
Extended Reflection Waveform Inversion via Differential Semblance Optimization
Yujin Liu∗†, William W. Symes† and Zhenchun Li∗, ∗China University of Petroleum (Huadong),†Rice University

SUMMARY

Reflection-based waveform inversion introduces migration
and demigration process to retrieve low-wavenumber compo-
nent from reflection data, but both difference- and correlation-
based methods suffer from the cycle-skipping problem when
the time shifts change rapidly. In this abstract, we introduce
model extension and differential semblance optimization into
reflection-based waveform inversion. With another degree of
freedom in the model space, we can eliminate the time differ-
ence between synthetic and observed data so that cycle skip-
ping problem is solved. Differential semblance operator is
used to detect the coherence of the extended model. The hy-
brid objective function, consisting of data misfitting and differ-
ential semblance term, shows better convexity than only data
misfitting term. We propose a two-stage scheme to minimize
the hybrid objective function, that is, the inner loop to update
extended the reflectivity and the outer loop to update the back-
ground velocity. In order to accelerate the convergent rate of
the two-stage scheme, we propose two different approxima-
tions of diagonal Hessian and use them as preconditioners in
the inner and outer loop respectively. With numerical tests, we
show the importance of linearized inversion in the inner loop
and also demonstrate that our proposed method can success-
fully recover both high- and low-wavenumber components of
the subsurface model. Even though we specify the model ex-
tension in the subsurface offset domain and ignore non-linear
effects, other extensions and non-linear inversion are also pos-
sible under the same framework.

INTRODUCTION

With the fast development of computational technology in re-
cent years, Waveform Inversion (WI) (Tarantola, 1984) retrieves
its popularity in exploration seismology. It can provide de-
tailed information about the subsurface model by minimizing
the difference between synthetic and observed data. However,
it can not estimate the low-wavenumber background model if
there is no sufficient low frequencies in seismic data (Virieux
and Operto, 2009). Meanwhile, the ability of WI to recover
high-wavenumber model depends on an accurate background
model. If the initial background model is far from the true one,
WI suffers from cycle skippings and is prone to local minima
problem.

Various methods are proposed to handle cycle skipping prob-
lem. Multiscale approaches (Bunks et al., 1995) recursively
add higher-wavenumber details to models started from low-
frequency data, but it’s useful only if sufficient low frequen-
cies are available. Laplace-domain WI (Shin and Cha, 2008)
uses damped wavefields to retrieve low-wavenumber model,
but long offset information is still necessary for deep-layer in-
version. Compared with WI, traveltime inversion (Luo and
Schuster, 1991) can better resolves the low-wavenumber com-

ponent because the traveltime shift is more sensitive and more
linearly related to low-wavenumber model, Traveltime inver-
sion has successfully applied in transmission case, where only
first arrivals are used, so it’s still difficult to recover low-wavenumber
components in deep depth if there is no sufficient long offset
information in seismic data.

In order to recover low-wavenumber components in deep lay-
ers, we should make use of reflection wave. Compared with
transmission wave, reflection traveltime is much more diffi-
cult to extract, especially in very complex geological settings.
Manually picking arrivals is prohibitively time-consuming and
is prone to manual errors. More automatic approaches, such
as cross-correlation (Luo and Schuster, 1991; Van Leeuwen
and Mulder, 2010) and dynamic image warping (Ma and Hale,
2013) methods, are proposed to estimate the time shifts, but
they still might suffer from the cycle skipping problem when
the time shifts change very rapidly.

One the other hand, waveform-based method is also possible
to recover low-wavenumber components in deep depth even
though there is no low frequency. Xu et al. (2012) and Zhou
et al. (2012) proposed Reflection-based Waveform Inversion
(RWI) by migration and demigration process, but it’s also prone
to local minimum as conventional WI method due to the limi-
tation of the objective function. Another indirect way is switch-
ing the objective function into image domain and back-projecting
the incoherence information of the reflectivity image into back-
ground velocity update, which is well-known as Wave-Equation
Migration Velocity Analysis (WEMVA) (Biondi and Sava, 1999;
Shen and Symes, 2008).

In this abstract, we introduce model extension and differen-
tial semblance optimization into RWI and propose to mini-
mize a two-term objective function to recover both low- and
high-wavenumber components of subsurface model. We show
that our proposed method, namely extended reflection wave-
form inversion (ERWI), relates WEMVA and RWI theoreti-
cally. Numerical tests demonstrate the effectiveness of our
proposed method.

THEORY

Objective function of ERWI

WI estimates subsurface model m by minimize the difference
between modeling data F[m] and observed data d, that is,

minmJWI [m] =
1
2
‖ F[m]−d ‖2 (1)

in which the symbol ‖ · ‖2 stands for `2 norm. While extended
waveform inversion introduce model extension m̄ and mini-
mize the difference between extended modeling data F̄[m] and
observed data d, that is,

minm̄JEWI [m̄] =
1
2
‖ F̄[m̄]−d ‖2 (2)
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After adding another degree of freedom, EWI can talking larger
time difference between synthetic and observed data, but the
model is non-physical. In order to make the solution of EWI
physical, we solve the following inverse problem,

minm̄JEWI [m̄] =
1
2
‖ F̄[m̄]−d ‖2 +

σ

2
‖ Am̄ ‖2 (3)

where A is annihilator to minimize the non-physical energy of
the extended model (Symes, 2008).

Split the extended model m̄ into low-wavenumber (background
model) b and high-wavenumber components (reflectivity model)
r and only extend the high-wavenumber model, that is,

m̄' b+ r̄ (4)

When the background model is smooth and is close to the true
model, the extended forward map operator can be linearized
by Born approximation, that is,

F̄[m̄]' F̄[b]+ L̄r̄ (5)

where L̄ is Linearized Extended Born Modeling (LEBM) oper-
ator, which is the first derivative of F̄ with respect to m̄. Then,
the previous inverse problem switches to the linearized ver-
sion,

minr̄,bJLEWI [r̄,b] =
1
2
‖ L̄r̄−d0 ‖2 +

σ

2
‖ Ar̄ ‖2 (6)

where d0 = d− F̄[b], σ is the penalty parameter, when σ → 0,
Equation 6 limits to the problem of Migration Velocity Anal-
ysis (MVA); when σ → ∞, Equation 6 limits to the problem
of Least-Squares Migration (LSM) with respect to reflectivity
model and Reflection-based Waveform Inversion (RWI) with
respect to background model.

Gradient computation

The gradient of the objective function 6 with respect to the
high-wavenumber component is,

∇r̄JLEWI [r̄,b] = L̄T (L̄r̄−d0)+AT Ar̄ (7)

where L̄T is the adjoint of LEBM operator, which is also called
Extended Reverse-Time Migration (ERTM) operator. On the
other hand, the gradient of the objective function 6 with respect
to the low-wavenumber component is,

∇bJLEWI [r̄,b] = B[r̄k, L̄r̄k−d0] (8)

where B is bilinear operator, which means that it’s linearly re-
lated with both input vectors, that is inverted extended reflec-
tivity rk and data misfit after k iterations. The detail of the
derivation can be found in (Liu et al., 2013a).

Approximation of diagonal Hessian

Hessian of the two-term objective function with respect to ex-
tended reflectivity has been well discussed in previous abstract
(Liu et al., 2013b). In this section, we consider Hessian of the
two-term objective function with respect to background veloc-
ity. If we fix the extended reflectivity in the input vectors of
bilinear operator, the background velocity perturbation is lin-
early related with data perturbation, that is,

∆d = T∆b (9)

The explicit solution of ∆b for the linear inverse problem is,

∆b = (TT T)−1TT
∆d (10)

where TT T is Hessian for wave-equation tomography. The
diagonal elements can be approximated using the following
formula,

Hd = TT T1 (11)

where 1 is a constant velocity perturbation field that has unit
value everywhere. The approximation is similar to the method
proposed by (Shen and Symes, 2013) but in the data domain.

Two-stage inversion scheme

We develop two-stage inversion scheme to solve the inverse
problem 6. The first stage is to solve a linear inverse problem
to get the inverted extended reflectivity. The second stage is
to solve a non-linear inverse problem to get the updated back-
ground model. Approximation of diagonal Hessians are used
to precondition both stages to accelerate the convergent rate.
The detail of the two-stage scheme is shown in algorithm 1.

Algorithm 1 Two-stage scheme of ERWI
1: given initial background model b0
2: input seismic reflection data d0
3: for i = 0 · · ·niter do
4: solve the sub-LS problem for r̄i

k and Lr̄i
k−d0

5: compute the gradient gi
b = ∇i

bJLEWI [r̄k,b]
6: scale the gradient ∆bi = gi

b/Hd
7: update the background model bi+1 = bi−α∆bi

8: end for
9: output inverted background model bniter+1

10: output inverted extended reflectivity r̄niter+1
k

Acoustic constant density medium case

In this section, we provides explicit formula of operator L̄, L̄T

and B in acoustic constant density medium. The model m(x)
is defined as squared slowness. We extend the model along
subsurface offset domain and split the extended model into
background model b(x) and extended reflectivity r(x,h). The
formula of LEBM operator is

d(xr,xs,ω) =

−ω
2 f (ω)

∫
dxdhG(xr,x+h,ω)r(x,h)G(x−h,xs,ω)

(12)

where x is the space vector, h is the subsurface offset vector, xs
is the source position, xr is the receiver position, ω is the fre-
quency, f (ω) is the spectrum of source function. G(x,xs,ω)
is the Green function satisfying the following wave equation,

(∇2 +ω
2b(x))G(x,xs,ω) = δ (x−xs) (13)

The adjoint of LEBM operator is,

r(x,h) =

−
∫

dxsdxrdω ω
2 f ∗(ω)G∗(xs,x−h,ω)G∗(x+h,xr,ω)d(xr,xs,ω)

(14)
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which is ERTM formula and also the space shift imaging con-
dition (Rickett and Sava, 2002; Biondi and Symes, 2004).

Similarly, we add a small perturbation ∆b(x) to the initial back-
ground model b0(x), that is,

b(x) = b0(x)+∆b(x) (15)

and apply linear approximation, we can get the formula of bi-
linear operator,

∆b(y) =∫
dxsdxrdxdhdω

{
G0(y,xs,ω)ω4 f (ω)

}∗
{G∗0(y,x−h,ω)r(x,h)G∗0(x+h,xr,ω)∆d(xr,xs,ω)}+∫

dxsdxrdxdhdω

{
G0(y,x+h,ω)r(x,h)G0(x−h,xs,ω)ω4 f (ω)

}∗
{G∗0(y,xr,ω)∆d(xr,xs,ω)} . (16)

The physical meaning of the operator can be explained as: the
first term is the cross-correction between background source
wavefield and perturbed receiver wavefield; the second term is
the cross-correction between perturbed source wavefield and
background receiver wavefield. As both terms cross-correct
wavefields propagating in the same direction, low-wavenumber
components information can be recovered. If we restrict the
offset to be zero, the formula 16 is equivalent to the gradient
formula of difference-based reflection waveform inversion.

NUMERICAL TEST

Behaviors of the hybrid objective function

(a) (b)

Figure 1: (a) background velocity; (b) reflectivity.

Firstly, we use random background velocity and reflectivity to
investigate the behaviors of our proposed objective function
with respect to background model The true background model
and reflectivity are shown in figure 1(a) and figure 1(b) respec-
tively. A Ricker wavelet with a fundamental frequency of 15
Hz and temporal sampling of 0.75 ms is used as a source func-
tion to model the data. There are 151 fixed receivers with a
spacing of 20 m and 31 sources with a spacing of 100 m. The
maximum offset used is 1.5 km in both sides.

We calculate the objective function with scanning velocity v =
µv∗, where v∗ is the correct velocity, µ is a scaler varied from

0.85 to 1.1. The first term, second term and total one are shown
in the figure 2 respectively. From these figures, we can see that
the first (data misfitting) term has the local minimum prob-
lem, while the second (differential semblance) term has a big-
ger range of convexity. After summing them together, we can
solve the local minimum problem in some sense.

(a) (b)

(c)

Figure 2: Scanning test of the two-term objective function (a)
the first term; (b) the second term; (c) the total one.

Inversion tests on simple layer model

(a) (b)

Figure 3: (a) True velocity model; (b) Synthetic shot gather at
position 1.5 km.

In this section, we apply our proposed extended reflection wave-
form inversion in a simple three-layer model as shown in figure
3(a). We use the same acquisition configuration as previous
numerical tests to model synthetic data. One common shot
gather at position xs = 1.5km are shown in figure 3(b).

Then we apply ERWI to update the background velocity. The
initial background velocity is constant and the same as the first
layers. The gradient of background velocity, as shown in Fig-
ure 4(a), mainly provides the correct velocity update informa-
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(a) (b)

(c) (d)

Figure 4: (a)Gradient of background velocity; (b) Tomogra-
phy Hessian; (c) Gradient of background velocity after Hes-
sian scaling; (d) inverted velocity by ERWI after 5 iterations

tion. Figure 4(b) shows the approximation of diagonal Hessian
for ERWI, which has a physical meaning of subsurface illumi-
nation. Figure 4(c) shows the update direction after scaling the
gradient by the diagonal Hessian. Compared with 4(a), we can
see that the update direction is more balanced, which will help
accelerate the convergent rate of ERWI. Figure 4(d) shows the
inverted background velocity model after 5 iterations. From
the inversion results, we can see that it almost recover the low-
wavenumber components of the true model.

Using true, initial and inverted background velocity, we apply
LSERTM to obtain the inverted extended reflectivity, as shown
in figure 5. All of them run 10 iterations. From the figures,
we can see that, with inverted background velocity, the second
layer is almost positioned at the correct depth and most of the
reflections are focused at zero offset.

CONCLUSION AND DISCUSSION

In this abstract, we introduce model extension and differential
semblance optimization into reflection-based waveform inver-
sion, which we call extended reflection waveform inversion
(ERWI). We show that the objective function of ERWI is con-
vex in a lager range than difference-based waveform inver-
sion. Two different gradients for high- and low-wavenumber
components have been derived in this abstract. We also ap-
proximated the diagonal Hessian of objective function with re-
spect to background model and it shows information about the
subsurface illumination. Numerical tests show that our pro-
posed ERWI can successfully provided both high- and low-
wavenumber of subsurface model.

However, there are still lots of work to do in order to make
ERWI more applicable. The most important one is decreasing
the computational cost. Various methods, such as shot encod-
ing and preconditioning, need more investigations. Another
more theoretical challenge is relaxing the linear restriction.
Low frequency control (Sun and Symes, 2012) and nested in-
version scheme (Almomin and Biondi, 2013) are two possible
solutions.

(a) (b)

(c) (d)

(e) (f)

Figure 5: (a) LSERTM with inverted velocity
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