Source function estimation in extended full waveform inversion

Lei Fu

The Rice Inversion Project (TRIP)

May 6, 2014

Objective

Recover Earth model with seismic waveform inversion

Problems

Unknown source

Local minima

Solution

Variable projection method

Extended modelling concept

Abstract setting for forward map $\mathcal{F}:\mathcal{M}\rightarrow\mathcal{D}$

$$F[m] = d$$

F: forward modelling operator m: model (v, r, w)d: sampled pressure data at receivers

Extended forward map $\bar{\mathcal{F}}: \bar{\mathcal{M}} \to \mathcal{D}$ [Symes, 2008]

$$\bar{F}[\bar{m}] = d$$

- \bar{F} : extended forward modelling operator
- $ar{m}$: extended model ($v(\mathbf{x})$, $ar{r}(\mathbf{x},\mathbf{h})$, w(t), ...)
- d: sampled pressure data at receivers

Linearized acoustic modelling (Born approximation)

p - reference (incident) pressure field

$$\left(\frac{1}{v^2(\mathbf{x})}\frac{\partial^2}{\partial t^2} - \nabla^2\right)p(t, \mathbf{x}; \mathbf{x_s}) = w(t)\delta(\mathbf{x} - \mathbf{x_s})$$

 δp - scattered (perturbation) pressure field

$$\left(\frac{1}{v^2(\mathbf{x})}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\delta p(t, \mathbf{x}; \mathbf{x_s}) = \frac{2\bar{r}(\mathbf{x}, \mathbf{h})}{v^2(\mathbf{x})}\frac{\partial^2 p}{\partial t^2}(t, \mathbf{x}; \mathbf{x_s})$$

 $\begin{array}{l} w(t): \text{ source function} \\ v: \text{ velocity of seismic waves} \\ \bar{r}(\mathbf{x},\mathbf{h}) = \frac{\delta \bar{v}(\mathbf{x},\mathbf{h})}{v(\mathbf{x})}: \text{ extended reflectivity } (\bar{v}(\mathbf{x},\mathbf{h}): \text{ extended velocity}) \\ p: \text{ pressure field} \\ \mathbf{x}: \text{ position in earth model} \\ \mathbf{x}_s: \text{ source location} \end{array}$

Green's function

 $G(t,\mathbf{x};\mathbf{x}_s)$ - Green's function, impulse response of the medium

$$\left(\frac{1}{v^2(\mathbf{x})}\frac{\partial^2}{\partial t^2} - \nabla^2\right)G(t, \mathbf{x}; \mathbf{x_s}) = \delta(t)\delta(\mathbf{x} - \mathbf{x_s})$$

$$p(t, \mathbf{x}; \mathbf{x}_s) = G(t, \mathbf{x}; \mathbf{x}_s) * w(t)$$
$$\delta p(t, \mathbf{x}_r; \mathbf{x}_s) = \bar{f}[v]\bar{r} * w(t)$$

$$\begin{split} \delta p(t, \mathbf{x}_r; \mathbf{x}_s) &= \left[\frac{\partial^2}{\partial t^2} \int d\mathbf{x} \int d\mathbf{h} \frac{2\bar{r}(\mathbf{x}, \mathbf{h})}{v^2(\mathbf{x})} G(t, \mathbf{x} + \mathbf{h}; \mathbf{x}_r) * G(t, \mathbf{x} - \mathbf{h}; \mathbf{x}_s) \right] * w(t) \\ &= \bar{f}[v]\bar{r} * w(t) \end{split}$$

Extended full waveform inversion (EFWI)

Abstract setting for Inversion:

$$m = F^{-1}[d]$$

- This inverse problem is large scale and nonlinear.
- Indirect approach: formulate as an optimization problem

Given d, find m that minimizes the output least square (OLS) objective function (Tarantola, Lailly, 1980s to present)

$$min_m J_{OLS}[m,d] = \frac{1}{2} \|F[m] - d\|^2$$

$$min_{v,\bar{r},w}J[v,\bar{r},w,d] = \frac{1}{2} \|\bar{f}[v]\bar{r} * w - d\|^2 + \frac{\alpha^2}{2} \|A\bar{r}\|^2$$

Source function w(t) in EFWI

$$J = \frac{1}{2} \|\bar{f}[v]\bar{r} * w - d\|^2 + \frac{\alpha^2}{2} \|A\bar{r}\|^2$$

Following [Rickett, 2013]'s approach, write in two matrix forms

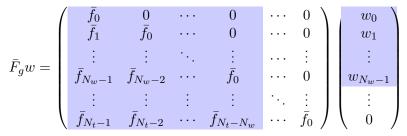
$$J = \frac{1}{2} \|\bar{F}_g[v,\bar{r}]w - d\|^2 + \frac{\alpha^2}{2} \|A\bar{r}\|^2$$
(1)

$$J = \frac{1}{2} \|W\bar{f}[v]\bar{r} - d\|^2 + \frac{\alpha^2}{2} \|A\bar{r}\|^2$$
(2)

 $\bar{F}_g[v, \bar{r}]$: matrix that applies convolutions to wW: matrix that applies convolution to $\bar{f}[v]\bar{r}$

1st form

$$J = \frac{1}{2} \|\bar{F}_g[v,\bar{r}]w - d\|^2 + \frac{\alpha^2}{2} \|A\bar{r}\|^2$$



 N_w : number of time samples for source wavelet signature N_t : number of time samples for recorded seismic data

Variable Projection Method (VPM) [Golub and Pereyra, 1973]

$$min_{v,\bar{r},w}J_{OLS}[v,\bar{r},w,d] = \frac{1}{2}\|\bar{F}_g[v,\bar{r}]w - d\|^2 + \frac{\alpha^2}{2}\|A\bar{r}\|^2$$

VPM

- Step 1: eliminate the linear variable (w)
- Step 2: minimize the reduced objective function (v, \bar{r})
- Step 3: use the optimal value (v, \bar{r}) to solve for w

The constrained equation [Rickett, 2013]

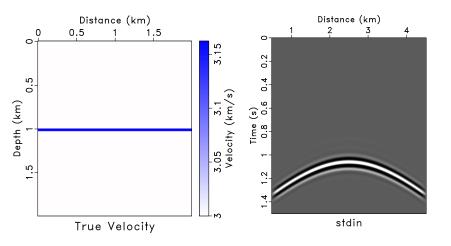
$$w = \bar{F}_{g}^{+}d = \left(\bar{F}_{g}^{*}\bar{F}_{g}\right)^{-1}\bar{F}_{g}^{*}d$$

Reduced objective function

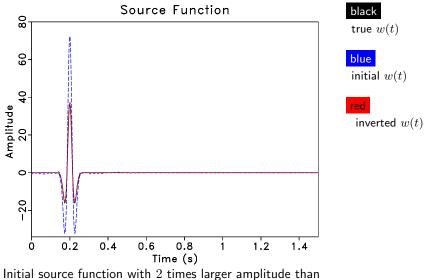
$$min_{v,\bar{r}}J_{OLS}[v,\bar{r},d] = \frac{1}{2} \|\bar{F}_g\bar{F}_g^+d - d\|^2 + \frac{\alpha^2}{2} \|A\bar{r}\|^2$$

 $\bar{F}_g^+[v,\bar{r}]$: the pseudo-inverse of $\bar{F}_g[v,\bar{r}]$. $\bar{F}_g^*\bar{F}_g$: dimensions of $N_w\times N_w$, inverted easily with direct methods.

Test

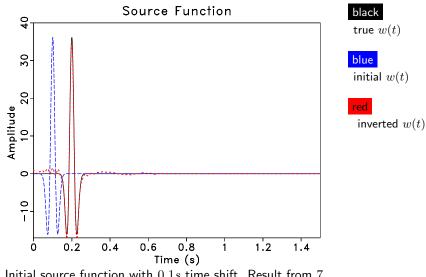


Inverted source function w(t) (wrong amplitude)



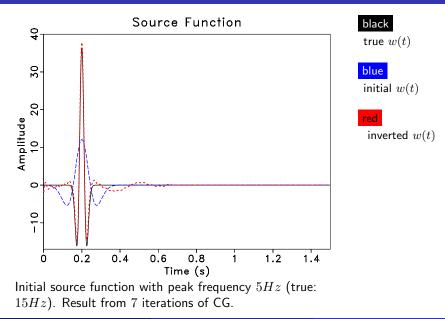
Initial source function with 2 times larger amplitude that the true one. Result from 7 iterations of CG.

Inverted source function w(t) (time shift)



Initial source function with 0.1s time shift. Result from 7 iterations of CG.

Inverted source function w(t) (peak frequency)



Reduced objective function

$$min_{v,\bar{r}}J_{OLS}[v,\bar{r},d] = \frac{1}{2}\|\bar{F}_g\bar{F}_g^+d - d\|^2 + \frac{\alpha^2}{2}\|A\bar{r}\|^2$$

Advantages [Golub and Pereyra, 2003]:

- The reduced problem has the same minima as the original one
- Eliminate the linear variable

Reduced objective function

$$min_{v,\bar{r}}J_{OLS}[v,\bar{r},d] = \frac{1}{2} \|\bar{F}_g[v,\bar{r}]\bar{F}_g^+[v,\bar{r}]d - d\|^2 + \frac{\alpha^2}{2} \|A\bar{r}\|^2$$

Nested approach [Symes and Kern, 1994, Almomin and Biondi, 2013]

- 1. Inner optimize over \bar{r} for each \boldsymbol{v}
- 2. Outer optimize over v
- 1. Gradient of J with respect to \bar{r} (nonlinear)

 $\nabla_{\bar{r}}J = \bar{f}[v]^* W[v,\bar{r}]^* d_r + \alpha^2 A^* A \bar{r}$

data residual: $d_r = \bar{F}_g[v, \bar{r}]\bar{F}_g^+[v, \bar{r}]d - d$

1. Gradient of J with respect to \bar{r}

$$\nabla_{\bar{r}}J = \bar{f}[v]^* W[v,\bar{r}]^* d_r + \alpha^2 A^* A \bar{r}$$

data residual:
$$d_r = \bar{F}_g[v, \bar{r}]\bar{F}_g^+[v, \bar{r}]d - d$$

2. Gradient of J with respect to v

$$\nabla_v J = D\bar{f}^* \left(W[v,\bar{r}]^* d_r, \bar{r}[v] \right)$$

- Finite difference C code in Madagascar
- TAPENADE Online Automatic Differentiation Engine derivative \$\bar{f}[v]\$ and its adjoint \$\bar{f}[v]^*\$ (dot product test) 2nd order derivative \$\bar{D}f[v]\$ and its adjoint \$\bar{D}f[v]^*\$ (dot product test)
- Parallel computing (MPI)
- PML [Grote and Sim, 2010]

Methods:

• Variable projection method

Eliminate the linear variable \boldsymbol{w}

Reduced objective function

• Extended modelling concept

Overcome local minima obstacle

Future work

- VPM in RVL
- Source function estimation in IWAVE
- Reduce computational cost

Thanks to TRIP sponsors and members

- Almomin, A., and B. Biondi, 2013, Tomographic full waveform inversion (tfwi) by successive linearizations and scale separations: Presented at the 75th EAGE Conference & Exhibition-Workshops.
- Golub, G., and V. Pereyra, 2003, Separable nonlinear least squares: the variable projection method and its applications: Inverse problems, **19**, R1.
- Golub, G. H., and V. Pereyra, 1973, The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate: SIAM Journal on numerical analysis, **10**, 413–432.
- Grote, M. J., and I. Sim, 2010, Efficient pml for the wave equation: arXiv preprint arXiv:1001.0319.
- Rickett, J., 2013, The variable projection method for waveform inversion with an unknown source function: Geophysical Prospecting, 61, 874–881.
- Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical Prospecting, **56**, 765–790.

Symes, W. W., and M. Kern, 1994, Inversion of reflection seismograms by differential semblance analysis: algorithm structure and synthetic examples1: Geophysical Prospecting, **42**, 565–614.