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SUMMARY

We modify RTM to create an approximate inverse to the ex-
tended Born modeling operator in 2D. The derivation uses
asymptotic ray theory and stationary phase principle, but the
result applies directly to RTM. The inverse operator differs
from the adjoint operator only by application of several ex-
plicit velocity-independent filters. This inverse operator, on
the one hand, can be used as true amplitude migration (in the
asymptotic sense). On the other hand, it can be used as precon-
ditioner to speed up the iterations of Least-Squares Migration
and Full Waveform Inversion.

INTRODUCTION

Seismic imaging is a process of converting seismic reflection
data into subsurface image based on a given background ve-
locity model. This process is usually accomplished by migra-
tion, which can position reflectors correctly but with generally
incorrect amplitudes and phases. In fact, various migration al-
gorithms compute the adjoint of the Born (linearized) forward
modeling operator, or an approximation to it, rather than an
approximate inverse. In this paper, we show how to inexpen-
sively modify Reverse Time Migration (RTM) to produce an
approximate inverse.

The investigation of the inverse Born operator started with the
development of generalized Radon transform (GRT) inversion
to compensate for the amplitude loss of geometric spreading in
Kirchhoff Migration (Beylkin (1985), Bleistein (1987),Schle-
icher et al. (1993), Tygel et al. (1997)). GRT inversion applies
a weight function to the seismic data before the diffraction
stack. This method has been widely used due to its simplic-
ity and efficiency. However, because of its ray-based nature,
it may produce a poor quality image in complex geological
settings. Wave-equation true amplitude migration based on
one-way equation (Zhang et al. (2003, 2005)) provides better
images in complex overburden, but suffers from propagation
angle limitation. Zhang et al. (2007), Zhang and Sun (2009)
show a modification of the boundary conditions used in the
wave equation combined with a proper imaging condition can
lead to a true amplitude RTM accurate at all angles. The al-
gorithm described here is closely related to that of Zhang and
Sun (2009), but does not require the modification of the stan-
dard imaging condition.

Iterative inversion of the Born or linearized scattering opera-
tor has become known as least squares migration (LSM), see
Tarantola (1984), LeBras and Clayton (1988), Bourgeois et al.
(1989), Lambare et al. (1992), Nemeth et al. (1999), Kühl
and Sacchi (2003), Tang (2009). Iterative inversion permits
straightforward modification of problem definition, for exam-
ple by inclusion of regularization or target-oriented restriction,
but is relatively expensive. Tens of iterations are generally

needed for a good result, each costing as much as two migra-
tions.

The present work was inspired by ten Kroode (2012), whose
construction amounts to a true-amplitude modification of Claer-
bout’s survey sinking imaging principle (Claerbout (1985)),
in 3D. Survey-sinking migration amounts to the adjoint of an
extended modeling operator, which operates on nonphysical
models depending on both spatial coordinates and subsurface
offset parameters (Stolk and De Hoop (2006); Symes (2008);
Stolk et al. (2009b)). We develop a modification of ten Kroode’s
approximate inverse in 2D and provide numerical examples
to illustrate its effectiveness. In the concluding section, we
mention the applicability of this operator to ordinary (non-
extended) Born inversion, and to acceleration of LSM itera-
tion.

THEORY

In this section, we will first review the concepts of the extended
Born modeling operator, its adjoint operator and their high fre-
quency approximations. We will then derive and implement an
approximate inverse operator.

Extended Born Modeling Operator and its Adjoint

The Constant Density Acoustic Wave Equation is :

1
v2(x)

∂ 2u
∂ t2 (x, t)−∇

2u(x, t) = f (t,x,xs) (1)

Here x denotes position within a model of the Earth, v(x) is
the acoustic velocity, u(xs,x, t) is the acoustic potential, and
f (t,x,xs) is the source term. We assume throughout this paper
that v is constant in the half-space z < 0, that is, that z = 0 is
an absorbing surface.

The Born (linearized, single scattering) approximation splits
the coefficient v into a smooth or long-scale background model
v0, and a short- or wavelength-scale perturbation δv : v(x) =
v0(x)+ δv(x). The first order perturbation in the acoustic po-
tential field δu corresponding to δv may be expressed in terms
of the causal Green’s function G(x,y, t) for background model
v0. Restricting δu to the source and receiver positions xs,xr re-
sults in an integral operator expression for the Born modeling
operator F [v0] :

F [v0]δv(xs,xr, t)

=
∂ 2

∂ t2

∫
dxdτG(xs,x,τ)

2δv(x)
v0(x)3 G(x,xr, t− τ)

(2)

The adjoint operator F [v0]
∗ is the operator implemented by

one common variant of Reverse Time Migration. The scale
conditions on v0,δv are sufficient to make δu a good approxi-
mation to the actual perturbation in the acoustic field resulting
from δv.
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An appropriate version of subsurface offset extended Born mod-
eling introduces dependence of δv (but not v0) on an additional
parameter, h, essentially the offset between sunken source and
sunken receiver in Claerbout’s survey-sinking imaging condi-
tion (Claerbout (1985), Symes (2008), Stolk et al. (2009b)).
In terms of Green’s functions, the subsurface extended Born
Modeling Operator and its adjoint (applied to a data perturba-
tion δd) are :

F̄ [v0]δv(xs,xr, t)

=
∂ 2

∂ t2

∫
dxdhdτG(xs,x−h,τ)

2δv(x,h)
v0(x)3 G(x+h,xr, t− τ)

(3)
F̄∗[v0]δd(x,h)

=− 2
v0(x)3

∫
dxsdxrdtdτG(xs,x−h,τ)G(x+h,xr, t− τ)

× ∂ 2

∂ t2 δd(xs,xr, t)

(4)
In Claerbout’s original conception, the subsurface offset h is
horizontal. ten Kroode also adopts this convention, and we
follow it here. Thus we write h rather than h for the (scalar)
horizontal subsurface offset in 2D.

High Frequency Approximation

Both to understand the high frequency leading order behaviour
of the normal operator or Hessian F̄∗[v0]F̄ [v0], and to see how
to modify F̄∗ so that the normal operator becomes an approx-
imate identity, we introduce the progressing wave approxima-
tion (Courant and Hilbert (1966)) of the Green’s function: with
a suitable choice of singular, causal waveform S(t),

G(xs,x, t)∼= a(xs,x)S(t− τ(xs,x)) (5)

In equation (5), the amplitude a(xs,x) and the travel time τ(xs,x)
solve the transport and eikonal equation respectively. The ap-
proximation (5) is only valid locally, between the source point
and the nearest caustic or conjugate (multipath) point. The
conclusions we draw below are valid more globally, however,
provided that the Traveltime Injectivity Condition holds: a
two-way traveltime along a reflected ray pair determines the
one-way traveltimes of source and receiver rays. ten Kroode
(2012) gives a detailed justification for the global validity of
similar conclusions in the 3D case. We confine ourselves in
this paper to numerical evidence for global 2D results.

In 2D case, the leading singularity is proportional to the gen-
eralized function S(t) = t−1/2

+ = t−1/2H(t). Replacing the
Green’s function by the progressing wave approximation (5)
in the expression (3) for the extended Born modeling operator
and using the identity (Gel’fand and Shilov (1958)),

t−1/2
+ ∗ t−1/2

+ = (Γ(
1
2
))2H(t) = πH(t) (6)

we obtain

F̄ [v0]δv(xs,xr, t)∼=
∂

∂ t

∫
dxdhasarδ (t−Ts−Tr)

2πδv(x,h)
v0(x)3

(7)
in which we have denoted amplitudes a(xs,x−h),a(x+h,xr)
as as,ar and traveltime τ(xs,x− h),τ(x+ h,xr) as Ts,Tr. We

can also give the same treatment to the migration operator :

F̄ [v0]
∗
δd(x,h)∼=−

2π

v0(x)3

∫
dxsdxrasar

∂

∂ t
δd(xs,xr,Ts+Tr)

(8)

Combining equations (3) and (4) yields a five-fold integral in-
volving two copies of the extended space variables (x,h) as
well as integration over the acquisition coordinates. For ideal-
ized 2D acquisition, the source and receiver locations lie along
a horizontal lines at depths zs,zr, so the acquisition coordi-
nates may be chosen as xs,xr. An asymptotic evaluation of
this integral follows along the lines of Beylkin (1985); Symes
(1998), with a novel twist. One accounts for the delta func-
tion δ (t − Tr − Ts) in equation (3) by writing z as a function
of x,h, t,xs,xr, assuming that reflectors are subhorizontal (if
not, then a vertical offset extension is required). One then
introduces the Fourier transform of δv(x,z,h), and uses the
principle of stationary phase to evaluate the multiple integral
for large wavenumber. The integrations are naturally paired as
(x,xr) and (h,xs). Each pair of integrals gives rise to a Hessian
determinant factor. These Beylkin determinants are actually
proportional to reciprocal amplitudes (Zhang et al. (2005)).
The non-extended asymptotic computation includes the inte-
gration over (x,xr) and cancels the receiver amplitude ar, how-
ever the remaining geometric amplitude as must be removed
via an appropriate imaging condition (Stolk et al. (2009a)).
The extended computation, however, involves the additional
integration over (h,xs), producing an additional Beylkin deter-
minant which cancels as.

The upshot is that no ray-theoretic quantities remain in the nor-
mal operator, merely several velocity-independent filters and
scaling by a power of the velocity. Compensation for these
leads to the expression for an approximate inverse:

F̄−1[v0]δd(x,h) =−8|kk′|v6
0F̄∗[v]I4

t Dzs Dzr δd(x,h) (9)

where k = (kx,kz) and k′ = (kh,kz) are the wavenumbers (act-
ing as filters, and easily applied via Fourier transform), It is
the time integral and Dzs ,Dzr are the source and receiver depth
derivative. For the baseline examples below, we set zs = zr = 0,
explicitly computed data for sources and receivers at±∆zs,±∆zr,
and formed centered differences. We will address this point in
the discussion below.

NUMERICAL EXAMPLES

In this section, we will use two numerical examples to illus-
trate the effectiveness of the inverse operator.

The first model combines a single flat reflector at z = 1.5 km,
with Gaussian derivative wavelet, with a constant (2500 m/s)
background velocity. The spatial sampling interval of the model
is 20m for both x and z axis. A (2.5-5-30-35) Hz bandpass
wavelet with 2ms time interval is used to simulate the Born
data (2-8 Finite Difference Scheme). 31 shots are evenly spread
on the surface (z= 0) every 100m. All the shots will be recorded
by 301 receivers deployed every 10m on the surface.
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Figure 1: (a) One-shot (xs = 1500m) Simulated Born Data (b)
Extended RTM image (c) Inverted Image (d) Resimulated Data
of the Inverted Image (e) One trace comparison (x = 1500m)
between the observed data (red solid line) and predicted data
from inverted image (blue dashed line)

The Born data shown in Figure 1(a) is calculated using Equa-
tion (3). Both extended RTM (equation (4)) and the new in-
verse operator (Equation (9)) are applied on the Born data.
Comparing the migrated image (Figure 1(b)) and inverted im-
age (Figure 1(c)), we can clearly see the inverse operator can
focus the energy much better than extended RTM. The inverse
operator can recover both kinematic and dynamic information
from the reflection data. The reflector recovered by the inverse
operator is then very close to the true reflectivity model. How-
ever, we can never recover the reflector perfectly due to the
lack of the low frequency data. A good way to evaluate the in-
verse operator would be to compare the “observed” data of the
true model (Figure 1(a)) and the “predicted” data of inverted
image (Figures 1(d), 1(e)). The comparisons show that the
data predicted from the inverted model is almost same as the
“observed” data.

The simple geometrical optics computation of previous sec-
tion will fail in the presence of caustics (or multipathing). The
background velocity model for the second example contains a
low velocity Gaussian lens. A flat horizontal reflector (same
as the one in the first example) is placed right below the lens
at the depth of 2km. This model is very similar to the one
used by Nolan and Symes (1996) and Stolk and Symes (2004).
The numerical implementation has the same configuration as
the first example. Because of the Gaussian lens, the rays will
certainly focus and form the triplication after going through
the lens. The rays and wavefronts are shown in Figure 2(b).
We can clearly see that this model produces multipathing and
caustics.

The inverse operator defined in equation (9) produces the re-
flectivity model shown in Figure 3(b). From the image per-
spective, we clearly reproduce the flat reflector below the lens
with no kinematic artifacts (Stolk and Symes (2004)). Resim-
ulation with Born modeling operator from the inverted reflec-
tivity model predicts data very close to the input data (Figures
3(c), Figure 3(d)).

CONCLUSION

A simple modification of subsurface offset extended RTM pro-
duces an asymptotic inverse to the Born scattering operator.
Implementation of straightforward, and numerical experiments
suggest that within its domain of applicability, this inversion
operator is quite accurate.

On its face, the inverse operator approximately inverts the ex-
tended Born modeling operator, therefore may be used to ac-
celerate convergence of the reflectivity estimation loop in auto-
mated velocity model building (for example, Liu et al. (2013)).
However it may also be used as an approximate inverse to ordi-
nary Born modeling, hence to accelerate iterative LSM, simply
via post-application of any inverse to the extension operator.
Apparently, simple stacking of the extended inversion is suffi-
cient in some cases.

ten Kroode (2012) suggests that the necessary Dzs ,Dzr oper-
ators may be applied to the data via one-way approximation.
Alternatively, the authors have observed that for streamer data
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Figure 2: (a) Gaussian lens background velocity model with a
reflector at 2km (b) The rays and wavefronts in the Gaussian
lens velocity model

with shallow tow depths, the ghost sources and receivers auto-
matically supply scaled versions of these derivatives. That is,
only the remaining filters in equation (9) need be applied, in
conjunction with the absorbing surface RTM.
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Figure 3: (a) One-shot (xs = 1500m) Simulated Born Data of
the velocity model shown in Figure 2(a) (b) Inverted image
using the new inverse operator (c) Resimulated data of the in-
verted image (d) One trace comparison (x=1500m) of the data
shown in (a) (red solid line) and (c) (blue dashed line)
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