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Apology Haiku

Waveform tomography...
terrible name -

really, waveform inversion




Principles

» Extended modeling permits data fit, so avoids
cycle skip

» Linear inversion based velocity estimation
(“IVA") via differential semblance avoids
gradient artifacts

» At heart, IVA is tomography




Agenda

Hug your data




Data fit via extended modeling
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Data fit via extended modeling
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Data fit via extended modeling
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Data fit via extended modeling

Distance (km)
0 0.5 1 1.5 2

—0.05

0
Pressure (GPa)

0.05

Muted Born data, x; = 6 km




Data fit via extended modeling

Distance (km)
0 0.5 1 1.5 2

—0.05

0
Pressure (GPa)

0.05

Resim from inversion, Marmousi smoothed v h




Data fit via extended modeling
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Data fit via extended modeling
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Data fit via extended modeling
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Data fit via extended modeling

Moral: no cycle skip if you fit the datal




Agenda

Data fit = bettter gradients




“Traditional” differential semblance

minc(Jo[c] = Z |hl(x, z, h)|?)

x,z,h

I(x, z, h) =space-shift image volume




“Traditional”’ differential semblance
I(x,z, h) at ¢ = 2.5km/s (true ¢ = 3km/s)
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“Traditional” differential semblance

Gradient: 5/ }
V Jo[c] ~ (h2/)

ol

Se = “tomographic operator”
c




“Traditional” differential semblance
RTM-based DS gradient, (wrong) ¢ = 2.5km/s
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Inversion VA, aka EFWI
EFWI gradient, (wrong) ¢ = 2.5km/s
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Agenda

The Inner Tomographer




Extended modeling:

» m depends on non-physical space-time degrees
of freedom

» physical models are extended: m physical
&S Am =0

» JF is ordinary modeling on physical models

A




Extended FWI = FWI based on extended modeling,
with penalty for non-physicality:

1 9 a? 9
Jm] = S| F[m] = d|* + 5| Am|




Example: horiz. space-shift (or subsurface offset)
extended modeling, constant density acoustics in
Born approximation

m = (background model c(x, z), extended
reflectivity r(x, z, h) )

F[m] = F|c]r = pressure perturbation sampled at
src/revrs - space-shift demigration




physical models = (c(x, z), r(x, z)é(h))
rel'n to Born: r = 26c/c
reg op A = annihilator of physical models

Expl: multiplication by h (many other possibilities,
eg. Albertin 09, Sava & Yang 12)

A




Born-based EFWI for acoustics:

1 ’ a? 5
Jle, 1l = SIIFlelr — dIP + - A

Main fact: J[c, r] is as oscillatory as data




Reduced objective:
Jlc] = min, J[c, r] = J[c, r[c]]
where

rlc] = N[c] 'F[c]*d, N[c] = F[c]*F[c] + a*A*A

NB: this is variable projection!

A




Jle] = %H(F[C]N[C]lF[C]* — 1d|*+

042
- IAN[e] " Fle]d|*

Both terms have form (d, Pd), P = pseudodiffl op
with symbol smooth in ¢

= smooth independent of data spectrum [see Stolk

& S. 03 for choice of A]




For this problem, VPM completely changes
character of objective




Hessian at consistent data

VJ[c] = DF[c]*(r[c], Flc]r[c] — d)

DF[c]* = D*F|c]* = “tomographic operator”

A




Hessian at consistent data

Key to understanding Hessian:
DF|c]éc = Flc](Q]c]oc)
where Q[c]dc is pseudo of order 1:
(Q[cldc)r(z, x, h) = / / / dlk dc,dky

(07(xs, 2z, x — h) + 67(x,, z, x + h))(ik;)

Pk, ke, ket tot)




Hessian at consistent data

01 = DT[c]dc = traveltime perturbation
Xs, X, determined by z, x, h, k. /kz, kn/k
Relation generally complex, but at h = 0,

ke/k, = tani
kn/k, = tand

1 = dip angle, § = scattering angle




Hessian at consistent data

How to see this: express DF[c]dc as GRT, apply
pseudo inverse on left (cf. Jie's talk), use stationary
phase

A




Hessian at consistent data

Compute Hessian at consistent point:

Flc]r = d
Ar = 0

Use DF[c]=F[c]Q[c], h = 0; lots of cancellations
occur:

D%J[c](6c1, ) =
o?(A(Q[cloci)r, (I — AN[c]*A)A(Q[cldc)r)




Hessian at consistent data

Since Ar =0, AQr = [A, Q]r. Calc. of pseudos:
symbol of commutator = Poisson braced of symbols

Symbol of A = h, symbol of
Q = (07s + 07,)(..., tan ¢, tan 0) ik,
= symbol of [A, Q] = 5,053?;;3 + 6praf:r;9

pr = g—z etc




Hessian at consistent data

Upshot: D2J[c](dc1, dcy) is weighted integral of
perturbations in slownesses, weighted by

» energy in reflectivity

» geometric factor (rate of change of scattering
angle wrt src, rec x)

= near consistent data, DSO ~ a form of slope
tomography.




Where from here

» better understanding of tomography problem at
heart of space-shift DSO: linear combinations
of source, receiver slope.

» better formalize role of reflectivity - denser
reflectors = better resolution?

» 3D
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