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Problem Statement

Acoustic Equations (pressure-velocity form):

ρ(x)
∂v
∂ t

(x, t) + ∇p(x, t) = 0 (1a)

1
κ

(x)
∂p
∂ t

(x, t) + ∇ ·v(x, t) = f (x, t) (1b)

for x ∈ Ω and t ∈ [0,T ], where x = (x ,z) and Ω = [0,1]2.
Boundary and initial conditions:

p = 0, on ∂ Ω× [0,T ]

p(x,0) = p0(x) and v(x,0) = v0(x)

Research focus:
Analyze the computational efficiency of discontinuous
Galerkin (DG) and finite difference (FD) methods in the
context of the acoustic equations with smooth
coefficients.
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Why Smooth Coefficients?

Relevant for seismic applications: smooth trends in real
data!
Comparison has not been done before!
Previous work with discontinuous coefficients
(Wang, 2009).

efficiency of DG over 2-4 FD (dome inclusion)
DG resolves discontinuity interface errors
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Focus of Talk

1 Discontinuous Galerkin (DG) Method
derivation of scheme
basis functions
reference element

2 Locally conforming DG (LCDG) Method
triangulation
reference element
basis functions

3 Summary and Future Work
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Discontinuous Galerkin (DG) Method

Why DG? (Cockburn, 2006; Brezzi et al., 2004; Wilcox et al., 2010)

explicit time-stepping, after inverting block diagonal
matrix
can handle irregular meshes and complex geometries
hp-adaptivity

Idea: Approximate solution by piecewise polynomials on
partitioned domain.
Example: 1D piecewise linear approximation
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Derivation of DG Semi-Discrete Scheme

Let:
τ ∈T , for some triangulation T on Ω

test function w ∈ C∞(Ω)

Then,

ρ
∂vx

∂ t
+

∂p
∂x

= 0 =⇒
∫

τ

ρ
∂vx

∂ t
w dx +

∫
τ

∂p
∂x

w dx = 0

I.B.P. and replace p with numerical flux p∗ in boundary
integral, ∫

τ

ρ
∂vx

∂ t
w dx−

∫
τ

p
∂w
∂x

dx +
∫

∂τ

p∗w nx dσ = 0

IBP
=⇒

∫
τ

ρ
∂vx

∂ t
w dx +

∫
τ

∂p
∂x

w dx +
∫

∂τ

(p∗−p)w nx dσ = 0 (2)
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Nodal Basis Functions

Finite dimensional space Wh:

Wh = {w : w |τ ∈ PN(τ),∀τ ∈T }

Nodal DG: Use nodal basis, i.e.,

PN(τ) = span{`τ

j (x)}N∗j=1 ∀τ ∈T ,

where
Lagrange polynomials `τ

j (xτ

i ) = δij for given nodal set
{xτ

i }N
∗

i=1 ⊂ τ

N∗ = 1
2(N + 1)(N + 2), a.k.a., degrees of freedom per

triangular element
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Nodal Sets

Example of nodal sets {xτ

j }N
∗

j=1 :

(a) N = 1,N∗ = 3 (b) N = 2,N∗ = 6 (c) N = 3,N∗ = 10
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DG Semi-Discrete Scheme

Find vx ,p ∈Wh such that∫
τ

ρ
∂vx

∂ t
w dx−

∫
τ

∂p
∂x

w dx +
∫

∂τ

(p∗−p)w nx dσ = 0

for all w ∈Wh and τ ∈T .

Note:

vx ∈Wh =⇒ vx (x, t)|τ =
N∗

∑
j=1

vx (xτ

j , t)`
τ

j (x),

where {vx (xτ

j , t)}N
∗

j=1 are unknowns. Same for vz and p, and
numerical fluxes v∗x ,v∗z ,p∗.
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Nodal Coefficient Vectors

RN∗


vx (t) := [vx (xτ

1, t),vx (xτ

2, t), . . . ,vx (xτ

N∗ , t)]T

vz(t) := · · ·
p(t) := · · ·

RN+1



vm
n (t) := [vn(xτ

m1
, t),vn(xτ

m2
, t), . . . ,vn(xτ

mN+1
, t)]T

pm(t) := · · ·
(vm

n )∗(t) := [v∗n(xτ
m1

, t),v∗n(xτ
m2

, t), . . . ,v∗n(xτ
mN+1

, t)]T

(pm)∗(t) := · · ·

where vn(xτ
mj
, t) = nm

x vx (xτ
mj
, t) + nm

z vz(xτ
mj
, t), and similar for

v∗n(xτ
mj
, t).
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DG Semi-Discrete Scheme

From ∫
τ

ρ
∂vx

∂ t
w dx +

∫
τ

∂p
∂x

w dx +
∫

∂τ

(p∗−p)w nx dσ = 0,

to

MR
d
dt

vx (t) + Sxp(t) +
3

∑
m=1

nm
x Mm ((pm)∗−pm)(t) = 0,

where:

mass matrix (M)ij :=
∫

τ

`τ

i `
τ

j dx, in RN∗×N∗

mass matrix (Mm)ij :=
∫

em
τ

`τ

i `
τ
mj

dσ , in RN∗×(N+1)

stiffness matrix (Sx )ij :=
∫

τ

`τ

i

∂`τ

j

∂x
dx, in RN∗×N∗

ρ-matrix (R)ij := δijρ(xτ

j ), in RN∗×N∗
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DG Semi-Discrete Scheme

System of ODE’s:

R
d
dt

vx (t) =−Dxp(t) +
3

∑
m=1

nm
x Lm ((pm)∗−pm)(t)

for each τ ∈T , where

Dx = M−1Sx , Lm = M−1Mm.

Similar result for other equations:

R
d
dt

vz(t) =−Dzp(t) +
3

∑
m=1

nm
z Lm ((pm)∗−pm)(t)

K −1 d
dt

p(t) = f(t)−Dxvx (t)−Dzvz(t)−
3

∑
m=1

Lm ((vn)∗−vn)(t)

where

(K )ij = δijκ(xτ

j ), (f)i =
∫

τ

f `τ

i dx, Dz = M−1Sz .
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DG Semi-Discrete Scheme

Acoustic equations:

ρ
∂

∂ t
vx =− ∂

∂x
p

ρ
∂

∂ t
vz =− ∂

∂z
p

1
κ

∂

∂ t
p = f −∇ ·v

DG scheme:

R
d
dt

vx (t) =−Dxp(t) +
3

∑
m=1

nm
x Lm ((pm)∗−pm)(t)

R
d
dt

vz(t) =−Dzp(t) +
3

∑
m=1

nm
z Lm ((pm)∗−pm)(t)

K −1 d
dt

p(t) = f(t)−Dxvx (t)−Dzvz(t)−
3

∑
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Visualizing DG

After time discretization (leapfrog):

vn+1/2
x = vn−1/2

x −∆tR−1

[
Dxpn +

3

∑
m=1

nm
x Lm ((pm)∗−pm)

n

]

tn+1/2

tn

tn−1/2
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Use of Reference Element in DG

Reference triangle τ̂:

(-1,-1) (1,-1)

(-1,1)

r

s

Idea: Carry computations in τ̂

construct nodal set and basis functions in τ̂:

{`j}N
∗

j=1 s.t. `j(ri) = δij for {ri}N
∗

i=1 ⊂ τ̂

mass matrix computations∫
τ

`τ

j `
τ

i dx = J(τ)
∫

τ̂

`j`i dr =⇒M = J(τ)M̂
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Locally Conforming DG (LCDG) Method for Acoustics

Why LCDG method? (Chung & Engquist, 2006, 2009)
locally and globally energy conservative
optimal convergence rate
explicit time-step

My contribution: nodal DG implementation of LCDG
basis functions and nodal sets
use of reference element
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Locally Conforming DG (LCDG) Method for Acoustics

LCDG Idea: Enforce continuity of the pressure field and the
normal component of the velocity field in a “staggered” manner.

Example: 1D piecewise linear polynomial approximation
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Triangulation

Algorithm: unif_tri
1 given Nsub, subdivide Ω into Nsub×Nsub partition of

squares
2 triangulate each square by adding a diagonal from top-left

to bottom-right
3 Pick interior point at each triangle and re-triangulate

Figure: Example of unif_tri for Nsub = 2.
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LCDG Approximation Spaces

Pressure space Ph: q ∈Ph if

q|τ ∈ PN(τ)

q continuous on dashed edges

q = 0 on ∂ Ω

Velocity space Vh: u ∈ Vh if

u|τ ∈ PN(τ)2

u ·n continuous dashed edges
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LCDG: Basis for Ph

Two types of pressure elements:

boundary elements interior elements

Reference elements:

r

s

(-1,-1) (1,-1)

(-1,1)

r

s

(-1,-1) (1,-1)

(1,1)(-1,1)
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LCDG: Basis for Ph

Basis functions for boundary pressure elements
(N = 1 example):

1

r

s

Basis functions for pressure interior elements
(N = 1 example):

1

r

s
1

r

s
1

r

s
1

r

s
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LCDG: Basis for Vh

Velocity elements and respective reference elements:

velocity elements
r

s

(−1,−1
3

√
3) (1,−1

3

√
3)

(0, 23
√
3)

(0, 0)

reference element
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LCDG: Basis for Vh

Basis functions, N = 1 example:

Figure: Basis vector fields φ γ,j for N = 1 (Nγ = 12).
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LCDG Semi-Discrete Scheme

For a triangulation T , find p ∈Ph and v ∈ Vh such that∫
Ω

ρ
∂v
∂ t
·u dx−B∗h(p,u) = 0

∫
Ω

1
κ

∂p
∂ t

q dx + Bh(v,q) =
∫

Ω
fq dx

for all q ∈Ph and u ∈ Vh, where

B∗h(p,u) =−
∫

Ω
p ∇ ·u dx + ∑

e∈E 0
p

∫
e

p [u · n̂] dσ

Bh(v,q) =
∫

Ω
v ·∇q dx− ∑

e∈Ev

∫
e

v · n̂[q] dσ .

28



Summary

standard DG
motivation
basis functions
reference element

LCDG
triangulation
spaces Ph, Vh
reference elements and basis functions
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Pending Work and Future Directions

Pending work:
implementation of LCDG
absorbing BC (Chung & Engquist, 2009)
time discretization (leapfrog and Runge-Kutta)
error analysis

Future directions:
non-uniform triangulation
3D acoustics
elasticity equations
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