, t),

δu(x,xs, t) = 0, t << 0. (13)
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So the Born approximation is DF̄ [c2
l ]δc̄

2 = {δu(xr,xs, t)}. Note that DF̄ is linear in
δc̄2, but nonlinear in c2

l .

The second order derivative of F̄ [c2] comes from sampling the perturbed pressure field
δ2u of the above Born pressure field δu, with an extended perturbation δ2c̄

2(x,xs).
The pressure field δ2u solves(
∂2

∂t2
− c2

l (x)∇2

)
δ2u(x,xs, t) = δc̄2(x,xs)∇2δ2u(x,xs, t) + δ2c̄

2(x,xs)∇2δu(x,xs, t),

δ2u(x,xs, t) = 0, t << 0, (14)

with δ2u solves equation (13) with δc̄2 replaced by δ2c̄
2. So D2F̄ [c2

l ][δc̄
2, δ2c̄

2] =
{δ2u(xr,xs, t)}. Note that D2F̄ is linear in both δc̄2 and δ2c̄

2, but nonlinear in c2
l .

Finite difference method is used to discretize the wave equation. We use 2-nd order
accuracy in time and 4-th order accuracy in space. We refer to a C function, that
compute the next time step wavefield from current and past time step wavefields,
as the time step function. The time step function of the implementation for both
DF̄ [c2

l ], D
2F̄ [c2

l ] and their adjoints DF̄ [c2
l ]
T , D2F̄ [c2

l ]
T , are generated using automatic

differentiation tool TAPENADE (Hascoët and Pascual, 2004) with the original finite
difference wave propagation code of F̄ [c2

l ] provided. These time step functions are
implemented in IWAVE, which is a framework that provides i/o, job control and
parallelization. All results in this section is obtained using IWAVE framework and
RVL optimization software ( https://svn.code.sf.net/p/rsf/code/trunk/trip/ ).

Since physical models do not depend on xs, a feasible choice of annihilator for this
shot coordinate model extension is (Kern and Symes (1994))

A =
∂

∂xs
.

In fact, as shown by Stolk and Symes (2003), this is essentially the only choice of
annihilator that will lead to a smooth reduced objective function.

The Marmousi model (Bourgeois et al., 1991) is used in the next two subsections.
This model is separated into smoothed long scale background model mt and δm (see
figure 1(a) and 1(b)).

Property of the Normal Operator N [ml]

We want to show the key feature of the normal operator N [ml] in this subsection us-

ing numerical examples. With the choice of differential semblance operator A =
∂

∂xs
,

N [ml] is closely related to a pseudo-differential operator . The relation is closest when
ω(t) = δ(t), but holds more generally. DF̄ [ml]

T is usually called reverse time migra-
tion operator (RTM) or an imaging operator . It takes data as an input and produce
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(a) (b)

Figure 1: (a) smoothed Marmousi model mt; (b) the reflectivity δm.

lewi/Fig/marm csqsm,dcsq

an image of δm, which is referred to as migrated image and shows the approximate
positions of singularities in δm with differences in amplitude and some spatial fre-
quency components. The accuracy of the approximation depends on how close is ml

to the true velocity which generates the data.

Figures 2 illustrates the key feature of pseudo-differential operators, namely that they
do not move reflectors (singularities in the model function). Panels (a) - (g) of Figure
2 shows N [ml]δm, with fixed δm given in Figure 1(b), and ml = σmt, where mt is
given in Figure 1(a) and σ changes from 0.7 to 1.3.

Figure 3 shows N [mt]δm at the correct velocity mt with different source frequencies:
Ricker1 wavelet with peak frequency 5 Hz for (a), 10 Hz for (b) and 15 Hz for (c).
Notice that the equal phase surfaces in the migrated image, representing approximate
reflector locations, do not move: only the amplitude changes.

This feature of the Hessian is also responsible for the success of approximate inversion
by scaling, see for example (Symes, 2008a).

Figures 2 and 3 lend plausibility to the assertion that N [ml]δm is smooth as a function
of ml. Changing the frequency content of the data (or source) will change the spatial
frequency of the reflector images, but the amplitude scaling between δm and its image
remains the same, independent of frequency. Therefore the size of the derivatives of
N [ml] with respect to ml also remains the same independent of frequency.

Scan Tests of the Reduced Objective Function

The data are computed with 60 shots starting from 3 km, with spacing 100 meters
and 12 meters below the sea surface. 96 receivers are placed behind each shot, with
offset 200 meters between the first receiver and a shot , 25 meters spacing between
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2: N [ml]δm with ml = σmt (a) σ = 0.7, (b) σ = 0.8, (c)
σ = 0.9, (d) σ = 1.0, (e) σ = 1.1, (f) σ = 1.2, (g) σ = 1.3.

lewi/Fig/marm mcsq07,mcsq08,mcsq09,mcsq,mcsq11,mcsq12,mcsq13

(a) (b) (c)

Figure 3: N [mt]δm with peak source frequency, (a) 5 Hz, (b) 10 Hz, (c) 15 Hz.

lewi/Fig/marm mcsq5Hz,mcsq10Hz,mcsq15Hz
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each receiver and 8 meters below the surface. We use Ricker1 wavelet with 10Hz peak
frequency as the source. Figure 4 shows the data from 5.8 km shot and 6 km shot.
Data is recorded along a line segment in this case and the end of the line accounts
for high frequency change and will results in edge effects in images. This model
contains a shallow water layer on the top and thus the computed Born data contains
direct waves (waves travel directly from source to receivers without any reflection)
and diving waves ( refracted waves), which will be difficult to fit during inversion.
To mitigate edge effects, the data is tapered and to mitigate the influence of direct
and diving waves, the data is muted. Both mute and taper are smooth varying cutoff
functions that are applied to each shot of the data. NOTE: the same tapering and
muting are applied both to the input data and during inversion process. If denote by
M the mute and taper operator, that is equivalent to solve the following optimization
problem

J̃ [ml] = min
δm̄

J [ml, δm̄] =
1

2
‖MDF̄ [ml]δm̄−Mδd‖2 +

α2

2
‖Aδm̄‖2,

Figure 4: Data is computed using the true velocity and reflectivity as in figure 1(a)
and 1(b) with xs = 5.8 km, 6 km. Data shown in this figure has been applied tapering

and muting. lewi/Fig/marm born2shot-tnm

The extended approach to inversion draws inspiration from migration velocity anal-
ysis. In principle, migrated shot record image volumes DF̄ [m]T δd should be ”flat”
along the shot axis, i.e. independent of xs for correct velocity. In practice, amplitude
anomalies may obscure this effect, as is illustrated in figure 5(a).

Instead, we follow the mathematical path laid out above, and base our construction of
an objective function on the linearized inversion volume (δm̄, solution of equation (7)),
instead of the migrated image volume. We use conjugate gradient iteration (Nocedal
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(a) (b) (c)

Figure 5: RTM image gathers for (a) correct velocity, (b) 1.3 times
of correct velocity, (c) 0.7 times of correct velocity at x = 5088m.

lewi/Fig/marm igt-extrtm,igt-extrtm-lg,igt-extrtm-sl

(a) (b) (c)

Figure 6: Inversion image gathers for (a) correct velocity, (b) 1.3 times
of correct velocity, (c) 0.7 times of correct velocity for α = 0.01.

lewi/Fig/marm igt-tgtvel-DS001,igt-lgvel-DS001,igt-slvel-DS001
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(a) (b) (c)

Figure 7: Inversion image gathers for (a) correct velocity, (b) 1.3 times
of correct velocity, (c) 0.7 times of correct velocity for α = 0.1.

lewi/Fig/marm igt-tgtvel-DS01,igt-lgvel-DS01,igt-slvel-DS01

and Wright, 1999) to approximately minimize J [ml, δm̄] over δm̄, solve the normal
equation (7) and thus compute J̃ [ml] (equation 6).

Figure 6 shows image (z,xs) gathers for the same horizontal position as in figure
5. We use weight α = 0.01, and perform 100 steps of conjugate gradient iterations.
The gradient (normal residual) is reduced 5% of its original value for the true low
frequency velocity, and 9% of its original value for other velocities. We can see clearly
the flatness of the inverted gathers for correct velocity, and the systematic tendency
to slope one way or the other when the velocity is incorrect.

Increasing α will force the inverted velocity to be more xs-independent, and the
objective to behave more like the ordinary least-squares objective. Figure 7 shows
the same image gathers as figure 6, but this time with α = 0.1. Now the requirement
of xs-independent has largely overwhelmed the kinematic information in the gathers.

Figure 8 displays the values of the approximate J̃ [m] along the line segment

m = σmt,

with 11 evenly spaced points of σ ∈ [0.6, 1.4], for several values of α (0.01, 0.1, and
1.0), and less (20 iterations) and more (100 iterations) application of the conjugate
gradient algorithm. Here mt is the background velocity displayed in Figure 1(a).
Small α tends to give flat valley near the global minimum, while with large α, the
valley is deep and narrow, and stationary points other than global minima appear.

Figure 9 shows a similar sampling of J̃ [m] values for the line segment

m = (1− σ)mt + σm0,m0(x) = 1500m/s,
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Figure 8: Values of J̃ [m] for m = σmt with σ ∈ [0.6, 1.4]: several values of α, and 20

or 100 conjugate gradient iterations. lewi/Fig/marm scantapermute
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Figure 9: Values of J̃ [m] for m = (1 − σ)mt + σm0 with σ ∈ [−0.4, 0.6] and
m0 = 1500 m/ms: several values of α, and 20 or 100 conjugate gradient iterations.

lewi/Fig/marm scanhomtapermute
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and 11 evenly spaced choices of σ ∈ [−0.4, 0.6].

Tomographic Operator Test

In this section, we test our implementation of the tomographic operator. I would
like to thank Exxonmobil Upstream Research Company for permissions to use these
results in this proposal. These results in this subsection and the next two subsections
are obtained when I did my internship there during summer 2014. The Gaussian
anomaly model I used for tests is supplied by Yaxun Tang.

Results shown in this section are obtained with model extension, but only the stacked
version of them is shown. Tomographic operator

D2F [m0]T [·, ·]

is important since it is the operator we use for gradient computation. Thus the
successful implementation of it is really important for the convergence of the inversion.

In order to perform the test, we need three models: background velocity model m0 =
2km/s, reflectivity model δm (Figure 10(a)), velocity perturbation dm (Figure 10(b)).

Then we compute the Born data perturbation (Figure 10(e))

δ2d = D2F [m0][δm, dm] ≈ DF [m0 + dm]δm−DF [m0]δm

and image perturbation (Figure 10(f))

δI = D2F [m0]T [dm, δd] ≈ DF [m0 + dm]δd−DF [m0]δd

due to the velocity perturbation dm.

Tomographic operator is then applied to the perturbed Born data and perturbed
image (Figure 11(a), 11(b)).

From Figure 12, we see that the tomographic operator could indicate the correct po-
sition of these two anomalies with correct reflectivity and data perturbation or image
perturbation and data as inputs. Quantitative measurements are also necessary: ad-
joint relation tests are effective to test a correct implementation of an operator and
its adjoint. Table 1 shows adjoint relations of both first order derivative and second
order derivative of operator F . For A = DF [m0], fixed input x = δm as shown
in Figure ?? and y = Ax. For A = D2F [m0][δm, ·], fixed input x = dm as shown
in Figure 10(b) and y = Ax. Since the four values are all close to or smaller than
100 ∗macheps, we could say our tomographic operator is correctly implemented.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) reflectivity δm, (b) Gaussian anomaly velocity perturbation
dm, (c) Born data δd = DF [m0]δm, (d) Image I = DF [m0]T δd, (e) Born
data perturbation due to velocity perturbation δ2d = D2F [m0][δm, dm], (f)
Image perturbation due to velocity perturbation δI = D2F [m0]T [dm, δd].

lewi/Fig/gauss-tomo dcsq-flat,dcsqsm,born3shot-flat,mcsq3-b1,d2f3shot-flat,dimage

(a) (b)

Figure 11: (a) tomographic operator output with migrated image and Born data
perturbation D2F [m0]T [δm, δ2d] , (b) tomographic operator output with image per-

turbation and Born data D2F [m0]T [δI, δd]. lewi/Fig/gauss-tomo mcsq3-b2,tcsq
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random x, y fixed input x, y
〈Ax, y〉 1.320123e+11 4.218034e+16

A = DF [m0] 〈x,ATy〉 1.320405e+11 4.218104e+16
〈Ax, y〉 − 〈x,ATy〉

‖Ax‖‖y‖
2.384397e-09 1.659730e-05

A = D2F [m0][δm, ·]
〈Ax, y〉 1.522127e+11 9.053059e+15
〈x,ATy〉 1.522677e+11 9.053160e+15

〈Ax, y〉 − 〈x,ATy〉
‖Ax‖‖y‖

5.247307e-09 1.114891e-05

Table 1: Adjoint relation results and 100*macheps=1.19209290e-05 in our system.

Gradient Accuracy Test

In this subsection, we test how accurate is the approximate gradient in equation (11).
We compare the following two values for different values of m

a1 = 〈∇J̃ [m], dm〉s

a2 =
J̃ [m+ h ∗ dm]− J̃ [m− h ∗ dm]

2h
.

Relative error is defined as
|a2− a1|

a1
.
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Figure 12: (a) gradient accuracy curve for velocity that is near the true velocity
model, (b) gradient accuracy curve for velocity that is far away from the true velocity

model. lewi/Fig/marm GradAccuracy80,GradAccuracy15

In the tests, the true background model is the smoothed Marmousi model. Tapering,
muting are applied to the data. Windowing operator is applied to the computed
reflectivity. Figure 12(a) shows the relative error atm which is 80% of the true velocity
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model. Figure 12(b) shows the relative error at constant velocity m = 1.5km/s which
is far away from the true velocity model.

We see that when velocity is close to true velocity, 50 steps of conjugate gradient
iteration could give good enough approximate gradient. For velocity that is very
far away from the true velocity, 300 steps of iteration is not enough to give a good
approximate gradient for this problem. These indicate two things: first, without
any knowledge of the true velocity mode, we may expect slow convergence rate at
the beginning of the inversion; second, a method that could deal with non-accurate
gradient is preferred.

Inversion of Gaussian Anomaly Model

In this subsection, I will show preliminary inversion results for 15 percent Gaussian
anomaly velocity model.

We use (2, 4) finite difference scheme: 2-nd order accurate in time and 4-th order
accurate in space. Grid size is 10 m in both z and x directions. We use Ricker
wavelet with central frequency 8 Hz as a source wavelet.

The true velocity model is 2 km/s plus the velocity update in Figure 10(b). 81 sources
with 8 Hz peak frequency are placed between 3km to 7km with 50m spacing. 999
receivers are placed on the top starting from 10m to 9990m and fixed for each shot.

Inversion starts with constant initial velocity m0 = 2km/s. For each iteration of
inversion, we run 10 steps conjugate gradient iterations to get the reflectivity and then
run backtracking line search with first step length=1 and back tracking factor=0.5.
Limited memory BFGS method with last 5 iterations information is used. If we look
at Figure ??, although there are some unwanted non-zero values around and below
two anomalies, positions of them are correctly detected and the values of them tends
to be correct. If we could afford run more steps of conjugate gradient iterations, these
values will become less noticeable. Figure 13(k) plots the convergence curve of the
objective function. The blue curve is the value of the whole objective function. The
red curve is the value of the data misfit term and the green curve is the value of the
second term which measures how flat are these gathers. This indicates that the two
terms are both decreasing through iterations.

CONCLUSION

A natural objective function for the linearized extended waveform inversion com-
bines least squares data misfit and a differential semblance penalty for non-physical
dependence on the model extension coordinates. We have shown numerically that
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Figure 13: (a) real velocity update, (b) real image, (c) shot gathers at real velocity,
(d) initial velocity model 2 km/s, (e) image at initial velocity model, (f) shot
gathers at initial velocity, (g) velocity update after 6 iterations, (h) migrated image
after 6 iterations, (i) shot gathers at velocity after iteration 6, (j) velocity com-
parison at depth 800m, (k) Convergence curves of two terms in the objective function.

lewi/Fig/gauss-inv dcsqsm2,mcsq-flat2,cigvtrue,csqinit,mcsqinit,cigv0,dsestcsq10-6,mcsq10-6,cig6,Vel6,GaussianCurve



76 Huang

the normal operator is a pseudo-differential operators with the differential semblance
operator as an annihilator and it is smooth as a function of background velocity.
This property is crucial for the success of this linearized extended waveform inversion
method.

We examined this objective for constant density acoustic modeling of reflected waves.
As suggested by Kern and Symes (1994), the reduced objective (with short scale
components eliminated via a quadratic optimization) tends to be smooth and uni-
modal in the background (velocity) model parameters, with proper choice of penalty
weight and sufficiently precise solution of the inner minimization. Stolk and Symes
(2003) showed that the reduced objective has these properties only for the differential
measure of semblance, up to inessential modifications.

Numerical results from Gaussian anomaly model show that this method is capable of
the reconstruction of Gaussian anomalies.

PROPOSED PROJECT

As shown before, the choice of penalty weight and the correctness of the solution
to the extended least squares migration are very important to the smoothness and
unimodality of our reduced objective function. This observation suggests several
possible topics for further work.

Inversion Velocity Analysis

The inversion velocity analysis could avoid choosing the penalty weight. IVA refor-
mulate the problem (4) as the following optimization problem:

min
δm̄

1

2
‖Aδm̄[ml]‖2

subject to δm̄[ml] = (DF̄ [ml]
TDF̄ [ml] + ε2I)−1DF̄ [ml]

T δd

Although we still have to choose ε in this formulation, its values is less critical than
the penalty weight.

The δm̄[ml] is solved again by some Krylov subspace method, say conjugate gradient
method. Thus, numerically δm̄[ml] is only solved approximately, which results in that
the gradient is only an approximation. There are several ways to approximate the
gradient of the objective function. Symes derived the following form of approximate
gradient together with an error estimate.

∇J̃ [ml] = D2F̄ [ml]
T [δm̄a[ml], DF̄ [ml]q̄a[ml]] +O(ε2‖δd‖2)

with δm̄a[ml] the solution of the constraint, and q̄a[ml] the solution of the same
constraint with DF̄ [ml]

T δd in the right hand side replaced by ATAδm̄a[ml].
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It is known that we can control O(1) error in solutions δm̄a, q̄a by controlling normal
residual. The gradient equation implies that we can make gradient relative error
O(ε2).

Based on the approximate gradient formulation and what we see in gradient accuracy
tests, we need to find methods that could converge in presence of gradient error. The
optimization algorithm that couples convergence to gradient relative error (Heinken-
schloss and Vicente, 2001) will be implemented and tested.

Preconditioners

The feature of the the linear problem indicates that an iterative method should be
employed. And based on my experience on numerical examples, the main cost is
solving the ”extended least squares migration”, that is solving equation(

DF̄ [ml]
TDF̄ [ml] + α2ATA+ ε2I

)
δm̄ = DF̄ [ml]

T δd, (15)

for δm̄ and with α = 0 for IVA. Preconditioned Krylov space methods seem natural for
this problem, and many preconditioners have been suggested in the recent literature.
It remains to evaluate them in the context of extended waveform inversion.

In the equation (7) for δm̄, we use N [ml]
†, since N [ml] is not invertible in some

cases. The principal symbol of pseudo-differential operator DF̄ [ml]
TDF̄ [ml] is of

order 1 (Rakesh, 1988; Symes, 1998). And for our choice of A =
∂

∂xs
for shot

coordinate extension, ATA is a differential operator of order 2. These lead to very
large condition number when we discretize the normal operator and result in an
ill-conditioned problem when solve for δm̄ by ”extended least squares migration”
method.

One option of preconditioning is to use

Λ = (I − L)
1
2 , or just Λ = L

1
2

which are introduced in the last section and have principal symbol

(1 +
n∑
i=1

ωiξ
2
i )

1
2 and (

n∑
i=1

ωiξ
2
i )

1
2

respectively, n is the dimension of the space (Taylor, 1981). Thus Λ is a pseudo-
differential operator of order 1 and Λ−1 is a pseudo-differential operator of order −1.

Preconditioned ”extended least squares migration” becomes

(Λ−
T
2 DF̄ [ml]

TDF̄ [ml]Λ
− 1

2 + α2Λ−TATAΛ−1 + ε2I)δm̄ = Λ−
T
2 DF̄ [ml]

T δd. (16)
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By the composition theorem of pseudo-differential operators, the first term inside the
parentheses is of order 0 and the second term inside the parentheses is also of order
0. This results in a much better conditioned problem.

Define block operator

B[ml] =

 DF̄ [ml]Λ
− 1

2

αAΛ−1

εI

 ,

and d =
(
δdT , 0, 0

)T
. In operator B[ml], DF̄ [ml]Λ

−1: L2 7→ L2 is bounded and AΛ−1

as an oder 0 operator is also bounded, which implies that operator B[ml] is bounded.
For any function v ∈ L2, ‖B[ml]v‖2 ≥ ε‖v‖2, i.e. B[ml] is coercive. Thus BTB is
also bounded and coercive. By Lax-Milgram theorem, there exists a unique solution
to equation (16). This explains when we define the reduced objective function

J̃ [ml] = min
δm̄

1

2
‖B[ml]δm̄− d‖2,

minimum is used instead of infinum.

Another option is the approximate linearized optimal scaling (Symes, 2008a).

With non-multipathing assumption on the model and flat spectrum assumption on
the source, the normal operator without model extension is decomposed as a power
of Laplace operator compositing with a scaling operator

DF [ml]
TDF [ml]δm ' L

n−1
2 V 2δm

with n the space dimension and V 2 the multiplication by σ0(x,∇ψ(x)). The scaling
factor σ0 is a function of position and dip, with ∇ψ(x) indicating the dip direction
of reflectivity model δm. Then the preconditioner we want to use in the ”extended
least squares migration” is defined as

P = L−
n−1

4 W,

with W = V † the multiplication by (σ0)†, which is obtained by solving an optimization
problem.

Pseudo-differential operators commute to leading order. Thus

P 2 '
(
DF [ml]

TDF [ml]
)†
.

Since σ0 ≥ 0, it is represented as σ†0 = eτ . Bicubic spline is used to represent τ :

σ†0 = exp

(
N∑
i=1

τiψi(x)

)
.

Let’s review the algorithm stated in (Symes, 2008a):
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• Compute δmmig = DF [ml]
Td;

• Compute δmfilt = L−
n−1

2 DF [ml]
TDF [ml]δmmig;

• Minimize

J [τ ] =
∑
x∈K

[(
exp

(
N∑
i=1

τiψi(x)

))
δmfilt − δmmig

]2

+ µ
N∑
i=1

τ 2
i .

Here K is a window and images have no reasonable value everywhere outside
the window.

We run the above algorithm separately for each shot data, and result in different
operator P for different shot data. We denote the shot coordinate dependent operator
as P̄ . And

P̄ (xs) = L−
n−1

4 Wxs .

Thus the preconditioned extended least squares migration problem has the following
form (

P̄DF̄ [ml]
TDF̄ [ml]P̄ + α2P̄ 2ATAP̄ 2 + ε2I

)
y = P̄DF̄ [ml]

T δd,

and the resulting
δm̄ = P̄ y.

NOTE that this preconditioner depends on background velocity model. The compu-
tation of P̄ is needed each time after updating the background velocity. We may also
compute xs-independent P by using all data in the computation of P and then define
P̄ (xs) = P . Performance difference of using these two different P̄ remains to be eval-
uated. This optimal scaling preconditioner may be used together with the square root
of Helmholtz operator to control the condition number of the least squares problem.

Finally, correct gradient computation is the key for a successful inversion, as we
discussed before. Many technics should be included in the calculation of gradient, for
example using a different weighted Sobolev norm in the objective function.

Then these methods will be applied to complex synthetic examples and also simple
field data to explore the true capacity of them. There are lots of examples of the
comparison between migration velocity analysis and FWI already in the literature.
Examples that illustrate that FWI and linearized FWI (without model extension)
suffer from cycle skipping, while the method in this proposal could seccesfully recon-
struct the model, will also be generated.
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IWAVE Structure and Basic Use Cases

William. W. Symes

ABSTRACT

The IWAVE control structure facilitates construction of wave simulators with
flexible specification of input and output. This document describes synthesis of
seismograms and wavefield movies from initial data and from single and multiple
sources (right-hand sides), and linearized (“Born”) and linearized adjoint (reverse
time migration) modeling. The choice of physical model and simulation method
- constant density acoustics with Dirichlet boundary conditions and (2, 2k) finite
difference schemes - is the simplest possible, but the framework accommodates
any regularly gridded stencil-based discretization of arbitrary wave physics in the
same way.

INTRODUCTION

IWAVE combines minimal physics- and scheme-specific code with a common base of
memory allocation, SPMD communication and other forms of parallelism, i/o, and job
control code to produce complete wave modeling applications. This paper explains
what code must be written to implement a wave modeling application in IWAVE,
and how IWAVE makes various modeling options available via a set of examples. It
ends with a discussion of various other extensions and capabilities, implemented or
planned, including various forms of inversion.

The next section describes the general organization of the IWAVE core code and the
additional code that must be added to form an application. Following this generic
structural description, I explain how to implement it in the case of the simplest useful
example, constant density acoustics.

Some design aspects of IWAVE arise from the intended use cases not discussed here:
parallel processing of shots, subdomains, and loops, and interface with an object
oriented optimization package, the Rice Vector Library, to facilitate inversion appli-
cations. These use cases and their design implications will form the subjects of other
reports.
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STRUCTURES AND INTERFACES

Three components and their relations define a time-stepping simulator based on reg-
ular gridding and stencil field updates:

• a collection of (discrete) dynamic and static (coefficient) fields;

• model-specific functions implementing time step stencils, determining space and
time grids and stencil shape, and sanity-checking coefficient fields;

• a list of i/o procedures to populate the fields at initial and intermediate times,
and to extract results at final and intermediate times.

Definitions and interfaces for these three components form the core of IWAVE. The
critical functions and data structures are static members of the IWaveInfo class;
definining them completely defines the application. Declarations appear in
iwave/core/include/iwaveinfo.hh, which should be consulted for function signa-
tures etc. Applications must supply definitions, each unique (as is requlred for static
global data), as described in the final paragraphs of this section.

Fields

The top level data structure characterizing an application implemented in IWAVE
is a list of field keywords and other attributes. Each field gets a keyword, acting as
a mnemonic index for internal and external reference. Fields are dynamic or static,
and may be primal or dual in each coordinate axis: “dual” here refers to the grid,
so dual fields represent values assigned to edges, faces, or volumes, rather than grid
vertices (nodes). IWAVE encodes these boolean attributes as 0’s or 1’s. Finally, a
bit of information about the scheme intrudes: each dynamic field is updated in one
of the (sub)steps of a (possibly) multistep method, and for that substep, and that
substep only, needs ghost cell data exchanged.

The FIELD struct containing this information is organized in the order

• (string) keyword;

• (int) dynamic flag;

• (int) substep number;

• (int array) duality flag for each axis.
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For instance, a (z, x) stress component field for a staggered grid elastic finite difference
method is a dynamic fielld, representing a grid sampled centered in the (z, x) faces of
the grid cells, and updated in second substep of each time step Moczo et al. (2006).
The FIELD struct

{"szx", 1, 1, {1, 1, 0}}

captures this information (here coordinate order is (z, x, y)).. Note that the only
arbitrary choice here is the keyword string. The choice of keyword for each field must
be consistent throughout the code.

The distinction between static and dynamic fields is more than a convenience. Static
fields, representing the coefficients of the model differential equations, must exist in
the simulation environment prior to simulation, in some form of persistent store.
Simulation input and output fields, defined below, must also exist as persistent store
prior to simulation. The current implementation of IWAVE presumes that “persistent
store” is a synonym for “disk file”, however the logic is simply that the data for these
fields should exist outside of the simulation scope. Future versions of IWAVE may
accommodate distributed data as persistent store, for instance. Dynamic fields exist
only within the scope of the simulation: IWAVE creates and destroys them in the
course of a run.

By convention, the first field listed in the application FIELD array is the source of the
primary simulation grid, to which all other grids are referenced. Since this information
will need to enter the compuation via i/o, this first field should be static (i.e. a
coefficient), which will exist in the simulation environment prior to execution of the
application.

The static array iwave fields data member of the IWaveInfo class lists the static
and dynamic fields of an IWAVE application and their top-level attributes using the
FIELD struct explained above. Being static, iwave fields must be initialized once,
and only once, somewhere in global namespace. That is, the application author must
supply a definition

iwave_fields = { ... };

somewhere - the preferred location for this definition is in the model definition header
file containing the other required definition to be reviewed below. This model defini-
tion file should be included only in main program source files, as its static declarations
must appear only once in program text.
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Field allocation

IWAVE stores all fields as rarrays (or RARRs). RARR is an intelligent array type that de-
fines gridpoints by reference to global coordinates in Zd for d-dimensional simulations,
provides both one- and multi-dimensional access to array data, and includes many
utiliities for data manipulation. The time step function implementing the dynamic
field updates will be written in terms of RARR utilities and data members. The RARRs

corresponding to the application’s fields together form an rdomain (RDOM), which is
simply an array of RARR, indexed in the order that they appear in the iwave fields

array.

Derivatives (and adjoint derivatives) of the simulation map involve multiple copies of
the basic application fields: the first derivative needs two copies, a set of reference
fields and a corresponding set of perturbation fields. Since the kth derivative is the
derivative of the k − 1st derivative, the kth derivative requires 2k sets of fields in its
definition. The IWaveTree data structure of order k is a vector of 2k RDOMs suitable
for defining the kth derivative; the first 2k−1 RDOMs comprise the reference IWaveTree,
the second form the perturbation.

Functions

The implementation of an IWAVE application depends on a half-dozen functions,
which the application author must supply. The most obvious of these is the time
step, or dynamic field update, function, and it is described here. All six essential
functions are documented in

RSFSRC/trip/iwave/core/include/iwinfo.hh

The time step interface accommodates (in principle) the update functions for all
orders of derivative, and adjoint (reverse mode) as well as forward time stepping. Its
signature is encapsulated in a typedef:

typedef void (*FD_TIMESTEP)(std::vector<RDOM *> dom,

bool fwd,

int iv,

void* fdpars);

The first argument is the RDOM array extracted from an IWaveTree. The order of
derivative to be computed is the base 2 log of dom.size(). The implementation
should take the form of a case list, one major case for each order of derivative im-
plemented. Each case (except the simulation itself, or order 0) should be divided
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into two subcases, one each for forward and adjoint modes, switched by the second
bool argument fwd. Each subcase is further divided into sub-sub-cases according
to the substep index iv. This third refinement permits implementation of multistep
methods in this framework. To take a prominent example, staggered grid methods for
elastodynamics, in their basic form, use leapfrog time stepping, a two-step methods:
velocity fields are updated from stress fields in the first substep, stress fields from
velocity fields in the second. This subdivision of time steps in this fashion allows for
the simplest coding and reduces the amount of data in ghost cell exchange for do-
main decomposition, an advantage for low-latency systems. The final void * pointer
is the usual dodge for faking private class data members in “object oriented C”: the
opaque object passed by address should be of a type defined for the given application
and encapsulating all information needed to compute the time step, such as Courant
numbers, auxiliary damping arrays for absorbing layers, and so on. One of the other
five functions initializes this object.

I/O

The FIELD array member of the IWaveInfo class defines the physical fields of a mod-
eling application. The function data members describe the memory allocation and
updating of the arrays representing these fields. It remains to describe initialization
and finalization, that is, how external data is read to and written from these arrays.

The basic principle of IWAVE i/o is that the structure of a data item determines the
manner in which it is read/written. Absent self-describing i/o formats, this principle
implies that the relevant part of the code implements a case list. Persistent data is
presumed to exist in disk files, or in any case be identified by single strings. Accord-
ingly the case switch is the filename suffix. At this writing, two file data structures
are realized: SEGY minus reel header, or Seismic Unix (SU) format, suffix su, and
Regularly Sampled Function format, suffix rsf. [Other file or network data structures
may be added to IWAVE later.]

Since the details of i/o are implicit in the choice of data structure, it remains only to
connect external data units with the data arrays with which they communicate. Since
the data arrays are indexed by keyword, and since several external data objects may
communicate with the same data array, it follows that a keyword must be introduced
to stand as a proxy for each external data object in the program text. At runtime,
the keyword appears as an index into an associative array describing program inputs
and ouputs; the value associated to each key is a path.

Accordingly, the final data member of the IWaveInfo class is the IOKEY array iwave iokeys.
IOKEY is a typedef for a struct consisting of

• an external data item keyword
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• a field index

• a flag to indicate input (1) or output (0)

• an activity flag, which is key to defining the RVL Operator interface (see dis-
cussion below) - active arrays (1) define components of the operator domain
(input) or range (output), whereas non-active arrays (0) represent auxiliary
inputs/outputs.

For example, an input to the pressure Cauchy data for pressure-velocity acoustics,
regarded as auxiliary data, might be represented by the IOKEY

{"init_p", 1, 1, 0}

(assuming that the pressure array has index 1) whereas the output of the same ar-
ray data, regarded as defining part of the range of the simulation operator, might
correspond to

{"movie_p",1, 0, 1}

Note that any sampling in space and/or time may be represented in this way, and is
determined at the time of interaction with the external data unit. Some details of
file structure controlling IWAVE i/o are discussed in later in this paper.

The indirection afforded by the external data unit keyword allows the the same
IWAVE-based command to be used for many different combinations of inputs and
outputs. Parameter pairs keyword = filename passed from a driver serve to con-
nect specific disk files or other data repositories to external data keywords, hence to
read/write operations.

The IOKEYS array defines i/o info for the basic simulation. Keywords for perturba-
tion fields, used in derivatives and adjoint derivatives, are generated automatically.
For example, if the keyword for density is rho, then the keyword for the first pertur-
bation density (input to the first derivative) is rho d1, The adjoint output density is
rho b1. The choices of suffix correspond to those generated by the Tapenade auto-
matic differentiation package Hascoët and Pascual (2013). These keywords would be
used in as parameter keys in pairs passed to driver routines, for example, rho d1 =

my density pert.rsf.

IWaveInfo

Definition of an IWAVE application amounts to initialization, in global namespace of
the static public data members of the IWaveInfo class:
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static FIELD iwave_fields[];

static IOKEY iwave_iokeys[];

static FD_MODELINIT minit;

static FD_MODELDEST mdest;

static FD_TIMESTEP timestep;

static FD_TIMEGRID timegrid;

static FD_STENCIL createstencil;

static FD_CHECK check;

These initializations must occur precisely once for each application. The recom-
mended procedure is to assign all members except iwave iokeys in a model definition
header file, which includes both the declarations of the static data types (via #include

"iwinfo.hh") and of the function data members (via #include of the main model
header file). The iwave iokeys array, on the other hand, should be assigned at the
top of each command file, after #include of the model definition file.

This organization allows the model application library (object files defining various
functions) to be linked without alteration to a variety of drivers (main program files)
implementing different input/output choices. I have identified two main use cases:

• standalone command: a standalone driver such as acd (next section) must
have keys provided for all inputs and outputs contemplated. I/O keys for which
key=value pairs don’t appear amongst the parameters passed to the application
at runtime are simply ignored. So this command can be used for all possibilities
covered by the chosen I/O keys without any alteration. See the next section for
illustration.

• RVL Operator interface, for use in inversion applications: the constructor builds
its domain and range spaces using the supplied I/O keys - this is the reason for
the “active” flag. I/O keys flagged as active define components of domain and
range (product) spaces, with geomtry metadata taken from the files which the
keys point to via the parameter list. Data sources corresponding to these keys
must be present in the environment and correspond to parameter values. This
use case will be described in more detail in another report.

A negative consequence of IWAVE’s reliance on static global definitions is that only
one IWAVE modeling application can be active in a given process. This disadvantage
is offset by two considerations: (1) in the use cases for which IWAVE was designed,
only one modeling application per process is required; (2) the creation of a new
IWAVE application is as simple as one can imagine, requiring only the definition
of a couple of arrays and half-a-dozen functions with specified signatures, and their
assignment to static data of IWaveInfo. If in the future interesting use cases arise
in which truly distinct modeling packages must be combined in the same process,
then simple modificiations of the IWAVE overall structure will answer, with slightly
increased burden on the programmer.



92 Symes

CASE: CONSTANT-DENSITY ACOUSTICS

A simple example illustrating the framework described above is the IWAVE implemen-
tation of the constant-density acoustic wave equation with Dirichlet (pressure-free)
boundary conditions, connecting the acoustic potential field u(x, t) and a right-hand
side f(x, t) representing a source of mechanical energy, defined in a spatial domain Ω
over a suitable time interval,

∂2u

∂t2
− c2∇2u = f,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v(x) x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω.

The examples to be discussed use the centered difference approximation (Kelly et al.,
1976)

un+1 = 2un − un−1 + ∆t2c2Lun + ∆t2fn

in which L is a regular grid difference approximation to the Laplacian, and un repre-
sents the array of acoustic potential samples for time n∆t. The choice of L used below
is a sum of centered coordinate second difference operators of order 2k, k = 1, 2, 4, ...
resulting in a scheme of formal order 2 in time and 2k in space. Lax-Wendroff exten-
sion to higher order time approximation fits this pattern also.

Since each array element in un−1 appears exactly once in a loop through the array,
it is possible to store only the two arrays for time indices n − 1 and n, represented
by RARRs up and uc respectively, and store c2 in the RARR csq. The the three-level
scheme above becomes

up = 2 * uc - up + dt2 * csq .* L uc + dt2 * f^n

[swap up, uc]

With the type of discrete finite difference Laplacian described above, the grids for uc,
up, and csq are all primal, and commensurable. Since csq must exist along with all
of its metadata (its grid information, basically) in the scope of the simulation, it is
natural to read the primal grid geometry from it. Thus an appropriate iwave fields

array for acoustic constant density modeling is

FIELD IWaveInfo::iwave_fields[]

= {

{"csq", 0, 0, {0, 0, 0}},

{"uc", 1, 0, {0, 0, 0}},

{"up", 1, 0, {0, 0, 0}},

{"", 0, 0, {0, 0, 0}}

};
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The last line functions the same way as the traling NUL for C strings, that is, to signal
the end of the structure.

Inspection of the pseudo-code above reveals that up and csq need to be available at
precisely the same gridpoints, whereas uc must store additional gridpoints around
the boundary (“halo” or “ghost” points) in order that the Laplacian can be built at
the csq gridpoints (the “physical” grid). So the memory allocations for uc and up

differ, and the “swap” mentioned in the algorithm exchanges only values of the two
fields at physical grid points. The algorithm must be completed with a boundary
loop which updates the non-physical gridpoints of uc, for example with odd reflection
implementing a Dirichlet condition.

The design described in the preceding paragraphs is realized in the IWAVE acous-
tic constant density package, RSFSRC/trip/iwave/acd. The standalone executable
implementing the various options provided by IWAVE is also called acd. It can
be built as part of a Madagascar top-down build, in which case it shows up as
RSFROOT/bin/sfacd and can be referenced as acd in Madagascar Flows, or stan-
dalone via invocation of scons in either RSFSRC/trip or RSFSRC/trip/iwave. In
the latter case, the dependency RSFSRC/trip/rvl must be built first. The stan-
dalone build has the virtue of permitting local control of build environment. The
RSFSRC/trip/admin directory includes a number of example configuration scripts for
build options - to use, copy one of these, or create a similar file, as config.py in the
root build directory.

The standalone build results in the executable command

RSFSRC/trip/iwave/acd/main/acd.x.

In the remainder of this paper, I will refer to this command as acd.x. The SConstruct
file in the project subdirectory of the paper directory is also configured to use this
standalone-built command.

The IWAVE acoustic constant density implementation includes code for the acoustic
simulator and its derivatives (with respect to velocity-squared) of orders 1 and 2, and
their adjoints, built from a simple numerical kernel (or set of kernels) of truncation
orders in space 2, 4, and 8, and truncation order 2 in time. My research group has
used the Tapenade (Hascoët and Pascual, 2013) automatic differentiation package
to produce the code for derivatives and adjoints. For example, the signature of an
implementation of the (2, 2k) scheme for 3D is

acd_3d_[2k](float *** uc3,

float *** up3,

float *** csq3,

int * s,
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int * e,

...,

int * lbc,

int * rbc);

in which uc3 is the 3-dimensional array view of the array uc, and so on; s and e are
the vectors of start and end indices for the loop over gridpoints; and ... stands in
for a list of difference formula coefficients, the the number and value of which depend
on the order (2k). The integer arrays lbc and rbc flag whether the left and right
boundaries of the computational domain, delimited by s and e, are external (physical)
boundaries or internal boundaries. In the former case, phsical boundary conditions
must be applied; these are also part of the code.

Tapenade produces similar code for the first derivative of this stencil (with respect
to the uc, up, and csq arguments, with signature

void acd_3d_[2k]_d(float *** uc,

float *** ucd,

float *** up,

float *** upd,

float *** csq,

float *** csqd,

int * s,

int * e,

...,

int *lbc,

int *rbc);

in which ucd, upd, and csqd are the perturbations of the arrays without the d’s.

These kernels can be folded into an obvious case list, switched by the inputs to the
timestep interface described above.

Tapenade output is not entirely suitable for immediate use: some minor cleanup is
necessary, and any serious optimizations (vectorization, for instance) will need to be
applied in a tuning phase. However the code as it comes from the package is correct
and reasonably readable, and can serve as a baseline with which to verify tuned
versions.

Definition of a command based on the fields and functions described above requires
one more piece of information: the connection of fields to external data sources and
sinks, intermediated by i/o keywords. Many choices are possible; one reasonable
choice for the standalone command option and constant density acoustics (acd.x) is:

IOKEY IWaveInfo::iwave_iokeys[]
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= {

{"csq", 0, true, true },

{"data", 1, false, true },

{"source", 1, true, false},

{"movie", 1, false, false},

{"initc", 1, true, false},

{"initp", 2, true, false},

{"", 0, false, false}

};

Clearly the velocity (or rather velocity-squared) must be made available. Two outputs
from uc are identified, "data" and "movie": while nothing about the specs demands
this usage, the first is intended for trace output, the second for time slices, as the
keywords choices are intended to suggest. Since the precise mechanism of I/O is
inherent in the data unit (file structure, for instance) rather than the directed by
the code, in fact these mnemonic suggestions could be ignored, and "data" used to
store a movie, for example. However it is an intended use case that movies might
be generated at a byproduct of trace generation, so two output slots are provided.
Similarly, several input keywords suggest a right-hand side input (time dependent
force divergence traces) ("source") and Cauchy data ("initc", "initp").

Note that the discrete Cauchy data represent pressure at two successive time levels,
whereas the natural Cauchy data for the wave equation would provide presure and
its time derivative. An application accepting this natural Cauchy data would need
to pre-process it into discrete Cauchy data as indicated above. I have elected to “un-
bundle” this type of pre-processing, that is, it is not included in the IWAVE code
itself. Similarly, the natural SEGY representation of the RHS source traces needs
to be pre-processed to code the source positions as receiver coordinates, as reviewed
below.

Single Shot Examples

The examples presented here are built in the project subdirectory of the paper
directory, and organized in standard Madagascar fashion with SConstruct (Fomel,
2009). Details of the build are best appreciated by reading the SConstruct script in
./project. All use the standalone build of the acoustic constant density command
acd.x (in RSFSRC/trip/iwave/acd/main). This command self-docs: all of the pa-
rameters described below, and others not used in these examples, are described in
the self-doc, which the reader should consult in conjunction with this discussion.

All of these examples use the simple layered velocity (-squared) model depicted in
Figure 1. This data derives from a corresponding velocity model, fetched from and
squared to create a velocity-squared field.



96 Symes

Figure 1: Four layer deep-water cartoon - quantity plotted is velocity squared.
struct/project csq-4layer
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Movie from Initial Data. Figure 2 displays a Gaussian initial field, input as the
initial potential field uc. Since up is not input, it remains at its default value of zero.
The resulting IWAVE solution is not convergent to the solution of any particular
Cauchy problem with full convergence order (2), but produces a reasonable-looking
movie. Another (minor) application would produce a correction to be added to the
up field to restore 2nd order convergence.

Figure 2: Gaussian initial datum struct/project gauss

The data depicted in Figures 1 and 2 is input to the simulation, so clearly must
exist prior to simulation. However the output must also exist: IWAVE I/O, both
reads and writes, is driven by the target data structure. Therefore the movie output
file must be constructed before the simulation fills it with data. The SConstruct

script contains an invocation of the sfmakevel command which creates a 3D rsf file
movieinit.rsf. On completion of the command, this file holds the movie output.

Perusal of this command reveals some customization of the rsf file format, as com-
pared to its standard use (Fomel (2009)). The duration of the movie determines
the duration of the simulation: the initial simulation time is the time of the initial
movie frame, and similarly for the final time. Thus IWAVE must be able to determine
which axis specified in movieinit.rsf is the time axis. Three additional header word
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categories, beyond those of the rsf standard, make this feat possible:

• dim = spatial dimension - should be same as spatial dimension of the primary
static file (keyword csq in this case).

• gdim = global dimension - of the data array, at least dim

• id1, id2, id3,...: identification tags of axes 1, 2, 3,...

By IWAVE convention, axis with tag = dim is the time axis, and axes 0, 1,..., dim-1
are the spatial axes. More than dim axes are permitted - they are used to represent
other acquisition or modeling parameters, see section on multi-shot simulation, below.

In this example, the space dimension is 2, so id3=2 indicates that the 3rd axis is the
time axis.

After propagating 5.12 s and interacting with both the reflecting (Dirichlet) bound-
aries and the interfaces in the model, the potential field becomes that depicted in
Figure 3.

Parameters passed to the command acd.x included

csq = ../csq_4layer.rsf

initc = ../init.rsf

movie = ../movieinit.rsf

Keywords data and source were ignored. Many other paramters were required; a
brief description of these is included in the self-doc of the command acd.x.

Note that the pathnames refer to the directory level above the working directory.
IWAVE produces various diagnostic output at runtime, switched by various flags
passed as parameters. These outputs, and possibly other auxiliary outputs of com-
mands built upon IWAVE (eg. the data residual in an inversion) vary with application
and data, so are inconvenient to specify individually as cleanup targets. Instead, the
SConstruct script creates a working subdirectory and executes (and dumps its aux-
iliary output) there. The entire directory is cleaned up by scons -c. So the correct
parameter specification for archival input and output files is one directory level up.

Movie from Point Source. The pulse in Figure 2 the derivative of a 5 Hz Gaus-
sian; it is embedded in a space-time field via the iwave/trace/main/towed array.x

utility, and used as the RHS in the wave equation. The resulting field (starting from
homogeneous Cauchy data) at 5.12 s is depicted in Figure 5.

In this case, the parameters passed to acd.x (in addition to the other required nu-
merical parameters) are
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Figure 3: Acoustic potential field at 5.12 s, resulting from Gaussian initial data
struct/project frameinit



100 Symes

Figure 4: Derivative of 5 Hz Gaussian struct/project wavelet
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Figure 5: Acoustic potential field at 5.12 s, resulting from Gaussian derivative point
source pulse located at x=12 km, z = 1.875 km. struct/project framesrc
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csq = ../csq_4layer.rsf

source = ../wavelet12000.su

movie = ../movieinit.rsf

The point source data are presented as SEGY traces, rather than as an RSF data
file; the latter would in principle also be possible, but at the time of this writing RSF
trace I/O is not enabled.

Trace Data from Point Source The same point source as in the previous example
produces sthe traces at 6 m depth depicted in Figure 6. The sampling is also pure
point, that is, does not filter the potential field in any way. So this trace data could
be interpreted as the 2D pressure traces of a point source with 5 Hz Gaussian pulse,
for example. In this case, the required parameters are

csq = ../csq_4layer.rsf

source = ../wavelet12000.su

data = ../shot12000.su

As noted before, there is nothing sacred about the string data - any keyword identified
in the I/O key struct as output from uc would do just as well. This key is provided
for mnemonic convenience. Note that the file data structure (shot12000.su) entirely
determines the way in which the data is written - sampling, source and receiver
geometry are all taken from this file.

Born Approximation The linearization of the acoustic field with respect to the
wave velocity is the solution δu of

∂2u

∂t2
− c2∇2u = f, (1)

∂2δu

∂t2
− c2∇2δu =

2δc

c3

∂2u

∂t2
, (2)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x) x ∈ Ω,

δu(x, 0) = 0,
∂δu

∂t
(x, 0) = 0 x ∈ Ω,

u(x, t) = δu(x, t) = 0, x ∈ ∂Ω.

As explained above, the IWAVE framework provides approximations for computing
the linearization (widely called the “Born approximation”, even though this is strictly
a misnomer), along with its adjoint and higher derivatives.
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Figure 6: Response of seafloor pressure sensor at 1.875 km depth, to 400 shots spaced
25 m apart at 6 m depth, source is isotropic point radiator, source pulse is Gaussian
derivative with peak frequency 5 Hz, struct/project shot12000
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The parameter key deriv flags the computation, or not, of derivatives. The value as-
signed is the order of derivative, with default 0. Each input perturbation (representing
quantities such as δc in the linearized system of PDEs, above) is assigned a key equal
to the key for the unperturbed quantity with d1 appended (for the first derivative
- higher derivatives require multiple input perturbations, keys for which have d2,
d3,... appended). Output keys remain the same as for the reference computation.

For the acoustic constant density application, Born approximation requires refer-
ence and perturbation square velocity fields. Figures 7 and 8 show perturbation and
reference square velocity fields, respectively, that will generate Born data roughly
corresponding to the preceding example. The required parameters are

deriv = 1

csq = ../csq_4layer.rsf

csq_d1 = ../dcsq_4layer.rsf

source = ../wavelet12000.su

data = ../born12000.su

The linearized response (Born modeling) corresponding to Figure 6 appears as Figure
9.

Reverse Time Migration One version of Reverse Time Migration (RTM) is sim-
ply the adjoint of Born modeling. IWAVE provides adjoint computations for every
derivative mapping (first, second,...) using the optimal checkpointing method of re-
verse time propagation (Griewank, 2000; Blanch et al., 1998; Plessix, 2006; Symes,
2007). Other approaches to time reversal can be more efficient in special cases, es-
pecially when the interior dynamics are conservative (acoustics, elasticity) (Dussaud
et al., 2008; Clapp, 2009). However none are more effective in general, in particular
when energy attenuation is significant part of wave dynamics, as is the case for all
realistic models of seismic wave motion.

Figure 10 displays the migration of the single Born “shot” gather (really, OBS receiver
gather) located at xs = 12000 m from the left edge of the model. No effort has been
made to remove the low-frequency noise caused by the sea bottom reflection.

The parameters required for this job are

deriv = 1

adjoint = 1

nsnaps = 10

csq = ../csq_4layer.rsf

csq_b1 = ../migr12000.rsf

source = ../wavelet12000.su

data = ../born12000.su
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Figure 7: Velocity-squared perturbation - localized oscillations at layer boundaries
struct/project dcsq-4layer
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Figure 8: Smooth velocity-squared obtained from velocity of Figure 1 by filtering
with a cubic spline window. struct/project csq-4layersm
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Figure 9: Linearized response (“Born modeling”) of seafloor pressure sensor, due to
perturbation (Figure 7) about smooth background (Figure 8); other parameters as in

Figure 6. struct/project born12000
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Figure 10: Reverse-time migration of Born data from Figure 9.
struct/project migr12000
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The adjoint key flags the adjoint computation. The checkpointing algorithm requires
allocation of workspace for checkpoints (copies of wavefield Cauchy data, consisting
of all dynamic arrays). The number of checkpoints allocated is the value for key
nsnaps. The appropriate number of checkpoints depends on the number of time
steps. Reasonable numbers to achieve a cost ratio of adjoint to forward computations
of around 5 are

• up to 1000 time steps: 5 checkpoints

• up to 5000 time steps: 10 checkpoints

• up to 10000 time steps: 20 checkpoints

• up to 20000 time steps: 30 checkpoints

Interlude: The Internal Grid

The basic control structure of IWAVE is its internal grid, which describes the global
state space of IWAVE simulations. This rectangular grid is logically equivalent to a
tuple of axes; each axis is regularly sampled, hence described by the usual (n, d, o)
triple familiar from RSF. [In common with conventional usage for this subject, “axis”
in this discussion will mean “finite regularly sampled interval on an axis”.]

Like RSF, the restriction to regular sampling implies some workarounds for cases in
which data sampling is actually not regular - the notable instance being trace acqui-
sition geometry. Irregular sampling parameters find a natural home in the attributes
of IWaveSampler i/o objects, which encapsulate all of the information required for
i/o of a given type or format. A reference to the internal grid is an key data member
of every IWaveSampler instance.

The spatial axes are obvious members of the internal grid, as is the time axis. The
IWaveSim constructor creates a version of the time axis that combines the various
time axes of associated data objects that have them, and resets the time step to
one appropriate for the simulation (returned by the TIMESTEP member function of
IWaveInfo). Thus for example the source time axis may even end earlier than the
output trace time axis begins; the internal time axis contains the convex hull the two,
resampled to the simulation time step.

Other axes represent other aspects of simulation - most important, other sampled
parameters such as source positions that parametrize individual shots within a sim-
ulation. The internal grid allocates additional axes to record these parameters. For
instance, SEGY data is organized shot coordinates, on a shot axis. All coordinates
are recorded in the IWaveSampler for SEGY data, but only one additional axis with
stride 1 is introduced to describe the various shots.
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Additional axes may represent internal degrees of freedom available to the simulation,
for instance space- or time-shift simulation (Symes, 2008). The use of these internal
degrees of freedom will be described in another report.

With many axes interacting, it is essential to provide some method to determine their
roles. Other data handling systems either carry out this task in a similar way to that
described here (eg. DDS,...) or ignore it (not an option for IWAVE!). The additional
information is arranged as additional keywords in RSF data files, mentioned earlier
in the discussion of movie output:

• dim = spatial dimension of the simulation

• gdim = global dimension = dimension of internal grid

• id1, id2, id3,... = axis identifiers, coded as follows:

– 0,...,dim-1: spatial dimensions corresponding to these choices in SEGY
coordinates: 0=z, 1=x, 2=y;

– dim: time

– dim+1,...,99: additional axes for various simulation parameters (eg. shot
index)

– 100,...,dim+99: internal degrees of freedom (extended modeling)

The labeling of spatial axes avoids external data transpose: if the data for coefficient
arrays is organized with x as the fast variable, for instance (x meaning the coordinate
with that name in the SEGY data standard, for example), then setting id1=1 etc.
enables correct sampling of traces. The default settings are id1=0, id1=2, id2=3.
[Note that axis keywords are numbered Fortran-style, whereas axis values are C-
style (beginning with 0). This is done to maintain compatibility with RSF header
keywords, which appear to be inherited from SEPlib.]

Multi-shot (survey) simulation

IWaveSim loops over any axes beyond the time axis (signified by idxxx=dim through
idxxx=99) that IWaveSampler objects add to the internal grid. In particular, SEGY
data file identified as output or input adds a simulation axis with idxxx=dim+1 to
the internal grid. The loop over this axis increments when a the keywords sx, sy, or
sz change from one trace to the next, signifying a new shot.

From the user point of view, this means that multi-shot simulation is automatic: if
multiple shots are part of the output data structure, then all shots will be simulated.
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We show several examples that illustrate this data-flow feature of IWAVE. The exam-
ples are identical to those reviewed above for single shots, except that the additional
computation load of multi-shot simulation suggests the use of parallelism. The paral-
lel features of IWAVE (parallel shots, parallel subdomains, parallel loops) will be the
subject of a subsequent report. For now, we note that the partask keyword indicates
the number of shots to run in parallel. The SConstruct files for the several multishot
simulations include a line (near the top) to set the variable NP. If NP=1, then the
simulations described below are run in serial mode. If NP is set to a value larger than
one, then this value indicates the number of shots to process in parallel, via a collec-
tion of MPI communicators. Running several shots in parallel requires that IWAVE
be installed with MPI enabled IWAVE USE MPI defined as a compiler parameter, see
the README INSTALL file in the top-level directory. The number of MPI processes
assigned (via mpirun -np can be fewer than the number of shots to be simulated - in
that case the simulations run in batches until all shots are completed. Any unneces-
sary processes at the terminal stage of the simulation are simply left idle, so there is
no necessary relation between the number of MPI processes and the number of shots.
The SConstruct script in the project directory for this paper uses mpirun -np NP

to initiate MPI and assign the number of processes to be used. The follow-on report
will describe the use of IWAVE in a batch environment, for both parallelization over
shots and via domain decomposition.

The next few examples are large enough that completion single-threaded execution
requires perhaps half an hour on a typical (circa 2014) desktop CPU. The data dis-
played were obtained on a typical multicore desktop machine, using MPI with NP=6.
These results are precisely the same as those that are obtained with a single process,
but required less than 4 minutes walltime.

Simulation Recall that output files for IWAVE applications must exist prior to
execution. Therefore, to simulate 12 shots at intervals of 400 m over the model
depicted in Figure 1, the first step is to create a suitable SEGY data set to hold
the output. Therefore the SConstruct script creates the output file of zero SEGY
traces (line8-12km.su), subsequently filled with samples by IWAVE, all as part of
the same Flow command. As note above, the source must be properly embedded
in a space-time field (collection of SEGY traces) for each shot location. The utility
trace/main/towed array.x provides a convenient method for combining the posi-
tion data of a prototype SEGY trace file with a choice of source array to produce
translations of a source array to correct shot positions. Other parameters are as in
the single-shot case. The result is displayed in Figure 11.

Perusal of the project/SConstruct script shows that in the invocation of acd.x, only
the filenames have changed. The dataflow design of IWAVE, in which data objects
determine the way in which they are read/written, implies that the information about
changed source/receiver geometry and data volume does not need to be explicitly
passed to the simulation command.
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Figure 11: Response of 13 seafloor pressure sensors spaced 400 m apart at 1.875 km
depth, to 400 shots spaced 25 m apart at 6 m depth, sources are isotropic point
radiators, source pulse is Gaussian derivative with peak frequency 5 Hz. Velocity-
squared model depicted in Figure 1. struct/project line8-12km
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Linearized Simulation Linearized simulation (Born modeling) works the same
way. The data predicted from the perturbation in Figure 7 of the smooth background
velocity (squared) in Figure 1, same source-receiver geometry as in the preceding
example, is displayed in Figure 12.

Figure 12: Linearized response of 13 seafloor pressure sensors space 400 m apart
at 1.875 km depth, to 400 shots spaced 25 m apart at 6 m depth, sources are
isotropic point radiators, source pulse is Gaussian derivative with peak frequency
5 Hz, Background or reference model as in Figure 8, perturbation as in Figure 7.
struct/project born8-12km

Adjoint Linearized Simulation Adjoint linearized simulation (reverse time mi-
gration) of the 12 shot linearized data (Figure 12) produces the image displayed in
Figure 13.
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Figure 13: Reverse-time migration of Born data from Figure 12. Reflectors are cor-
rectly positioned and clearly visible, along with migration artifacts characteristic of
raw OBS migration, for example a free-surface multiple image slightly above 5000 m
depth. struct/project migr8-12km
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CONCLUSION

This paper has described the overall structure of the IWAVE framework, and illus-
trated a few of its capabilities.

The release of IWAVE described in this paper is 2.0. It implements many use cases
not described here:

• multipole source representation - essential to simulate the directional nature of
field source and receiver arrays;

• plane wave and other extended sources, including randomized;

• PML absorbing boundary conditions for acoustic constant density simulation,
following Grote and Sim (2010);

• shot record extension of the acoustic constant density model. (Kern and Symes,
1994)

All of these simulation modes are as accesssible as easily as those illustrated in the
preceding seciton.

Earlier releases (1.x) of IWAVE included implementations of staggered grid schemes
for acoustics and isotropic linear elasticity (Moczo et al., 2006). See Fehler and Keliher
(2011) for an account of the role played by the IWAVE acoustic staggered grid code as
a QC tool in the SEAM Phase I project. Revival of these applications in the IWAVE
2.0 infrastruction is intended for a future release.

The QC role in the SEAM project heavily influenced the design of IWAVE, partic-
ularly the requirement that its performance scale well to very large simulations and
large numbers of threads. All versions of IWAVE have offered parallelism via domain
decomposition: SEAM simulations typically split simulations involving eight fields
and 3000 × 3000 × 1500 grid points amongst 1000-4000 processes. The user inter-
face specifies the subdivision of the domain with a few parameters. Another report
will detail domain decomposition, parallelization over simulations (mentioned above),
and multithreaded parallel loop execution aspects of IWAVE, as well as performance
enhancements implemented in the finite difference kernels.

Another ground-up design goal is to provide a simple interface to inversion software.
Symes et al. (2011) describe the concept behind the data interchange mechanism:
it is file-based, and motivates the dataflow design mentioned several times already.
Since data objects, represented as files or collections of files, determine their own
i/o modalities, inversion software can simply communicate pathnames to the IWAVE
interface, rather than some more complex data structure. The current release couples
to (and in fact depends on) the Rice Vector Library (“RVL”) (Padula et al., 2009),
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a framework for linear algebra and optimization. IWAVE 2.0 includes full waveform
inversion, linearized inversion (“least squares migration”), and shot record extended
linearized inversion or differential semblance optimization. These and other inversion
applications of IWAVE will be discussed in other reports.
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Hascoët, L., and V. Pascual, 2013, The Tapenade Automatic Differentiation tool:



IWAVE Structure 117

Principles, Model, and Specification: ACM Transactions On Mathematical Soft-
ware, 39.

Kelly, K. R., R. W. Ward, S. Treitel, and R. M. Alford, 1976, Synthetic seismograms:
A finite-difference approach: Geophysics, 41, 2–27.

Kern, M., and W. Symes, 1994, Inversion of reflection seismograms by differential
semblance analysis: Algorithm structure and synthetic examples: Geophysical
Prospecting, 99, 565–614.

Moczo, P., J. O. A. Robertsson, and L. Eisner, 2006, The finite-difference time-domain
method for modeling of seismic wave propagation: Advances in Geophysics, 48,
421–516.

Padula, A. D., W. Symes, and S. D. Scott, 2009, A software framework for the
abstract expression of coordinate-free linear algebra and optimization algorithms:
ACM Transactions on Mathematical Software, 36, 8:1–8:36.

Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient
of a functional with geophysical applications: Geophysical Journal International,
167, 495–503.

Symes, W., 2007, Reverse time migration with optimal checkpointing: Geophysics,
72, SM213–222.

——–, 2008, Migration velocity analysis and waveform inversion: Geophysical
Prospecting, 56, 765–790.

Symes, W. W., D. Sun, and M. Enriquez, 2011, From modelling to inver-
sion: designing a well-adapted simulator: Geophysical Prospecting, 59, 814–833.
(DOI:10.1111/j.1365-2478.2011.00977.x).



118 Symes



The Rice Inversion Project, TRIP14, January 14, 2016

Planewave Modeling and Migration with IWAVE

William. W. Symes

ABSTRACT

Since IWAVE accepts any forcing term, or source, modeling plane waves simply
involves creating a plane wave source. This paper describes the planewave utility:
it creates both plane wave source files and prototype output (header) files for
plane wave data. The examples show both how to perform ordinary plane wave
modeling and migration, and also how to create an extended plane wave image
volume for use in velocity analysis and AVO.

INTRODUCTION

This paper describes the IWAVE implementation of plane wave modeling and migra-
tion. The examples use constant density acoustic modeling, but the same principles
apply to plane wave modeling based on any wave physics implemented in IWAVE.

IWAVE is a framework for solving time-dependent partial differential equations by
Finite Element or Finite Difference methods. The current implementation focuses
exclusively on uniform grid FD methods. A simple example of the target problem
class is constant density acoustics, governed by the acoustic wave equation(

∂2u

∂t2
− c2∇u

)
(s; t,x) = f(s; tx). (1)

together with appropriate initial and boundary conditions, defining a family of fields
depending on a source parameter s. Plane wave modeling results from the choice

s = (px, py), (2)

f(s; t, z, x, y) = δ(z − zs)w(t− pxx− pyy) (3)

or, for 2D,

s = (px), (4)

f(s; t, z, x) = δ(z − zs)w(t− pxx) (5)

The 2D plane wave source (4), for example, produces a planar wave at a source point
(zs, x) propagating at an angle of θ = arcsin c(zs, x)px to the vertical. Plane waves
propagate only in the region in which |cpx| < 1. Thus a plane wave will transit the
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entire region only if |cmaxpx| < 1. This criterion places an intrinsic limit on the image
region for migration.

The basic acoustic constant density driver acd computes approximate solutions to
(1) for arbitrary right-hand side families f(s; t,x), so plane wave simulation requires
another utility to produce appropriate right hand side families. As the notation in (1)
suggests, the field also depends on the parameter s, so storage of the simulation output
requires a data structure including parametrization by s. The utility planewave does
both tasks, producing a compatible pair of SEGY files for input to acd (and, with
appropriate modification, to other IWAVE modeling tools).

Any solution of the acoustic or elastic wave equations in a homogeneous material
model may be decomposed into propagating plane waves: this observation is fun-
damental to a basic understanding of these equations (Courant and Hilbert, 1962;
Achenbach, 1973). Plane wave modeling has a long history in seismology: classic
references include Aki and Richards (1980), Diebold and Stoffa (1981), Stoffa et al.
(1981), Treitel et al. (1982), and Carrion et al. (1984). Plane waves are a persistent
waveform for wave propagation in stratified or layered media, and accordingly there
is a large literature on analysis and inversion for layered models based on this ob-
servation. More recently, Dong Sun used plane wave modeling in his pathbreaking
investigation of nonlinear image domain inversion (Sun and Symes, 2009, 2012). For
imaging (or inversion), plane wave sources have the advantage over point sources of
illuminating a substantial part of the model, rather than a relatively narrow beam:
as the examples to be presented in this paper will show, plane wave images consist
largely of image, with relatively small volume occupied by edge diffraction, unlike
point source images. The chief disadvantage of plane wave sources is the necessary
extension of the simulation time axis: some parts of the plane wave are activated
earlier than others (see (4)!), whereas time-stepping methods must initiate when any
of their dynamic fields become nonzero. Possibilities for ameliorating this added sim-
ulation expense exist, for instance broken and time-shifted plane waves or spatial
sinusoid modulation (Soubaras and Gratacos, 2007).

The SConstruct file in the project subdirectory contains complete annotated scripts
for producing the examples shown here. The reader should consult this script, along
with the self-docs for acd and planewave and the basic IWAVE white paper (Symes,
2014) to fill in the usage details not mentioned here. The examples build in a few min-
utes on any modern workstation or laptop via scons in project - the reader will need
to do this, for example, to view the movie files movie1p.rsf and movie1pm01.rsf.
The examples require that the Madagascar revision number at least 13459.

PLANEWAVE

Since IWAVE permits source input at any point in the spatial modeling domain, there
is no need to restrict the source points composing a plane wave emitter to simulation
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grid points. The planewave utility assumes uniformly spaced source and receiver
points, arranged in horizontal arrays. This is OK for synthetic experiments. On
the TO-DO list for planewave’ is addition of a facility to take arbitrary source and
receiver locations from SEGY data files.

The salient characteristic of each plane wave is slope, or slowness (the vectors (px)
and (px, py) in (4), (2)). Since planewave sources are synthetic in any case, there
seems little harm in limiting the sampling in slowness to uniform in some sense.
Current implementation samples uniformly in slowness. Analysis of layered medium
kinmatics suggests that uniform sampling of slowness-squared may be more useful -
on the TO-DO list.

Due to a bug in the SU utility suplane, to which planewave delegates plane wave
construction, all plane waves must pivot around the midpoint of the array - that is,
the time=0 point in each plane wave will occur at the source array midpoint.

Upshot: planewave requires parameters to determine several axes:

• receiver time axis - just nt and ot, as dt is taken from the source pulse header

• receiver horizontal axis (nx, ox, dx)

• receiver depth (zr)

• source horizontal axis (nxs, oxs, dxs)

• source depth (zs)

• slowness axis (np, op, dp)

Because the Flow does not automatically inherit the ambient environment, it is also
necessary to pass the path to the SU root directory, CWPROOT, via a parameter of the
same name.

The source time axis is computed - the user does not specify it. The computation uses
the extreme slownesses and the extreme x coordinates of the source array, to compute
an interval containing the support of every trace in the entire impulse (spike) plane
wave for every slowness. Then suconv adds this to the time axis of the pulse to create
a time axis containing the support of every trace in every plane wave. As described
in (Symes, 2014), IWAVE creates a simulation time axis containing the convex hull
of the source time axis and the output data time axis.

EXAMPLES

This section presents several examples of plane wave modeling and migration. I’ll de-
scribe the key parameter selections; the reader can consult the annotated SConstruct
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file in the project directory for precise details. I use the acoustic constant density
driver acd in all of the examples below - for usage direction, see the self-doc, or for
more extensive discussion (Symes, 2014).

The examples in this section use a subsampled version of the Marmousi model, Figure
1, with the water depth increased to 400 m and a horizontal extension on the left side
of the model. The extended geometry has 444 points in the x direction, and extends
from x = 0 m (the left side) to x = 10632 m (the right side). The depth range is
[0, 3000] m, so to accommodate the deeper water layer some of the original model is
dropped off the bottom. The spatial sample rate is 24 m in each direction. Horizontal
locations are measured from the left edge, from 0 to 10632 m.

Figure 1: Marmousi model, sampled at 24 m in z and x, layered extension on right
to 10632 m. pw/project csq24

The choice of modeling algorithm, the venerable (2,4) scheme, requires at least 5
gridpoints per wavelength for reasonable accuracy over a few seconds’ propagation
time, so the maximum frequency adequately modeled in the water layer is 12.5 Hz.
The source wavelet for these simulations is a [1, 3.5, 10, 12.5] Hz trapezoidal bandpass
filter (Figure 2). Free surface boundary conditions are imposed on all boundaries.
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The recording time interval is 2 s, short enough that few boundary reflections will be
observed, and those only for the larger slownesses.

Figure 2: Source pulse: [1.0, 3.5, 10, 12.5] Hz trapezoidal bandpass filter.

pw/project wavelet

Source points are placed at all 444 horizontal grid locations (multiples of dx = 24
m) at a depth of 12 m. [IWAVE evaluates fields at non-grid points by multilinear
interpolation, and inserts sources by multilinear adjoint interpolation.]

The receiver array occupies 241 contiguous horizontal locations spaced at 24 m and
beginning at 3000 m, at a depth of 12 m.

Single plane wave at normal incidence

The parameter choice for this example is op=0, np=1, dp= whatever.
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A movie of the wavefield shows the plane wave starting near the surface (the ghost
occurs at a short enough time lag that the effect is visible only as a change of wavelet
shape). The sea floor creates a sizeable reflection, of which the first seafloor multiple
is within the time range of the simulation - it is however of such low amplitude that
it is very difficult to distinguish from other, primary reflections. Figure 3 shows the
final frame. View the entire movie as follows:

scons movie.rsf

sfgrey clip=2 < movie.rsf|xtpen

Figure 3: Pressure field simulation at t = 2 s, normal incidence plane wave source.
pw/project movie1p

Trace data for this example appears as Figure 4.

Born (linearized) simulation requires definition of a background model and a reflec-
tivity (perturbational model). Figure 5 shows a smoothed version of the Marmousi
model, which serves as a macromodel for this example. The difference of the base
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Figure 4: Plane wave gather, normal incidence. pw/project shot1p
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Figure 5: Smoothed Marmousi c-squared model: moving average on 240 m window,
iterated 10 times. pw/project csq24big
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Figure 6: Reflectivity: difference of base model (Figure 1) and moving average on 120
m window, iterated twice. Plot window chosen to match image zone for migration.
pw/project dcsq24
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model and a smoothing on a shorter length scale gives a suitable, scale-separated
reflectivity model (Figure 6).

Trace data for this example appears as Figure 7.

Figure 7: Born plane wave gather, normal incidence. pw/project born1p

Migration of Born data amounts to application of the adjoint linearized modeling
operator, a kinematic inverse in the high frequency limit provided that the background
model is transparent, as it is in this well-scale-separated example. Compare the
migrated image, Figure 8, to the reflectivity model, Figure 6.

The FWI gradient is equivalent to a (reverse time) migration of the simulation residual
data, that is, the difference of the modeled and observed data. To illustrate this
construction, take for the “observed” data the Marmousi normal incidence gather
(Figure 4), and for the current FWI iterate a homogeneous model with c = 1.5 m/ms
at all locations. The difference is plotted in Figure 9, and the migration = FWI
gradient in Figure 10.
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Figure 8: Migration of normal incidence Born data using correct background model.
pw/project mig1p
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Figure 9: Difference of modeled data (Figure 4) and data from a homogeneous model,
which contains only the incident wave. Like Born data (Figure 7), the incident wave
is missing (because the difference cancels it); unlike Born data, the difference con-
tains all nonlinear effects (eg. multiple reflections) present in the modeled data.

pw/project diff
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Figure 10: Migration of the difference data of Figure 9, in homogenous background
model (c=1.5 m/ms). Note kinematic distortion compared to migration of Born data

in consistent background (Figure 8). pw/project migshot1p
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Multiple plane waves, oblique incidence

As explained in (Symes, 2014), IWAVE implicitly loops over axes labeled dim+1 and
greater, in which dim is the dimension of the simulation domain ( = 2, in the examples
presented here). By rigid convention, axes 0,...dim-1 are the spatial grid axes, dim is
the time axis, and all axes with labes dim + 1 and greater represent additional axes
over which the simulation should loop.

For SEGY, the shot axis is implicitly axis dim +1. A change in either sx or sy

increments this axis. Therefore to simulate a line of plane wave “shots”, the user
merely need construct trace headers containing the requred number of traces for each
slowness, and encode the slowness in sx. Similarly, the plane wave source should
contain one gather for each slowness, with precisely the same slownesses and number
of slownesses as the occur in the trace headers.

The planewave utility does this job for the user, creating a matching set of plane
wave headers and source gathers suitable for IWAVE input. The example plane wave
source displayed in Figure 11 shows the plane wave source gathers for 11 evenly
spaced slownesses between p = −0.1 and 0.1, corresponding to propagation angles of
approximately −6 to 6 degrees. Figure 12 shows the computed pressure field at 0.5
s for p=-0.1. It is plotted at approximately 1:1 aspect ratio; clearly the propagation
angle in the water later is indeed about 6◦. Figure 13 shows the 11 plane wave gathers
created by the source array depicted in Figure 11, with the same receiver array as in
Figure 4.

Born modeling and migration work the same way. Figure 7 shows the result of
linearized modeling with the background of Figure 5 and reflectivitly of Figure 6,
with the source gathers of Figure 11. Figure 15 show the result of migrating these
11 gathers. This image is a bit crisper than the normal incidence migration of Figure
8, with migration swings suppressed somewhat by stacking and some of the more
steeply dipping features towards the bottom better imaged.

Shot-record extended modeling

Stacking of individual shot images is responsible for artifact suppression in line images.
To understand how this happens, exposure of the shot images is useful. The full
volume of shot images is also underlies one approach to migration velocity analysis.
IWAVE can output this full volume.

In fact, IWAVE interprets the shot record volume as the output of the adjoint lin-
earized map of an extended model, in which each shot uses an independent copy of
the coefficient fields (c2, for the constant density acoustics system). The extended
modeling concept underlies much recent work on “image domain” inversion. For an
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Figure 11: Multiple slowness source gathers: p ∈ [−0.1, 0.1], ∆p = 0.02 ms/m.

pw/project wav11p
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Figure 12: Pressure field response to plane wave source at p = −0.1 ms/m, t = 500

ms. pw/project movie1pm01

Figure 13: Simulation for 11 plane wave sources in Figure 11. pw/project shot11p
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Figure 14: Linearized simulation for 11 plane wave sources, same model parameters
as Figure 7. pw/project born11p

Figure 15: Migration of data in Figure 14. pw/project mig11p
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extensive discussion of this idea, see (Symes, 2008).

IWAVE requires the definition of an extended model space, with one “panel” or
dim-dimensional model for each shot (in this form of extended modeling - there are
others!). Thus as a first step, one must create data files exhibiting the extended
structure. The SConstruct file accomplishes this task via use of sfspray - see the
rule for creating csq24big ext. Note that an important part of this construction
is the addition of nonstandard keywords dim, gdim, and idx, x = 0, 1, and 3. The
functioning of these keywords is explained in (Symes, 2014). In brief, x = 0, 1 signify
the two spatial dimensions, and 3 = dim + 1 tells IWAVE to treat the third axis in
csq24big ext as the same as the shot axis implied by the structure of the SU files in
the simulation (see discussion above).

Use these extended files as input under the keywords for the background model fields
(active, input fields - see the discussion of the fields struct in (Symes, 2014)).
For constant density acoustic IWAVE, there is only one such field, with keyword
csq. All related fields, eg. the model perturbation inputs for the first derivative
(keyword csq d1 in constant density acoustic IWAVE) or the adjoint first derivative
(RTM) outputs (keyword csq b1), must have the same structure including the same
additional keywords. The SConstruct uses sfadd to copy the c-squared file onto the
migration output file to initialize it, including all of its header info.

Models such as the shot-record extension are extended because the modeling operator
or forward map is an extension of the ordinary one. That means that the data output
by ordinary modeling is the same as the data output by a “physical” extended model,
one in the range of the extension map. In the case of the shot record extension, the
extension map simply duplicates (or “sprays”, hence the use of sfspray) an ordinary
model field as many times as required, and identifies the axis introduced in this way.
The adjoint of this spray operation is the stack, which explains the relation between
extended migration (adjoint linearized modeling) and ordinary migration: output of
the latter is the stack of the output of the former.

An example appears as Figure 16. Panel (shot record migration) 5, or p=-0.02, is
displayed in the large front section; this image is comparable to Figure 8. The right
panel is an example of a common image gather: the horizontal axis is shot index, and
the flatness (or lack of same) indicates the kinematic correctness of the background
model - that is, the 11 trace. Since this example is an inverse crime, of course the
image gather is as flat as possible. Note that it is not perfectly flat or uniform in
amplitude, as it would be if the image volume were replaced by the physical extended
model (result of spray) which would have generated the data - migration is only the
adjoint of linearized modeling, not its inverse.

Replacing the correct c-squared model (Figure 5) by a convex combination with 20%
homogeneous water c-squared produces a comparable image volume, shown in Figure
17. Comparison with Figure 16 reveals two obvious differences: the image (front,
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Figure 16: Shot-record extended migration of data in Figure 14 with correct back-
ground model, i.e. that used to generate the data. pw/project mig11pext
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large rectangle) is misplaced (too shallow), and the image gather is not quite flat.
Correct location of the image is not known a priori, but it is known that the images
for the various values of p should all be the same, at least in the location of events.
So that latter provides a means of judging the correctness of the background model.
This flatness criterion, and related criteria for other extended models. are the basis
of velocity analysis, or as it has come to be known recently, image domain inversion.

Figure 17: Shot-record extended migration of data in Figure 14 with 80% correct
background model, 20% water c-squared. Note non-zero slope of bottom events in
image gather (right-hand panel). pw/project mig11p80pctext

CONCLUSION

IWAVE is built to solve equation 1 and similar systems, so the particular choice of
right-hand side implicit in plane wave modeling must be the result of an external (to
an IWAVE modeling driver) utility. The planewave utility generates a matching pair
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of SEGY trace files: (i) a trace header file, serves as a prototype for the output data
of a simulation or the input data of a migration, and (ii) ah source gather file, also
SEGY traces, encoding the plane wave source (or sources, for a multiple plane wave
simulation). Coupled with IWAVE driver code (such as acd), the planewave utility
creates a basic tool for plane wave simulation and migration.
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Acoustic Staggered Grid Modeling in IWAVE

William. W. Symes ∗

ABSTRACT

IWAVE is a framework for time-domain regular grid finite difference and finite
element methods. The IWAVE package includes source code for infrastructure
component, and implementations of several wave physics modeling categories.
This paper presents two sets of examples using IWAVE acoustic staggered grid
modeling. The first set illustrates the effectiveness of a simple version of Per-
fectly Matched Layer absorbing boundary conditions. The second set reproduce
illustrations from a recent paper on error propagation for heterogeneous medium
simulation using finite differences, and demostrate the interface error effect which
renders all FD methods effectively first-order accurate. The source code for these
examples is packaged with the paper source, and supports the user in duplicating
the results presented here and using IWAVE in other settings.

INTRODUCTION

Domain-specific simulation such as seismic modeling begs for software re-use via mod-
ular design. All applications of this type have the same structure: static fields are
initialized, dynamic fields updated, output extracted. A modular approach to code
architecture is implicit in this structure, and further specialization leads to even more
opportunity for code re-use via modular design.

IWAVE is open source software for finite difference or finite element time-domain
simulation on regular rectangular grids, written exclusively in the C/C++. IWAVE
is built around a core framework: that is, a collection of separate software packages
which together provide essential services upon which applications may be built. These
service components completely define the interfaces to which additional code must be
written to formulate a complete application. The core framework defines

• parameter-driven job control;

• grid generation and memory allocation in 1D, 2D, and 3D space;

• serial, loop-parallel, and task-parallel execution models, scaling to thousands of
threads;

141
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• arbitrary source and receiver locations, and flexible source specification includ-
ing simultaneous source modeling (random, plane-wave,...)

• standard input and output data formats (SEGY, RSF)

• predefined support for linearized (Born) modeling and adjoint linearized (RTM)
modeling, both first and second order;

• uniform interface to optimization and linear algebra for creation of inversion
applications via the Rice Vector Library (“RVL”) (Padula et al., 2009; Symes
et al., 2011).

Symes (2014) describes the desgn principles underlying the IWAVE core framework,
and illustrates the construction of a complete acoustic modeling application using
centered finite differences for the second order acoustic constant denstity wave equa-
tion.

The primary purpose of this short paper is to illustrate synthetic seismogram gen-
eration using another finite difference scheme implemented in IWAVE, the staggered
grid approximation to variable-density velocity-pressure acoustodynamics (Virieux,
1984). Exactly the same framework supports this application as was described in
Symes (2014); as explained there, only two data structures and six principal func-
tions need be defined to implement this (or any) finite difference method in IWAVE.

The examples illustrate two aspects of finite difference modeling. The IWAVE stag-
gered grid implementation includes a version of PML absorbing boundary conditions
(Hu et al., 2007), permitting accurate finite grid approximation of wave propagation
in a full- or half-space. The first set of examples demonstrates the effectiveness of
these very simple PML conditions. The second set reproduce the examples presented
in Symes and Vdovina (2009), and illustrate a fundamental limitation in the use of
straightforward finite-difference methods for modeling waves in heterogeneous media.

IWAVE was used in a quality control role in the SEAM Phase I project - see Fehler
and Keliher (2011) for an account, including discussion of the many difficulties of
large scale numerical simulation of seismograms.

The internal details of IWAVE are not discussed here, except insofar as is necessary to
explain the use of the main commands. As mentioned above, Symes (2014) overviews
the design of IWAVE and the main features of its internal structure, and defines the
elements necessary to compile a new IWAVE application. Symes et al. (2011) briefly
describe the IWAVE/RVL mechanisms for coupling modeling with optimization pack-
ages to produce inversion applications.

The paper begins with a brief review of the system of partial differential equations
solved (approximately) by IWAVE’s acoustic application, and the choice of finite dif-
ference method. The next section evaluates the effectiveness of the PML absorbing
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boundary conditions included in the IWAVE staggered grid acoustic application. The
following section presents the examples of Symes and Vdovina (2009), along with some
additional examples based on the same distribution of mechanical parameters which
shed light on the impact of finite difference order on solution accuracy. Instructions
follow for recreating these examples, and for using them as starting points for fur-
ther modeling exercises. The paper ends with a brief discussion of the prospects for
improvements in performance and accuracy in FD technology, and the evolutionary
advantages flowing from the modular, or object, orientation of IWAVE. Two appen-
dices describe the job parameters used in the examples, and download and install
instructions.

ACOUSTODYNAMICS

The pressure-velocity form of acoustodynamics consists of two coupled first-order
partial differential equations:

ρ
∂v

∂t
= −∇p (1)

1

κ

∂p

∂t
= −∇ · v + g (2)

In these equations, p(x, t) is the pressure (excess, relative to an ambient equilibrium
pressure), v(x, t) is the particle velocity, ρ(x) and κ(x) are the density and bulk mod-
ulus respectively. Bold-faced symbols denote vectors; the above formulation applies
in 1, 2, or 3D.

The inhomogeneous term g represents externally supplied energy (a “source”), via a
defect in the acoustic constitutive relation. A typical example is the isotropic point
source

g(x, t) = w(t)δ(x− xs)

at source location xs.

Virieux (1984) introduced finite difference methods based on this formulation of acous-
todynamics to the active source seismic community. Virieux (1986) extended the
technique to elastodynamics, and Levander (1988) demonstrated the use of higher
(than second) order difference formulas and the consequent improvement in disper-
sion error. Many further developments are described in the review paper Moczo et al.
(2006). IWAVE’s acoustic application uses the principles introduced by these authors
to offer a suite of finite difference schemes, all second order in time and of various
orders of accuracy in space.

The bulk modulus and buoyancy (reciprocal density) are the natural parameters
whose grid samplings appear in the difference formulae. These are the parameters
displayed in the figures below, rather than, say, velocity and density, which might
seem more natural.
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PML EFFECTIVENESS

The IWAVE acoustic staggered grid scheme implements the Perfectly Matched Layer
(PML) approach to absorbing boundary conditions, in one of the simpler of its many
guises (a split field approach - (Hu et al., 2007)). After some manipulation, the
acoustic PML system for the physical velocity v and an artificial vector pressure p
takes the form

ρ

(
∂vk
∂t

+ ηk(xk)vk

)
= −∂pk

∂xk
,

1

κ

(
∂pk
∂t

+ ηk(xk)pk

)
= −∇ · v + g (3)

in which the kth component of the attenuation profile vector η depends only on xk,
and can be stored as a collection of 1D objects. Ordinary acoustic wave propagation
takes place where η = 0, and if the components of the vector pressure p are all the
same in this zone, then they remain the same there, and any one of them may be
regarded as the same as the physical pressure field. Outside of the physical domain,
where waves are to be attenuated, η should ibe positive; at the boundary of the
physical domain, it should vanish to positve order. We elected to make η cubic in
distance to the boundary: for a PML layer of width Lk,r, beginning at xk = xk,r along
the kth coordinate axes,

η(xk) = η0

(
xk − xk,r
Lk,r

)3

Thus there are four PML boundary layer thicknesses in 2D, six in 3D, one for each
side of the simulation cube. The IWAVE convention imposes pressure-free boundary
conditions on the exterior boundary of the PML domain. Thus L = 0 signifies a free
surface boundary face. Any face of the boundary may be assigned a zero-pressure
condition (L = 0) or a PML zone of any width (L > 0).

Many implementations of PML, especially for elasticity, confine the extra PML fields
(in this case, the extra pressure variables) to explicitly constructed zones around the
boundary, and use the standard physical system in the domain interior. We judged
that for acoustics little would be lost in either memory or efficiency, and much code
bloat avoided, if we were to solve the system (3) in the entire domain.

Considerable experience and some theory (Hu et al., 2007; Moczo et al., 2006) suggest
that the system 3 will effectively absorb waves that impinge on the boundary, emu-
lating free space in the exterior of the domain, if the PML zones outside the physical
domain in which η are roughly a half-wavelength wide, and η0 = 0.

A simple 2D example illustrates the performance of this type of PML. The physical
domain is a 1.8 x 7.6 km; the same domain is used in the experiments reported in
the next section. A point source is placed at z=40 m, x = 3.3 km, with a Gaussian
derivative time dependence with peak amplitude at about 5 Hz, and signifcant energy
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at 3 Hz but little below. The acoustic velocity is 1.5 km/s throughout the domain,
so the effective maximum wavelength is roughly 500 m. The density is also constant,
at 1 g/cm3. A snapshot of the wavefield at 1.2 s after source onsiet (Figure 1),
before the wave has reached the boundary of the domain, shows the expected circular
wavefront. At 4.0 s, a simulation with zero-pressure boundary conditions on all sides
of the physical domain produces the expected reflections, Figure 2. With PML zones
of 250 m on the bottom and sides of the domain, so that only the top is a zero-pressure
surface, and η0 = 1, the wave and its free-surfacec ghost both appear to leave the
domain (Figure 3, plotted on the same grey scale). The maximum amplitude visible
in Figure 2 is roughly 7.1 × 10−2, whereas the maximum amplitude in Figure 3 is
7.0 × 10−5. The actual reflection coefficient is likely less than 10−3, as the 2D free
space field does not have a lacuna behind the wavefront, but decays smoothly, so the
low end of the wavelet spectrum remains.

It is not possible to decrease the PML layer thickness much beyond the nominal
longest half-wavelength and enjoy such small reflections. Figure 4 shows the field at
4.0 s with PML zones of width 100 m on bottom and sides, and an apparently optimal
choice of η0. The maximum amplitude is 2.3 × 10−4, and a reflected wave is clearly
visible at the same grey scale.

ALL FD SCHEMES ARE FIRST ORDER IN
HETEROGENEOUS MEDIA

The bulk modulus and buoyancy models depicted in Figures 5 and 6 embed an an-
ticline or dome in an otherwise undisturbed package of layers. These figures display
sampled versions of the models with ∆x = ∆z = 5 m; the model fields are actu-
ally given analytically, and can be sampled at any spatial rate. The IWAVE utility
sfstandardmodel (in the Madagascar bin directory) builds this example and a num-
ber of others that can be sampled arbitrarily for grid refinement studies. See its
self-doc for usage instructions.

Symes and Vdovina (2009) use the model depicted in Figures 5 and 6 to illustrate
the interface error phenomenon: the tendency, first reported by Brown (1984), of all
finite difference schemes for wave propagation to exhibit first order error, regardless
of formal order, for models with material parameter discontinuities. Figure 7 exhibits
a shot gather, computed with a (2,4) (= 2nd order in time, 4th order in space)
staggered grid scheme, ∆x = ∆z = 5 m (more than 20 gridpoints per wavelength
at the wavelength corresponding to the highest frequency, 12 Hz, with significant
energy, and the smallest vp = 1.5 km/s) and an appropriate near-optimal time step,
acquisition geometry as described in caption. The same gather computed at different
spatial sample rates seem identical, at first glance, however in fact the sample rate
has a considerable effect. Figures 8 and 9 compare traces computed from models
sampled at four different spatial rates (20 m to 2.5 m), with proportional time steps.
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The scheme used is formally 2nd order convergent like the original 2nd order scheme
suggested by Virieux (1984), but has better dispersion suppression due to the use
of 4th order spatial derivative approximation. Nonetheless, the figures clearly show
the first order error, in the form of a grid-dependent time shift, predicted by Brown
(1984).

Generally, even higher order approximation of spatial derivatives yields less dispersive
propagation error, which dominates the finite difference error for smoothly varying
material models. For discontinuous models, the dispersive component of error is still
improved by use of a higher order spatial derivative approximation, but the first order
interface error eventually dominates as the grids are refined. Figure 10 shows the same
shot gather as displayed earlier, with the same spatial and temporal sampling and
acquisition geometry, but computed via the (2,8) (8th order in space) scheme. The
two gather figures are difficult to disinguish. The trace details (Figures 11, 12) show
clearly that while the coarse grid simulation is more accurate than the (2,4) result,
but the convergence rate stalls out to 1st order as the grid is refined, and for fine
grids the (2,4) and (2,8) schemes produce very similar results: dispersion error has
been suppressed, and what remains is due to the presence of model discontinuities.

See Symes and Vdovina (2009) for more examples, analysis, and discussion, also Fehler
and Keliher (2011) for an account of consequences for quality control in large-scale
simulation.

Note that the finest (2.5 m) grid consists of roughly 10 million gridpoints. Conse-
quently the modeling runs collectively take a considerable time, from a minutes to a
substantial fraction of an hour depending on platform, on a single thread. This ex-
ample is computationally large enough that parallelism via domain decomposition is
worthwhile. IWAVE is designed from the ground up to support parallel computation;
a companion report will demonstrate parallel use of IWAVE.

CREATING THE EXAMPLES - RUNNING IWAVE
APPLICATIONS

IWAVE builds with SConstruct (http://www.scons.org), either as an independent
package or as part of Madagascar (Fomel, 2009). See the Madagascar web site

http://www.ahay.org/wiki/Main_Page

for download and install instructions. Source for IWAVE and other TRIP software re-
side in the trip subdirectory of the top-level Madagascar source directory. A README

file describes how to install TRIP software independently of the rest of Madagascar,
which is useful to configuring TRIP differently from other parts of the package (for
example, with MPI support).
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The IWAVE acoustic staggered grid modeling command is sfasg for the Madagascar
build, stored in the Madagascar $RSFROOT/bin directory, or

$RSFSRC/trip/iwave/asg/main/asg.x

for the standalone build. All IWAVE commands self-document: entering the com-
mand path prints a usage statement to the terminal, including descriptions of all
parameters.

The paper you are currently reading follows the reproducible research pattern de-
scribed on the Madagascar web site, using Madagascar reproducible research tools.
You can find the LaTeX source in the subdirectory book/trip/asg of the Madagascar
source directory, and the script for building the data in

$RSFSRC/book/trip/asg/project/SConstruct

This script, together with the self-doc for the acoustic staggered grid command and
the remarks in the remainder of this section, should enable you to build your own
examples after the pattern used in this project.

IWAVE applications currently expect model data files in the RSF format of Mada-
gascar (Fomel, 2009). Data from other sources will need conversion to this format.
An RSF data set consists of two files, an ascii header (grid metadata) file and a flat
binary data file. The data set is referenced by the header file name; one of the pa-
rameters listed in the header file is the pathname of the binary data file, with key
in. The header file is small and easily created by hand with an editor, if necessary.
Madagascar commands add processing history information to header files, and mod-
ify their parameters. By convention, the last value of a parameter (key=value pair)
appearing in the file is the current value. Many archival data formats make the grid
sample values available as a flat binary file - this is true for instance of the gridded
models output by GOCAD (http://www.gocad.org), for which the vo files contain
virtually the same information as (so may easily be translated to) RSF header files
in ascii form, and the vodat files are flat binary files which may be used unaltered as
RSF binary files.

IWAVE uses two extensions of the Madagascar RSF standard. The first is the optional
inclusion of the dim and gdim keywords. These permit IWAVE applications to treat
an RSF file image as defining a gdim dimensional data hypercube divided into dim

dimensional slices. The second is the axis identification keyword set, id1, id2, etc.:
these supply information on the physical meaning of various axes. For an IWAVE dim

space-dimensional modeling problem, axes labeled id1,...,id[dim-1] are the spatial
grid axes. If gdim ¿ dim, then id[dim] labels the time axis, and id[n], n > dim, axes
other than those of space-time. The IWAVE structure paper (Symes, 2014) explains
the use of the additional keywords in more detail.
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An example of this construction appears in the script that builds the PML examples
above, which are actually frames of movies. The output of the 2D simulations are
3D RSF files (gdim=3, dim=2) with id3=2, that is, the third axis is treated as time.
Madagascar applications ignore these keywords: in particular, you can view the 3D
RSF simulation output as a movie using sfgrey and xtpen as usual. The presence
of the additional keywords is necessary in order for IWAVE to correctly interpret the
data geometry.

This example illustrates another important feature of IWAVE applications: any out-
put data files must exist prior to execution - their data samples are overwritten.
The SConstruct for this project uses sfmakevel to create the movie output files
and sfput to add the IWAVE-specific keywords to the headers, before invoking the
IWAVE command.

By IWAVE convention, the dimension of the problem is that of the primary model
grid. In the acoustic staggered grid application, the primary model grid is that
associated with the bulk modulus data. This grid is also the primary grid of the
simulation: that is, the space steps used in the finite difference method are precisely
those of the bulk modulus data. Thus the choice of simulation grid is made externally
to IWAVE.

The IWAVE acoustic application uses specific internal scales - m/ms for velocity,
g/cm3 for density, and corresponding units for other parameters. To ensure that
data in other (metric) units are properly scaled during i/o, the RSF header file may
specify a value for the scale key, equal to the power of 10 by which the data should
be multiplied on being read into the application, to convert to the internal scale. For
example, if velocities are given in m/s, the header file should include the line scale

= -3. In forthcoming releases, this device will be deprecated in favor of explicit unit
specifications.

The current release is configured to use Seismic Unix (“SU”) (SEGY without reel
header) format for trace data i/o. Units of length and time are m and ms respectively,
consistent with other internal unit choices. Two peculiarities of which the user should
be aware: (i) receiver coordinates (gx, gy, and gelev keywords) always specify trace
location , that is, the location at which values are sampled in space-time, and (ii) on
input, traces are regarded as point sources, so that each trace multiplies a discrete
spatial delta (hence values are scaled by the reciprocal grid cell volume). Both of
these design choices stem from the migration (adjoint modeling) and inversion uses
of IWAVE, discussed for example in (Symes et al., 2011; Symes, 2014).

Source traces must be modified to conform to this rubric. The sftowed array ap-
plication relieves the user of the necessity to manually adjust the headers of an SU
file containing source traces. It accepts three arguments: (i) an input source source
file containing gx, gy, and gelev values representing source trace location relative to
a source center location - the source coordinates of source traces are ignored; (ii) a
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data file whose sx, sy, and selev values are the source center locations to be used -
its receiver coordinates are ignored, and (iii) an output file (name), to which output
source traces will be written, each with source coordinates equal to those of a data
trace, and receiver coordinates equal to the sums of the source trace receiver coor-
dinates and the data trace source coordinates. The result is a collection of source
coordinate gathers with the same source coordinates as the data file, but within each
gather the same receiver coordinates relative to the source coordinates as the source
file. Thus the source array is translated to each of the source centers specified in the
data file. Because the source file may contain arbitrarily many traces with arbitrary
relative locations, any source radiation pattern may be approximated (Santosa and
Symes, 2000).

The example scripts in the project subdirectory use Madagascar commands to create
these prototype trace files.

One of IWAVE’s design criteria is that acquisition geometry parameters should have
no a priori relation to the computational grid geometry: source and receiver locations
may be specified anywhere in Euclidean space.

DISCUSSION AND CONCLUSION

The rather large and only slowly disappearing error revealed by the examples from
Symes and Vdovina (2009) suggests strong limits for the accuracy of regular grid
finite difference methods. Finite element methods suffer from the same limitations:
accurate solution of acoustodynamic or elastodynamic problems appears to demand
interface-fitted meshed (Cohen, 2002), with the attendant increase in code and com-
putational complexity.

The situation may not be so bleak, however. For one special case, namely con-
stant density acoustics, Terentyev and Symes (2009) show that a regular grid finite
difference method, derived from a regular grid Galerkin finite element method, has
accuracy properties one would expect in homogeneous media (second order conver-
gence, reduction of grid dispersion through higher order space differencing) even for
discontinuous models: the interface error effect is attenuated. This type of result
actually goes quite far back in computational geophysics (see for example Muir et al.
(1992)), though theoretical support has been slower in coming.

Pure regular grid methods cannot take advantage of changes in average velocity across
the model, and concommitant changes in wavelength. Coupling of local regular grids
is possible, however, and can yield substantial computational efficiency through grid
coarsening in higher velocity zones - see Moczo et al. (2006). IWAVE already accom-
modates multiple grids (in domain decomposition parallelism), and extension to in-
commensurable multiple grids would be a significant change, but in principle straight-
forward. The use of logically rectangular but geometrically irregular (“stretched”)
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grids is completely straightforward, on the other hand.

These and other extensions, both past and future, are eased by the reusability de-
signed into the IWAVE core framework. This design has produced reasonably well-
performing and easy-to-use applications, and has proven extensible to new models
and schemes. Moreover, as explained by Symes et al. (2011), the object-oriented
design of IWAVE dovetails with similarly designed optimization software to support
the construction of waveform inversion software. The inversion applications result-
ing from this marriage inherit the features of IWAVE - parallel execution, high-order
stencils, efficient boundary conditions, simple job control - without requiring that
these aspects be reworked in the code extensions.
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Figure 1: Point source field, homogeneous medium with vp = 1.5 km/s, at 1.2 s

asg/project frame13
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Figure 2: Point source field at 4.0 s, after interaction with reflecting (zero-pressure)

boundaries asg/project frame40-1
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Figure 3: Point source field at 4.0 s, after interaction with 250 m PML boundary zones
on bottom and sides (η0 = 1.0) - same grey scale as Figure 2. Longest wavelength

carrying significant energy is roughly 500 m. asg/project frame40-2
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Figure 4: Point source field at 4.0 s, after interaction with 100 m PML boundary zones
on bottom and sides (η0 = 1.0) - same grey scale as Figure 2. asg/project frame40-3
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Figure 5: Dome bulk modulus asg/project bm1
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Figure 6: Dome buoyancy asg/project by1
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Figure 7: 2D shot record, (2,4) staggered grid scheme, ∆x = ∆z = 5 m, appropriate
∆t, 301 traces: shot x = 3300 m, shot z = 40 m, receiver x = 100 - 6100 m, receiver z
= 20 m, number of time samples = 1501, time sample interval = 2 ms. Source pulse
= zero phase trapezoidal [0.0, 2.4, 15.0, 20.0] Hz bandpass filter. asg/project data1
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Figure 8: Trace 100 (receiver x = 2100 m) for ∆x = ∆z = 20 m (black), 10 m (blue),
5 m (green), and 2.5 m (red). Note arrival time discrepancy after 1 s: this is the
interface error discussed in (Symes and Vdovina, 2009). Except for the 20 m result,

grid dispersion error is minimal. asg/project trace
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Figure 9: Trace 100 detail, 1.8-2.5 s, showing more clearly the first-order interface
error: the time shift between computed events and the truth (the 2.5 m result, more

or less) is proportional to ∆t, or equivalently to ∆z. asg/project wtrace



Acoustic Staggered Grid 161

Figure 10: 2D shot record, (2,8) scheme, other parameters as in Figure 7.

asg/project data8k1
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Figure 11: Trace 100 computed with the (2,8) scheme, other parameters as described

in the captions of Figures 7 and 8. asg/project trace8k
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Figure 12: Trace 100 detail, 1.8-2.5 s, (2,8) scheme.. Comparing to Figure 9, notice
that the dispersion error for the 20 m grid is considerably smaller, but the results
for finer grids are nearly identical to those produced by the (2,4) grids - almost
all of the remaining error is due to the presence of discontinuities in the model.
asg/project wtrace8k
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The Rice Inversion Project, TRIP14, January 14, 2016

Wave equation based stencil optimizations on a

multi-core CPU

Muhong Zhou

ABSTRACT

Wave propagation stencil kernels are engines of seismic imaging algorithms. These
kernels are both compute- and memory-intensive. This work targets improving
the performance of wave equation based stencil code parallelized by OpenMP on
a multi-core CPU. To achieve this goal, we explored two techniques: improving
vectorization by using hardware SIMD technology, and reducing memory traf-
fic to mitigate the bottleneck caused by limited memory bandwidth. We show
that with loop interchange, memory alignment, and compiler hints, both icc and
gcc compilers can provide fully-vectorized stencil code of any order with per-
formance comparable to that of SIMD intrinsic code. To reduce cache misses,
we present three methods in the context of OpenMP parallelization: rearranging
loop structure, blocking thread accesses, and temporal loop blocking. Our results
demonstrate that fully-vectorized high-order stencil code will be about 2X faster
if implemented with either of the first two methods, and fully-vectorized low-
order stencil code will be about 1.2X faster if implemented with the combination
of the last two methods. Our final best-performing code achieves 20%∼30% of
peak GFLOPs/sec, depending on stencil order and compiler.

Note: this thesis is part of the 2014 TRIP annual report:

http://www.trip.caam.rice.edu/reports/2014/trip2014 report.html
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Discontinuous Galerkin and Finite Difference

Methods for the Acoustic Wave Equation with

Smooth Coefficients

Mario J. Bencomo

ABSTRACT

This thesis analyzes the computational efficiency of two types of numerical meth-
ods: finite difference (FD) and discontinuous Galerkin (DG) methods, in the
context of 2 D acoustic equations in pressure-velocity form with smooth coef-
ficients. The acousti c equations model propagation of sound waves in elastic
fluids, and are of particula r interest to the field of seismic imaging. The ubiq-
uity of smooth trends in real data, and thus in the acoustic coefficients, validates
the importance of this novel study. Previous work, from the discontinuous coef-
ficient case of a two-layered media, demonstrates the efficiency of DG over FD
methods but does not provide insight for the smooth coefficient case. Floating
point operation (FLOPs) counts are compared, relative to a prescribed accuracy,
for standard 2-2 and 2-4 staggered grid FD methods, and a myriad of standard
DG implementations. This comparison is done in a serial framework, where FD
code is implemented in C while DG code is written in Matlab. Results show FD
methods considerably outperform DG methods in FLOP count. More interest-
ingly, implementations of quadrature based DG with mesh refinement (for lower
velocity zones) yield the best results in the case of highly variable media, relative
to other DG methods.

Note: This thesis is part of the 2014 TRIP annual report:

http://www.trip.caam.rice.edu/reports/2014/trip2014 report.html
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