

Viscoacoustic full waveform inversion: what can be resolved?

Binghong He

Rice University & China University of Petroleum (Huadong)

□ Introduction

Gradient calculation by adjoint state

□ Strategies for viscoacoustic FWI

Introduction

Introduction

Viscoacoustic FWI:

Viscoacoustic operator: fit the data and improve the accuracy of velocity

 Multiparameter inversion: velocity and attenuation parameters

Outline

□ Introduction

Gradient calculation by adjoint state

□ Strategies for viscoacoustic FWI

Adjoint state

Objective function:

$$J[m] = h(p(K,\tau), K, \tau) = \frac{1}{2} \parallel p(K,\tau) - p_{obs} \parallel^2$$

Forward mapping:

$$F(p, v_x, v_z, r_l, K, \tau) = 0$$

$$K = \rho v_p^2$$
$$\tau = \frac{\tau_{\epsilon l}}{\tau_{\sigma l}} - 1$$

relative relaxation time difference

 $au_{\sigma l}$ stress relaxation time

 $au_{\epsilon l}$ strain relaxation time

Adjoint-state method

• Forward modeling equation

$$\begin{cases} \dot{p} = K(v_{x,x} + v_{z,z}) - K \sum_{l=0}^{L} r_l (1 - \tau_{\sigma l} / \tau_{\varepsilon l}) \\ \dot{v_x} = \frac{1}{\rho} \frac{\partial p}{\partial x} \\ \dot{v_z} = \frac{1}{\rho} \frac{\partial p}{\partial z} \\ \dot{r_l} + \frac{1}{\tau_{\sigma l}} r_l = \frac{1}{\tau_{\sigma l}} (v_{x,x} + v_{z,z}) \end{cases}$$

In order to get constant Q model, Generally Maxwell Body(GMB) is included in the forward equaion:

GMB:
$$M(\omega) = M_R + \sum_{l=1}^{L} \frac{iM_l\omega}{\omega_l + i\omega}, \omega_l = \frac{M_l}{\eta_l} = \frac{1}{\tau_{\sigma l}}$$

Adjoint-state method

Adjoint wave equation:

$$\begin{cases} \dot{q} = K(v_{x,x} + v_{z,z}) + K \sum_{l=0}^{L} r_l (1 - \tau_{\sigma l} / \tau_{\varepsilon l}) \\ \dot{v_x} = \frac{1}{\rho} \frac{\partial q}{\partial x} \\ \dot{v_z} = \frac{1}{\rho} \frac{\partial q}{\partial z} \\ \dot{r_l} - \frac{1}{\tau_{\sigma l}} r_l = \frac{1}{\tau_{\sigma l}} (v_{x,x} + v_{z,z}) \end{cases}$$

Gradient for update:

$$grad_{K}J[K,\tau] = -\langle q, DF_{K}[K,\tau] \rangle$$
$$grad_{\tau}J[K,\tau] = -\langle q, DF_{\tau}[K,\tau] \rangle$$

similar cost to acoustic FWI

Q=50

Optimal Checkpointing

Blanch et al (1998); Griewark (1992); Symes(2007):

• For given numbers of time steps and buffers, the recomputation ratio is minimum amongst all possible checkpointing schedules

Question:

• For given numbers of time steps, what is the best choice of the number of buffers?

Solution:

buffers	ratio	d1-ratio
No.	10010	
2	93.282	-65.409
13	4.837	-0.229
19	3.937	-0.140
37	2.934	-0. 016
140	1.999	-0.0131
150	1.985	-1.000e-04
170	1.983	-1.000e-04
190	1.981	-1.000e-04

Table 1: List of priority number of buffers (≤ 200)

Gradient calculated by adjoint state

Compensation

$$d(x,t) = d(x,t)e^{2\pi\omega_0 t/2Q_a}$$

- ω_0 corresponding to peak frequency
- Q_a Average quality factor

Gradient

Acoustic

Viscoacoustic

Gradient

Viscoacoustic

Viscoacoustic compensation

Outline

□ Introduction

Gradient calculation by adjoint state

□ Strategies for viscoacoustic FWI

Ture models and observed data

Research in T.R.I.P.

16

Ture models and observed data

- Shot: 10;
- Receriver:1001, surface;
- Source :20HZ
- Offset_max: 10000m
- Data:full wave, viscoacoustic

stopping criterion for iteration

 $|gradient|_{max} <= 0.1 |gradient_{initial}|_{max}$

Data: all the information

Initial V:smooth

Initial Q :smooth

Data: all the information

Initial V:smooth

Conclusion

- For reflection data, v_p and Q are strongly coupled . Incorrect Q results in incorrect reflector amplitudes. Long wavelength Q structure is not updated. The large aperture reflection contains limited long wavelength Q.
- For refraction data , information about long wavelength Q structure presents in the data, and this permits update of Q.
- The update of Q contains more short scale structure than that of velocity, and is easier to fall into local solution, especially for the case that the velocity is far from the true one.

Acknowledgement

- Thanks William W. Symes Sincerely for great guild and suggestion.
- I wish to thank all the members of The Rice Inversion Project group(TRIP).
- I wish thank the China Scholarship Council for the support my study in Rice University.
- And we thanks the sponsors of TRIP.

Thank you

Research in T.R.I.P.