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Inverse Problem TRIP

Full Waveform Inversion :

Given d ∈ D, find m ∈ M so that

F [m] ≃ d

M =model space, D = data space

F : M → D Forward Map
Least Squares formulation :

Given d ∈ D, find m ∈ M to minimize

JLS = ||F [m]− d||2[+regularizing terms]

Strong nonlinearity, many local minima (descent methods fail)
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Extended Model TRIP

M = physical model space

M̄ = bigger extended model space

F̄ : M̄ → D extended modeling operator

Extension Property:
M ⊂ M̄

m ∈ M̄ → F̄ [m] = F [m]
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Forward Modeling Operator TRIP

2D Constant Density Acoustic Wave equation:

1

v2(x)
∂2u
∂t2 (x, t)−∇2u(x, t) = f(xs, t)

u ≡ 0, t ≪ 0

Forward Modeling (Solve the wave equation) :

F [v] = u(xr, t;xs)

Linearization :
v(x) = v0(x) + δv(x)

Then
F [v] ≈ F [v0] + F[v0]δv
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Born Approximation TRIP

Born Approximation

F[v]δv(xr, t;xs) = δu(xr, t;xs)

.
Born Modeling Operator F[v]..

......

(
1

v(x)2 −∇2

)
G(x, t;xs) = δ(t)δ(x − xs);(

1

v(x)2 −∇2

)
δu(xr, t;xs) =

2δv(x)
v(x)3 G(x, t;xs)

where G is Green’s function, the implulse response of the medium

Assumption: Single scattering at points of discontinuity of impedance in
the subsurface(No multiple scattering!)
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Linearized Inverse Problem TRIP

Given smooth background velocity v(x), seismic reflection data
d(xr, t;xs), find perturbation model δv(x) to fit the data:

F[v]δv ≃ d

Migration is an approximate solution of this linearized inverse problem
Migration operator ( producing image ) is adjoint or transpose of
modeling operator(Lailly, Tarantola, Claerbout(80’s)).

Migration operator can position reflectors correctly but with possibly
incorrect amplitudes and wavelets.

True amplitude migration is (pseudo) inverse
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Adjoint of Born Modeling Operator TRIP

Born Modeling Operator

F[v]δv(xr, t;xs) =
∂2

∂t2
∫

dx
∫

dτ 2δv(x)
v3(x) G(x, t − τ ;xr)G(x, τ ;xs)

The adjoint of F (migration operator) is defined by∫
dxsdxrdt(Fδv)(xr, t;xs)d(xr, t;xs) =

∫
dxδv(x)(F∗d)(x)

Integration by parts leads to

F∗d(x) = − 2

v3(x)

∫
dxsdxrdtdτG(x, τ ;xs)

∂2d(xr, t;xs)

∂t2 G(x, t − τ ;xr)
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Subsurface offset Extension TRIP

S R

h h

Subsurface Extension : 2h
= Difference between subsurface
scatering points (subsurface off-
set)
Physical meaning : action at a
positive distance

Extend the operator by permiting δv to also depend on (half) offset h.
.Extended Born Modeling and Migration Operator..

......

F̄[v]δv =
∂2

∂t2
∫

dxdhdτG(x + h, t − τ ;xr)
2δv(x,h)

v3(x) G(x − h, τ ;xs)

F̄∗d = − 2

v3(x)

∫
dxsdxrdtdτG(x − h, τ ;xs)G(x + h, t − τ ;xr)

∂2d(xr, t;xs)

∂t2
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Extended Kirchhoff Operator TRIP

Fons ten Kroode (2012) constructed the inverse of the extended Kirchhoff
Operator (in asymptotic sense) :
.Fons ten Kroode,2012..

......

K̃i = 1

2π

∫
dxdhdωe−iωtG(xr,x + h, ω)∂i(x,h)

∂z G(x − h,xs, ω)

Ĩd =
32

πv2(x)

∫
dxrdxsdω(−iω)∂G∗(x + h,xr, ω)

∂zr
d(xr,xs, ω)

∂G∗(xs,x − h, ω)
∂zs

(http://iopscience.iop.org/0266-5611/28/11/115013)

Can we construct a similar operator to extended Born Modeling Operator?
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Construction of the Inverse Operator TRIP

Asymptotic Analysis of the Normal Operator F̄[v]∗F̄[v]δv(x, h)
.Extended Born Modeling Operator and its Adjoint..

......

F̄[v]δv =
∂2

∂t2
∫

dxdhdτG(x + h, t − τ ;xr)
2δv(x,h)

v3(x) G(x − h, τ ;xs)

F̄∗[v]d = − 2

v3(x)

∫
dxsdxrdtdτG(x − h, τ ;xs)G(x + h, t − τ ;xr)

∂2d(xr, t;xs)

∂t2

Step 1 High Frequency Approximation : in 2D
G(xs,x, t) ∼= a(xs,x)S(t − τ(xs,x)), S(t) = t−1/2H(t)
G(x,xr, t) ∼= a(x,xr)S(t − τ(x,xr)), S(t) = t−1/2H(t)

Step 2 Principle of Stationary Phase ( a2s a2r√
det Hess)

Step 3 Modify adjoint operator by some Velocity-independent Filters
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Key point in the derivation TRIP

xs dxs

ds

α

dα

Surface

β

dβ

xrdxr

dθ
dxs

= 8πa2s
cosθs
vs

dθ
dxr

= 8πa2r
cosθr
vr

θs θr

θ det Hess ∼
(
dθ
dxr

)2

det Hess ∼
(
dθ
dxs

dθ
dxr

)2

Physical Case:

Extended Case:
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An Approximate Inverse TRIP

F̄−1[v0]δd(x, h) = −16|k||k′|v0(x)5F̄∗[v0]I4t DzsDzrδd(x, h)

k = (kx, kz) and k′ = (kh, kz) are the wavenumbers

It is the time integral

Dzs ,Dzr are the source and receiver depth derivative.
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Apply DzsDzr
TRIP

S+ R+

Reflector

S− R−

d11 = data(S−, R−)

d12 = data(S−, R+)

d21 = data(S+, R−)

d22 = data(S+, R+)

z = −∆z
2

z = +∆z
2

DzsDzrdata = d11−d12−d21+d22

(∆z)2
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Numerical Test I TRIP

Velocity Model One-shot Born Data
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Extended Migration Result TRIP
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Extended Inversion Result TRIP
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Resimulated Data TRIP

Resimulated Data Data Residual
(= 6.34% ||observed data||)
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One trace Comparison TRIP

Figure: One trace (middle) comparison between the original data(blue) and
resimulated data(green). The differnce is shown as the red line.
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Non-extended Inversion Result TRIP

Non-extended Inversion Result

δv(x) =
∑

h
δv(x, h)

Model Residual
(= 9.74% ||model||)
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One trace Comparison TRIP

Figure: One trace (middle) comparison between the reflectivity model (blue) and
non-extended inversion result (green). The differnce is shown as the red line.
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Wrong Background Velocity - Extended Inversion TRIP

Background Velocity : 0.9v0 Background Velocity : 1.1v0
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Nonextended Inversion TRIP

Background Velocity : 0.9v0 Background Velocity : 1.1v0
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Resimulated Data for Extended Inversion TRIP

Background Velocity : 0.9v0 Background Velocity : 1.1v0
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Data Residual for Extended Inversion TRIP

Background Velocity : 0.9v0
29.3%||original data||

Background Velocity : 1.1v0
15.6%||original data||
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Data Residual for Non-extended Inversion TRIP

Background Velocity : 0.9v0
132.88%||original data||

Background Velocity : 1.1v0
158.77%||original data||
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Apply DzsDzr-Naive Implementation TRIP

S+ R+

Reflector

S− R−

d11 = data(S−, R−)

d12 = data(S−, R+)

d21 = data(S+, R−)

d22 = data(S+, R+)

z = −∆z
2

z = +∆z
2

DzsDzrdata = d11−d12−d21+d22

(∆z)2
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Apply DzsDzr-Free Surface Simulation TRIP

S+ R+

Reflector

Surface

S− R−

+data(S−, R−)

−data(S−, R+)

−data(S+, R−)

+data(S+, R+)

z = −∆z
2

z = +∆z
2

z = 0

DzsDzrdata = freesurface data
(∆z)2
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Inversion Result TRIP

Extended Inversion Non-extended Inversion
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Numerical Test II TRIP

Velocity Model Wavefronts and Rays
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Extended Inversion TRIP
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Resimulated Data TRIP

Resimulated Data Data Difference
=10.4%||observed data||
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One trace Comparison TRIP

Figure: One trace (middle) comparison between the original data(blue) and
resimulated data(green). The differnce is shown as the red line.
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Non-extended Inversion TRIP

Non-extended Inversion Result Model Difference
=21.3% ||model||
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One trace Comparison TRIP

Figure: One trace (middle) comparison between the reflectivity model (blue) and
non-extended inversion result (green). The differnce is shown as the red line.
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Marmousi Model TRIP

Marmousi Model Background Velocity Model
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Extended Inversion Result TRIP
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Marmousi Model TRIP

Reflectivity Model Non-extended Inversion Result
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One Trace comparison TRIP

Reflectivity Model (middle trace)

Non-extended Inversion (middle trace)
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Resimulated Data TRIP

Original Data Resimulated Data
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One Trace comparison TRIP

Original Data (middle trace)

Resimulated Data (middle trace)
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Conclusion TRIP

Takeaway Messages

Migration is a kinematic solution of the linearized inverse problem

Subsurface offset extended RTM can be modified into an asymptotic
inverse to the extended Born Modeling Operator

The new inverse operator can approximate the least sqaure extended
RTM solution

The new inverse operator can also produce non-extended inversion,
which can approximate least square RTM
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Future Plans TRIP

More Numerical Tests

Replace Dzs ,Dzr with respect to one-way operator

Extension to 3D

Apply this operator as a preconditioner to LSM and FWI
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