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Introduction

Trace Distance (m)

Goal: =y e | [
From a lot of reflection data, = c K
get the model of the earth. =7 ~ ¥ = o I

Methods:

Seismic inversion (Gauthier et al., 1986; Santosa & Symes, 1989; Virieux & Operto,
2009, etc.)

@ Over-determined: highly redundant in the observed data;

@ Local minima: cycle skipping.

Migration velocity analysis (Yilmaz, Seismic Data Analysis, Chapter 10; Biondi, 3D
Seismic Imaging, Chapter 11 & 12)

@ Part of conventional workflow

@ Give correct position of reflectors
3
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Model Extension
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Model extension (Symes & Kern 1994; Symes 2008; Sun 2012; Biondi & Almomin
2012; Zhang & Biondi 2012)

o M = {m(x)} Physical model space, velocity, density, bulk modulus, ...
o M = {m(x, h)} Extended model space, M C M.

@ h extended coordinate: shot position, offset, subsurface offset, or
scattering angle, ...
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Extended Forward Modeling

M +— D extended forward map

f=

=d

Fm]

Ex: acoustic constant density, shot coordinate extension with d = u(x,, t, xs) and
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Extended Born Modeling

DF : M x M — D extended Born map
DF[mj]d6m = 4d.

Ex: acoustic constant density, shot coordinate extension with dd = du(x;, t, xs),
m; = c(x)? and 6m = dc(x, xs )

O*Su(x, t, xs)
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Linearized Extended Waveform Inversion

Model separation: m >~ m; + dm.

@ m; smooth background model, physical.

@ om reflectivity, extended.
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Linearized extended waveform inversion: given reflection data o0d € D, find
my, 0m so that

DI:'[m,]éﬁw ~ od.

(Symes & Carazzone, 1991; Kern & Symes, 1994; Chauris & Noble, 2001; Mulder & ten
Kroode, 2002; Shen & Symes, 2008; Symes 2008.)
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Reduced Objective Function (ROF)

Define 5
1 -
Jlmy, 677] = S| DF{m)dm — 6d| + =- | Adrm|

o A annigilator, Adm =20 for all dm € M.

@ A= — for shot coordinate model extension.

O0Xs

Reduced objective function (Symes & Kern 1994)

(][m/] = min J[my, (517'1].]

om

with
sm[m;] = (DF[m;)" DF[mj] + o?AT A)"1DF[m)] " éd.

An example of variable projection method (van Leeuwen & Mulder 2009)

8
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Image Stability of Normal Operator

Normal operator
N[m/] = DF[m;]" DF[m].

e N[m] essentially pseudodifferential operator.

e N[my] is smooth function of m;.

Show N[m;|ém with different m; and fixed dm

N[m|6m ~ L2 PSm

with L the Laplacian operator and P acts as multiplication.

Symes, 2008 Approximate linearized inversion by optimal scaling of prestack depth migration
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Image Stability of Normal Operator
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Image Stability of Normal Operator

N[m;|dm ~ L2 Pém with m; = ocMsm .
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Image Stability of Normal Operator
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Image Stability of Normal Operator
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Image Stability of Normal Operator

N[mj]ém ~ L"2 Pém with m; = omsm.
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Image Stability of Normal Operator

N[m;|dm ~ L"2 Pém with m; = ocMsm.
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Image Stability of Normal Operator

N[m;|dm ~ L2 Pém with m; = ocMsm .
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Image Stability of Normal Operator

N[m;|dm ~ L2 Pém with m; = ocMsm.
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Image Stability of Normal Operator

N[m;|dm ~ L"2 Pém with m; = ocMsm.
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Scan Tests of Reduced Objective Function

Reduced objective function

N ) 2
J[m] = r?i_n J[m;,dm] = %HDF[m,]drﬁ — &d||* + %||A5ﬁv||2.

with dm[m| the solution of "extended least squares migration (LSM)"
(called PICLI method in Ehinger and Lailly, 1993)

(DF[m;]" DF[m)] + o?AT A)ém[m;] = DF[m/] " éd.

Ehinger and Lailly, 1993, Prestack imaging by coupled linearized inversion: SPIE Proceedings
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Marmousi Model
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Acquisition geometry:

@ 60 shots starting at 3km, with 100 meters spacing

@ 96 receivers are placed behind each shot, with 25 meters spacing
@ 200 meters between the first receiver and a shot

@ shos are 12 meters below the sea surface

@ receivers are 8 meters below the sea surface
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Born data
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Image Gathers of RTM

DI—=[m,]T5d
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Image Gathers of Extended LSM

(DF[m))" DF[m)] + AT A)dm = DF[m;]" éd.
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Image Gathers of Extended LSM

(DF[m))" DF[m)] + AT A)dm = DF[m;]" éd.
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Smoothness and Unimodality of ROF

Scan test of J[m/] along line segment
m; = 0MmMsm

with a = 0.01,0.1,1.0 and & € [0.6, 1.4].
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Smoothness and Unimodality of ROF

Scan test of J[m,] along line segment
m; = (1 —o)msm + omg

with a = 0.01,0.1,1.0, o € [-0.4,0.6] and mg(x) = 1500m/s.
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Conclusion

@ Numerical results suggest image stability of the normal operator;

@ Extended reflectivity from least squares migration along shot
coordinate resemble each other closely for large «;

@ Scan tests along line segments show that the reduced objective
function has large basin of attraction to the global minimum and is

smooth for certain «;
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Work in progress |

Gradient computation of the reduced objective function

Reduced objective function

5 | A 2
Jimi) = min J{my, 6] = = || DF[m{)ém — dd]? + %||A5m||2.

5
with dm[m| the solution of "extended least squares migration (LSM)"

(DF[m;]" DF[mj] + o?AT AYém[m;] = DF[m;]" éd.

Gradient of the reduced objective function (Symes & Kern 1994):
VJ[mj] = D*F[m/)" [6m[m;], DF[m;]6m — &d]

with D?F[m;]" the tomographic operator (Biondi and Almomin, 2013).

28
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Work in progress |

Use Lagrange multiplier method to compute optimal o
automatically

Constrained optimization problem:

1
i —|AS m|?
min 2H m|

subject to ||DF[m]dm — 6d||? < €

with € the noise level of data.

Equivalent to our "extended least squares migration”

2

1 —
min — || DF[m]5m — 4| C; |AS |2

29
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Work in progress Il

Apply preconditioner to accelerate the convergence rate of
extended least squares migration

Optimal scaling preconditioner

From

n—1

N[m,]zL 2 P

get

n—1

(N[m/])_l ~ PTL™ >
with PT = (P 4 ¢/)™?! for a possitive .

Symes, 2008 Approximate linearized inversion by optimal scaling of prestack depth migration
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