Linearized Extended Waveform Inversion

Yin Huang
TRIP review meeting
May 6, 2014
Outline

- Introduction
- Linearized extended waveform inversion and reduced objective function
- Image stability of normal operator
- Smoothness and unimodality of reduced objective function (ROF)
- Conclusion and current work
Introduction

Goal:
From a lot of reflection data, get the model of the earth.

Methods:
Seismic inversion (Gauthier et al., 1986; Santosa & Symes, 1989; Virieux & Operto, 2009, etc.)

- Over-determined: highly redundant in the observed data;
- Local minima: cycle skipping.

Migration velocity analysis (Yilmaz, Seismic Data Analysis, Chapter 10; Biondi, 3D Seismic Imaging, Chapter 11 & 12)

- Part of conventional workflow
- Give correct position of reflectors
Model extension (Symes & Kern 1994; Symes 2008; Sun 2012; Biondi & Almomin 2012; Zhang & Biondi 2012)

- $M = \{ m(x) \}$ Physical model space, velocity, density, bulk modulus, ...
- $\tilde{M} = \{ m(x, h) \}$ Extended model space, $M \subset \tilde{M}$.
- h extended coordinate: shot position, offset, subsurface offset, or scattering angle, ...
Extended Forward Modeling

\[\bar{F} : \bar{M} \mapsto D \text{ extended forward map} \]

\[\bar{F}[\bar{m}] = d. \]

Ex: acoustic constant density, shot coordinate extension with \(d = u(x_r, t, x_s) \) and \(\bar{m} = c(x, x_s)^2 \)

\[\frac{\partial^2 u(x, t, x_s)}{\partial t^2} - c(x, x_s)^2 \Delta u(x, t, x_s) = f(x, t, x_s). \]
Extended Born Modeling

\[D\bar{F} : M \times \bar{M} \mapsto D \text{ extended Born map} \]

\[D\bar{F}[m_l]\delta \bar{m} = \delta d. \]

Ex: acoustic constant density, shot coordinate extension with \(\delta d = \delta u(x_r, t, x_s) \), \(m_l = c(x)^2 \) and \(\delta \bar{m} = \delta c(x, x_s)^2 \)

\[
\frac{\partial^2 \delta u(x, t, x_s)}{\partial t^2} - c(x)^2 \Delta \delta u(x, t, x_s) = \delta c(x, x_s)^2 \Delta u(x, t, x_s).
\]
Linearized Extended Waveform Inversion

Model separation: \(\tilde{m} \approx m_l + \delta \tilde{m} \).

- \(m_l \) smooth background model, physical.
- \(\delta \tilde{m} \) reflectivity, extended.

Linearized extended waveform inversion: given reflection data \(\delta d \in D \), find \(m_l, \delta \tilde{m} \) so that

\[
D \tilde{F}[m_l] \delta \tilde{m} \approx \delta d.
\]

(Symes & Carazzone, 1991; Kern & Symes, 1994; Chauris & Noble, 2001; Mulder & ten Kroode, 2002; Shen & Symes, 2008; Symes 2008.)
Reduced Objective Function (ROF)

Define

\[J[m_l, \delta \tilde{m}] = \frac{1}{2} \| D\tilde{F}[m_l] \delta \tilde{m} - \delta d \|^2 + \frac{\alpha^2}{2} \| A \delta \tilde{m} \|^2 \]

- An annihilator, \(A \delta m = 0 \) for all \(\delta m \in M \).
- \(A = \frac{\partial}{\partial x_s} \) for shot coordinate model extension.

Reduced objective function (Symes & Kern 1994)

\[\tilde{J}[m_l] = \min_{\delta \tilde{m}} J[m_l, \delta \tilde{m}] \]

with

\[\delta \tilde{m}[m_l] = (D\tilde{F}[m_l]^T D\tilde{F}[m_l] + \alpha^2 A^T A)^{-1} D\tilde{F}[m_l]^T \delta d. \]

An example of variable projection method (van Leeuwen & Mulder 2009)
Image Stability of Normal Operator

Normal operator

\[N[m_l] = DF[m_l]^T DF[m_l]. \]

- \(N[m_l] \) essentially pseudodifferential operator.
- \(N[m_l] \) is smooth function of \(m_l \).

Show \(N[m_l] \delta m \) with different \(m_l \) and fixed \(\delta m \)

\[N[m_l] \delta m \approx L^{\frac{n-1}{2}} P \delta m \]

with \(L \) the Laplacian operator and \(P \) acts as multiplication.

Symes, 2008 Approximate linearized inversion by optimal scaling of prestack depth migration
Image Stability of Normal Operator
Image Stability of Normal Operator

\[N[m_l] \delta m \approx L^{\frac{n-1}{2}} P \delta m \text{ with } m_l = \sigma m_{Sm}. \]
Image Stability of Normal Operator

\[N[m_I] \delta m \approx L^{\frac{n-1}{2}} P \delta m \text{ with } m_I = \sigma m_{Sm}. \]
Image Stability of Normal Operator

\[N[m_l] \delta m \approx L^{\frac{n-1}{2}} P \delta m \text{ with } m_l = \sigma m_{Sm}. \]
Image Stability of Normal Operator

\[N[m_l] \delta m \approx L^{n-1/2} P \delta m \text{ with } m_l = \sigma m_{Sm}. \]
Image Stability of Normal Operator

\[N[m_l] \delta m \approx L^{\frac{n-1}{2}} P \delta m \text{ with } m_l = \sigma m_{Sm}. \]
Image Stability of Normal Operator

\[N[m_l] \delta m \approx L^{\frac{n-1}{2}} P \delta m \text{ with } m_l = \sigma m_{Sm}. \]
Image Stability of Normal Operator

\[N[m_l] \delta m \approx L \frac{n-1}{2} P \delta m \text{ with } m_l = \sigma m_{sm}. \]
Image Stability of Normal Operator

\[N[m_l] \delta m \approx L^\frac{n-1}{2} P \delta m \text{ with } m_l = \sigma m_{Sm}. \]
Scan Tests of Reduced Objective Function

Reduced objective function

\[
\tilde{J}[m_l] = \min_{\delta \tilde{m}} J[m_l, \delta \tilde{m}] = \frac{1}{2} \| D \tilde{F}[m_l] \delta \tilde{m} - \delta d \|^2 + \frac{\alpha^2}{2} \| A \delta \tilde{m} \|^2.
\]

with \(\delta \tilde{m}[m_l] \) the solution of "extended least squares migration (LSM)" (called PICLI method in Ehinger and Lailly, 1993)

\[
(D \tilde{F}[m_l]^T D \tilde{F}[m_l] + \alpha^2 A^T A) \delta \tilde{m}[m_l] = D \tilde{F}[m_l]^T \delta d.
\]

Ehinger and Lailly, 1993, Prestack imaging by coupled linearized inversion: SPIE Proceedings
Marmousi Model

\[m_{Sm} \]

\[\delta m \]

Acquisition geometry:

- 60 shots starting at 3km, with 100 meters spacing
- 96 receivers are placed behind each shot, with 25 meters spacing
- 200 meters between the first receiver and a shot
- Shots are 12 meters below the sea surface
- Receivers are 8 meters below the sea surface
\[\delta d = DF[m_i] \delta m \]
Image Gathers of RTM

\[D_F[m_l]^T \delta d \]
Image Gathers of Extended LSM

\[(D\tilde{F}[m_l]^T D\tilde{F}[m_l] + \alpha^2 A^T A)\delta \tilde{m} = D\tilde{F}[m_l]^T \delta d.\]

\[\alpha = 0.01\]
Image Gathers of Extended LSM

\[(D\bar{F}[m_l]^T D\bar{F}[m_l] + \alpha^2 A^T A)\delta \bar{m} = D\bar{F}[m_l]^T \delta d.\]

\[\alpha = 0.1\]
Smoothness and Unimodality of ROF

Scan test of $\tilde{J}[m_I]$ along line segment

$$m_I = \sigma m_{sm}$$

with $\alpha = 0.01, 0.1, 1.0$ and $\sigma \in [0.6, 1.4]$.

![Graph showing the value of the objective function for different values of α and σ.]
Scan test of $\tilde{J}[m_I]$ along line segment

$$m_I = (1 - \sigma)m_{sm} + \sigma m_0$$

with $\alpha = 0.01, 0.1, 1.0$, $\sigma \in [-0.4, 0.6]$ and $m_0(x) = 1500\text{m/s}$.
Conclusion

- Numerical results suggest image stability of the normal operator;
- Extended reflectivity from least squares migration along shot coordinate resemble each other closely for large α;
- Scan tests along line segments show that the reduced objective function has large basin of attraction to the global minimum and is smooth for certain α;
Work in progress I

Gradient computation of the reduced objective function

Reduced objective function

\[
\tilde{J}[m_l] = \min_{\delta \bar{m}} J[m_l, \delta \bar{m}] = \frac{1}{2} \| D\bar{F}[m_l] \delta \bar{m} - \delta d \|^2 + \frac{\alpha^2}{2} \| A \delta \bar{m} \|^2.
\]

with \(\delta \bar{m}[m_l] \) the solution of "extended least squares migration (LSM)"

\[
(D\bar{F}[m_l]^T D\bar{F}[m_l] + \alpha^2 A^T A) \delta \bar{m}[m_l] = D\bar{F}[m_l]^T \delta d.
\]

Gradient of the reduced objective function (Symes & Kern 1994):

\[
\nabla \tilde{J}[m_l] = D^2 \bar{F}[m_l]^T [\delta \bar{m}[m_l], D\bar{F}[m_l] \delta \bar{m} - \delta d]
\]

with \(D^2 \bar{F}[m_l]^T \) the tomographic operator (Biondi and Almomin, 2013).
Use Lagrange multiplier method to compute optimal α automatically

Constrained optimization problem:

$$
\min_{\delta \tilde{m}} \quad \frac{1}{2} \| A \delta \tilde{m} \|^2 \\
\text{subject to} \quad \| D\tilde{F}[m_l] \delta \tilde{m} - \delta d \|^2 \leq \epsilon^2
$$

with ϵ the noise level of data.

Equivalent to our ”extended least squares migration”

$$
\min_{\delta \tilde{m}} \frac{1}{2} \| D\tilde{F}[m_l] \delta \tilde{m} - \delta d \|^2 + \frac{\alpha^2}{2} \| A \delta \tilde{m} \|^2
$$
Apply preconditioner to accelerate the convergence rate of extended least squares migration

Optimal scaling preconditioner

From

\[\mathcal{N}(m_l) \approx L^{\frac{n-1}{2}} P \]

get

\[(\mathcal{N}(m_l))^{-1} \approx P^\dagger L^{\frac{n-1}{2}} \]

with \(P^\dagger = (P + \epsilon I)^{-1} \) for a positive \(\epsilon \).

Symes, 2008 Approximate linearized inversion by optimal scaling of prestack depth migration
Acknowledgements

Great thanks to

- Wonderful audience;
- Current and former TRIP team members;
- Sponsors of The Rice Inversion Project.