Linearized Extended Waveform Inversion

Yin Huang TRIP review meeting May 6, 2014

Outline

- Introduction
- Linearized extended waveform inversion and reduced objective function
- Image stability of normal operator
- Smoothness and unimodality of reduced objective function (ROF)
- Conclusion and current work

Introduction

Goal:

From a lot of reflection data, get the model of the earth.

Methods:

Seismic inversion (Gauthier et al., 1986; Santosa & Symes, 1989; Virieux & Operto, 2009, etc.)

- Over-determined: highly redundant in the observed data;
- Local minima: cycle skipping.

Migration velocity analysis (Yilmaz, Seismic Data Analysis, Chapter 10; Biondi, 3D Seismic Imaging, Chapter 11 & 12)

- Part of conventional workflow
- Give correct position of reflectors

Model Extension

Model extension (Symes & Kern 1994; Symes 2008; Sun 2012; Biondi & Almomin 2012; Zhang & Biondi 2012)

- $M = \{m(x)\}$ Physical model space, velocity, density, bulk modulus, ...
- $\bar{M} = \{m(x, h)\}$ Extended model space, $M \subset \bar{M}$.
- h extended coordinate: shot position, offset, subsurface offset, or scattering angle, ...

Extended Forward Modeling

 $\bar{F}: \bar{M} \mapsto D$ extended forward map

$$\bar{F}[\bar{m}] = d$$
.

Ex: acoustic constant density, shot coordinate extension with $d = u(x_r, t, x_s)$ and $\bar{m} = c(x, x_s)^2$

$$\frac{\partial^2 u(x,t,x_s)}{\partial t^2} - c(x,x_s)^2 \Delta u(x,t,x_s) = f(x,t,x_s).$$

Extended Born Modeling

 $D\bar{F}: M \times \bar{M} \mapsto D$ extended Born map

$$D\bar{F}[m_I]\delta\bar{m}=\delta d.$$

Ex: acoustic constant density, shot coordinate extension with $\delta d = \delta u(x_r, t, x_s)$, $m_l = c(x)^2$ and $\delta \bar{m} = \delta c(x, x_s)^2$

$$\frac{\partial^2 \delta u(x,t,x_s)}{\partial t^2} - c(x)^2 \Delta \delta u(x,t,x_s) = \delta c(x,x_s)^2 \Delta u(x,t,x_s).$$

Linearized Extended Waveform Inversion

Model separation: $\bar{m} \simeq m_l + \delta \bar{m}$.

- \bullet m_l smooth background model, physical.
- $\delta \bar{m}$ reflectivity, extended.

Linearized extended waveform inversion: given reflection data $\delta d \in D$, find m_l , $\delta \bar{m}$ so that

$$D\bar{F}[m_I]\delta\bar{m}\simeq\delta d.$$

(Symes & Carazzone, 1991; Kern & Symes, 1994; Chauris & Noble, 2001; Mulder & ten Kroode, 2002; Shen & Symes, 2008; Symes 2008.)

Reduced Objective Function (ROF)

Define

$$J[m_{I}, \delta \bar{m}] = \frac{1}{2} \|D\bar{F}[m_{I}]\delta \bar{m} - \delta d\|^{2} + \frac{\alpha^{2}}{2} \|A\delta \bar{m}\|^{2}$$

- A annihilator, $A\delta m = 0$ for all $\delta m \in M$.
- $A = \frac{\partial}{\partial x_s}$ for shot coordinate model extension.

Reduced objective function (Symes & Kern 1994)

$$\widetilde{J}[m_I] = \min_{\delta \bar{m}} J[m_I, \delta \bar{m}].$$

with

$$\delta \bar{m}[m_l] = (D\bar{F}[m_l]^T D\bar{F}[m_l] + \alpha^2 A^T A)^{-1} D\bar{F}[m_l]^T \delta d.$$

An example of variable projection method (van Leeuwen & Mulder 2009)

Normal operator

$$N[m_l] = DF[m_l]^T DF[m_l].$$

- $N[m_l]$ essentially pseudodifferential operator.
- $N[m_I]$ is smooth function of m_I .

Show $N[m_I]\delta m$ with different m_I and fixed δm

$$N[m_I]\delta m \approx L^{\frac{n-1}{2}}P\delta m$$

with L the Laplacian operator and P acts as multiplication.

Symes, 2008 Approximate linearized inversion by optimal scaling of prestack depth migration

Scan Tests of Reduced Objective Function

Reduced objective function

$$\tilde{J}[m_I] = \min_{\delta \bar{m}} J[m_I, \delta \bar{m}] = \frac{1}{2} \|D\bar{F}[m_I]\delta \bar{m} - \delta d\|^2 + \frac{\alpha^2}{2} \|A\delta \bar{m}\|^2.$$

with $\delta \bar{m}[m_l]$ the solution of "extended least squares migration (LSM)" (called PICLI method in Ehinger and Lailly, 1993)

$$(D\bar{F}[m_l]^T D\bar{F}[m_l] + \alpha^2 A^T A) \delta \bar{m}[m_l] = D\bar{F}[m_l]^T \delta d.$$

Ehinger and Lailly, 1993, Prestack imaging by coupled linearized inversion: SPIE Proceedings

Marmousi Model

Acquisition geometry:

- 60 shots starting at 3km, with 100 meters spacing
- 96 receivers are placed behind each shot, with 25 meters spacing
- 200 meters between the first receiver and a shot
- shos are 12 meters below the sea surface
- receivers are 8 meters below the sea surface

Born data

$$\delta d = DF[m_I]\delta m$$

Image Gathers of RTM

$D\bar{F}[m_l]^T\delta d$

Image Gathers of Extended LSM

$$(D\bar{F}[m_I]^T D\bar{F}[m_I] + \alpha^2 A^T A) \delta \bar{m} = D\bar{F}[m_I]^T \delta d.$$

Image Gathers of Extended LSM

$$(D\bar{F}[m_l]^T D\bar{F}[m_l] + \alpha^2 A^T A) \delta \bar{m} = D\bar{F}[m_l]^T \delta d.$$

Smoothness and Unimodality of ROF

Scan test of $\tilde{J}[m_I]$ along line segment

$$m_l = \sigma m_{\rm SM}$$

with $\alpha = 0.01, 0.1, 1.0$ and $\sigma \in [0.6, 1.4]$.

Smoothness and Unimodality of ROF

Scan test of $\tilde{J}[m_l]$ along line segment

$$m_I = (1 - \sigma)m_{\rm SM} + \sigma m_0$$

with $\alpha = 0.01, 0.1, 1.0$, $\sigma \in [-0.4, 0.6]$ and $m_0(x) = 1500$ m/s.

Conclusion

- Numerical results suggest image stability of the normal operator;
- Extended reflectivity from least squares migration along shot coordinate resemble each other closely for large α ;
- Scan tests along line segments show that the reduced objective function has large basin of attraction to the global minimum and is smooth for certain α ;

Work in progress I

Gradient computation of the reduced objective function

Reduced objective function

$$\tilde{J}[m_I] = \min_{\delta \bar{m}} J[m_I, \delta \bar{m}] = \frac{1}{2} \|D\bar{F}[m_I]\delta \bar{m} - \delta d\|^2 + \frac{\alpha^2}{2} \|A\delta \bar{m}\|^2.$$

with $\delta \bar{m}[m_l]$ the solution of "extended least squares migration (LSM)"

$$(D\bar{F}[m_I]^T D\bar{F}[m_I] + \alpha^2 A^T A) \delta \bar{m}[m_I] = D\bar{F}[m_I]^T \delta d.$$

Gradient of the reduced objective function (Symes & Kern 1994):

$$\nabla \tilde{J}[m_l] = D^2 \bar{F}[m_l]^T [\delta \bar{m}[m_l], D\bar{F}[m_l] \delta \bar{m} - \delta d]$$

with $D^2 \bar{F}[m_l]^T$ the tomographic operator (Biondi and Almomin, 2013).

Work in progress II

Use Lagrange multiplier method to compute optimal α automatically

Constrained optimization problem:

$$\min_{\substack{\delta \bar{m} \\ \text{subject to}}} \frac{1}{2} \|A\delta \bar{m}\|^2$$
 subject to
$$\|D\bar{F}[m_I]\delta \bar{m} - \delta d\|^2 \leq \epsilon^2$$

with ϵ the noise level of data.

Equivalent to our "extended least squares migration"

$$\min_{\delta \bar{m}} \frac{1}{2} \|D\bar{F}[m_I]\delta \bar{m} - \delta d\|^2 + \frac{\alpha^2}{2} \|A\delta \bar{m}\|^2$$

Work in progress III

Apply preconditioner to accelerate the convergence rate of extended least squares migration

Optimal scaling preconditioner

From

$$N[m_I] \approx L^{\frac{n-1}{2}}P$$

get

$$(N[m_I])^{-1} \approx P^{\dagger} L^{-\frac{n-1}{2}}$$

with $P^{\dagger} = (P + \epsilon I)^{-1}$ for a possitive ϵ .

Symes, 2008 Approximate linearized inversion by optimal scaling of prestack depth migration

Acknowledgements

Great thanks to

- Wonderful audience;
- Current and former TRIP team members;
- Sponsors of The Rice Inversion Project.