
Extended Waveform
Tomography as Tomography

William W. Symes

The Rice Inversion Project
Rice University

May 2014



Apology Haiku

Waveform tomography...

terrible name -

really, waveform inversion



Principles

I Extended modeling permits data fit, so avoids
cycle skip

I Linear inversion based velocity estimation
(“IVA”) via differential semblance avoids
gradient artifacts

I At heart, IVA is tomography



Agenda

Hug your data

Data fit ⇒ bettter gradients

The Inner Tomographer



Data fit via extended modeling



Data fit via extended modeling



Data fit via extended modeling

Born data, xs = 6 km



Data fit via extended modeling

Muted Born data, xs = 6 km



Data fit via extended modeling

Resim from inversion, Marmousi smoothed v



Data fit via extended modeling

Residual, Marmousi smoothed v: RMS ' .08



Data fit via extended modeling

Resim from inversion, H2O v



Data fit via extended modeling

Residual, H2O v: RMS '.06



Data fit via extended modeling

Moral: no cycle skip if you fit the data!



Agenda

Hug your data

Data fit ⇒ bettter gradients

The Inner Tomographer



“Traditional” differential semblance

minc(J̃0[c] =
∑
x ,z ,h

|hI (x , z , h)|2)

I (x , z , h) =space-shift image volume



“Traditional” differential semblance
I (x , z , h) at c = 2.5km/s (true c = 3km/s)

thanks: Y. Liu



“Traditional” differential semblance

Gradient:

∇J̃0[c] ' δI

δc

∗
(h2I )

δI

δc

∗
= “tomographic operator”



“Traditional” differential semblance
RTM-based DS gradient, (wrong) c = 2.5km/s

thanks: Y. Liu



Inversion VA, aka EFWI
EFWI gradient, (wrong) c = 2.5km/s

thanks: Y. Liu



Agenda

Hug your data

Data fit ⇒ bettter gradients

The Inner Tomographer



Extended modeling:

I m depends on non-physical space-time degrees
of freedom

I physical models are extended: m physical
⇔ Am = 0

I F is ordinary modeling on physical models



Extended FWI = FWI based on extended modeling,
with penalty for non-physicality:

J[m] =
1

2
‖F [m]− d‖2 +

α2

2
‖Am‖2



Example: horiz. space-shift (or subsurface offset)
extended modeling, constant density acoustics in
Born approximation

m = (background model c(x , z), extended
reflectivity r(x , z , h) )

F [m] = F [c]r = pressure perturbation sampled at
src/rcvrs - space-shift demigration



physical models = (c(x , z), r(x , z)δ(h))

rel’n to Born: r = 2δc/c

reg op A = annihilator of physical models

Expl: multiplication by h (many other possibilities,
eg. Albertin 09, Sava & Yang 12)



Born-based EFWI for acoustics:

J[c , r ] =
1

2
‖F [c]r − d‖2 +

α2

2
‖Ar‖2

Main fact: J[c , r ] is as oscillatory as data



Reduced objective:

J̃[c] = minrJ[c , r ] = J[c , r [c]]

where

r [c] = N[c]−1F [c]∗d , N[c] = F [c]∗F [c] + α2A∗A

NB: this is variable projection!



J̃[c] =
1

2
‖(F [c]N[c]−1F [c]∗ − I )d‖2+

α2

2
‖AN[c]−1F [c]∗d‖2

Both terms have form 〈d ,Pd〉, P = pseudodiffl op
with symbol smooth in c

⇒ smooth independent of data spectrum [see Stolk
& S. 03 for choice of A]



For this problem, VPM completely changes
character of objective



Hessian at consistent data

∇J̃[c] = DF [c]∗(r [c],F [c]r [c]− d)

DF [c]∗ = D2F [c]∗ = “tomographic operator”



Hessian at consistent data

Key to understanding Hessian:

DF [c]δc = F [c](Q[c]δc)

where Q[c]δc is pseudo of order 1:

(Q[c]δc)r(z , x , h) =

∫ ∫ ∫
dkzdkxdkh×

(δτ(xs , z , x − h) + δτ(xr , z , x + h))(ikz)

r̂(kz , kz , kh)e i(kzz+kxx+khh)



Hessian at consistent data

δτ = Dτ [c]δc = traveltime perturbation

xs , xr determined by z , x , h, kx/kz , kh/kz

Relation generally complex, but at h = 0,

kx/kz = tanψ

kh/kz = tan θ

ψ = dip angle, θ = scattering angle



Hessian at consistent data

How to see this: express DF [c]δc as GRT, apply
pseudo inverse on left (cf. Jie’s talk), use stationary
phase



Hessian at consistent data

Compute Hessian at consistent point:

F [c]r = d

Ar = 0

Use DF[c]=F[c]Q[c], h = 0; lots of cancellations
occur:

D2J̃[c](δc1, δc2) =

α2〈A(Q[c]δc1)r , (I − AN[c]−1A∗)A(Q[c]δc2)r〉



Hessian at consistent data

Since Ar = 0, AQr = [A,Q]r . Calc. of pseudos:
symbol of commutator = Poisson braced of symbols

Symbol of A = h, symbol of
Q = (δτs + δτr)(..., tanψ, tan θ)ikz

⇒ symbol of [A,Q] = δps
∂xs

∂ tan θ + δpr
∂xr

∂ tan θ

pr = ∂τr
∂xr

etc



Hessian at consistent data

Upshot: D2J̃[c](δc1, δc2) is weighted integral of
perturbations in slownesses, weighted by

I energy in reflectivity

I geometric factor (rate of change of scattering
angle wrt src, rec x)

⇒ near consistent data, DSO ' a form of slope
tomography.



Where from here

I better understanding of tomography problem at
heart of space-shift DSO: linear combinations
of source, receiver slope.

I better formalize role of reflectivity - denser
reflectors ⇒ better resolution?

I 3D
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