The Rice Inversion Project 2012 Review

William Symes

Computational and Applied Mathematics, Rice University

April 2013

Overview

Linearized Modeling and Inversion

Extended modeling and MVA

Extended Waveform Inversion

People

- Yin Huang (CAAM, 3rd year grad)
- ► Lei Fu (ESCI, 2nd year grad)
- Muhong Zhou (CAAM, 2nd year grad)
- Mario Bencomo (CAAM, 2nd year grad)
- ▶ Jie Hou (ESCI, 1st year grad)
- Papia Nandi (BP & ESCI, 1st year grad)
- Yujin Liu (visitor AY '12-'13, China U. of Petroleum)
- William W. Symes (CAAM & ESCI, 29th year faculty)

Sponsors

- BHP Billiton
- BP
- Chevron
- ConocoPhillips
- ExxonMobil
- Hess

- ► ION-GXT
- Landmark Graphics
- Shell
- Statoil
- Total
- WesternGeco

Goal

contribute mathematical and computational innovations to development of waveform inversion for seismic exploration

Projects

- Migration Velocity Analysis without picking (Yujin, Yin, Jie)
- Combining Full Waveform Inversion with MVA (Yujin, Yin, Lei, Papia)
- Fast modeling in heterogeneous media (Muhong, Mario)

Overview

Linearized Modeling and Inversion

Extended modeling and MVA

Extended Waveform Inversion

M = model space = mechanical parameter fields (bulk modulus, density, $C_{ijkl}(\mathbf{x}),...$)

$$D = \mathsf{data} \; \mathsf{space} = \{d(\mathbf{x}_r, \mathbf{x}_s, t)\}$$

 $F: M \rightarrow D$ modeling operator = forward map = solve wave equations for pressure, displacement,..., sample at \mathbf{x}_r, t (RHS = function of \mathbf{x}_s)

Full Waveform Inversion problem:

given $d \in D$, find $m \in M$ so that

 $F[m] \simeq d$

Least squares inversion = FWI: minimize

 $J_{LS}[m] = ||F[m] - d||^2 [+ \text{ regularizing terms}]$

Example: constant density acoustics $M = {\kappa(\mathbf{x}) = \rho c^2(\mathbf{x})}$, isotropic point radiator

$$\left(rac{\partial^2}{\partial t^2} - c^2(\mathbf{x})
abla_{\mathbf{x}}^2
ight) p(\mathbf{x}, \mathbf{x}_s, t) = \delta(\mathbf{x} - \mathbf{x}_s) w(t);$$

$$p \equiv 0, t \ll 0$$

 $F[c^2] = \{p(\mathbf{x}_r, \mathbf{x}_s, t)\}$ (solve wave equation, sample pressure field)

Bandlimited source \Rightarrow derivative *DF* makes sense (aka linearized fwd map, Born modeling operator, etc. etc. - Stolk 00, Blazek et al 13)

Least squares inversion for linearized map: Given d find $m, \delta m$ so that

$$\min_{m,\delta m} \|DF[m]\delta m - (d - F[m])\|^2 + \dots$$

When *m* is included as inversion target, no easier than non-linearized inverse problem!

Example: constant density acoustics: background $c^2(\mathbf{x})$, perturbation $\delta c^2(\mathbf{x})$

$$\left(\frac{\partial^2}{\partial t^2} - c^2(\mathbf{x})\nabla^2\right) p(\mathbf{x}, \mathbf{x}_s, t) = \delta(\mathbf{x} - \mathbf{x}_s)w(t)$$

$$\left(\frac{\partial^2}{\partial t^2} - c^2(\mathbf{x})\nabla^2\right)\delta p(\mathbf{x}, \mathbf{x}_s, t) = \delta c^2(\mathbf{x})\nabla^2 p(\mathbf{x}, \mathbf{x}_s, t)$$

$$p, \delta p = 0, t \ll 0$$

 $DF[c^2]\delta c^2 = \{\delta p(\mathbf{x}_r, \mathbf{x}_s, t)\}$

For noise-free data, correct m: recovery of correct δm , small data residual

Linearized inversion $m = c_{\rm sm}^2$ ("100%"), from 60 shot records 100m spacing. Left: estimated δc^2 , 50 CG its. Right: target δc^2

Relative RMS residual = 0.2. Left: predicted data, Right, residual, shot position 6 km

However, small errors in $m \Rightarrow$ large residual at optimal δm

Away from optimum, small changes in *m* have little effect on data fit - *data fit does not encode m*

If *m* is substantially incorrect, no δm is consistent with data

Linearized inversion $m = 0.8c_{\rm sm}^2 + 0.2c_0^2$ ("80%"), from 60 shot records 100m spacing. Left: estimated δc^2 , 50 CG its. Right: target δc^2

Relative RMS residual = 0.8. Left: predicted data, Right, residual, shot position 6 km

Overview

Linearized Modeling and Inversion

Extended modeling and MVA

Extended Waveform Inversion

Empirical observation (eg. Taner & Koehler 69):

May fit data subsets with perturbation δm , even with erroneous background m

Example of "fitable" subsets: shot records (data for single \mathbf{x}_s)

Inversion of $\delta m \ (= \delta c^2)$ for each shot record independently, "80%" $m \ (= 0.8c_{\rm sm}^2 + 0.2c_0^2)$ - Relative RMS Error = 0.10

- M = physical model space
- $\bar{M} = bigger$ extended model space
- $\bar{F}: \bar{M} \rightarrow D$ extended modeling operator

Extension property:
$$M \subset \overline{M}$$
,
 $m \in M \Rightarrow \overline{F}[m] = F[m]$

Linearized extension: extended perturbation about physical background model: $D\overline{F}[m]\overline{\delta m}$

Linearized acoustics, shot record extension: $\bar{M} = \{c^2(\mathbf{x}), \overline{\delta c^2}(\mathbf{x}, \mathbf{x}_s)\}$

$$\left(\frac{\partial^2}{\partial t^2} - c^2(\mathbf{x})\nabla^2\right) p(\mathbf{x}, \mathbf{x}_s, t) = \delta(\mathbf{x} - \mathbf{x}_s)w(t)$$

$$\left(\frac{\partial^2}{\partial t^2} - c^2(\mathbf{x})\nabla^2\right)\overline{\delta p}(\mathbf{x},\mathbf{x}_s,t) = \overline{\delta c^2}(\mathbf{x},\mathbf{x}_s)\nabla^2 p(\mathbf{x},\mathbf{x}_s,t)$$

$$p, \overline{\delta p} = 0, t \ll 0$$

$$D\bar{F}[c^2]\overline{\delta c^2} = \{\overline{\delta p}(\mathbf{x}_r, \mathbf{x}_s, t)\}$$

 $D\bar{F}[c^2]^T = prestack RTM$ operator for shot record images

One way to deal with underdetermination of extended inversion, extract velocity information:

Semblance operator ("annihilator") $A: \overline{M} \to Z$ s.t.

$$A\overline{\delta m} = 0 \iff \overline{\delta m} \in M$$

Expl: for acoustics, shot record extension, possible choice is $A = P \nabla_{\mathbf{x}_s}$, $P = any \ \Psi DO$. Order P = -1 \Rightarrow order A = 0

MVA by Semblance optimization: minimize over $m, \overline{\delta m}$

$$J[m,\overline{\delta m}] = \frac{1}{2} \|D\bar{F}[m]\overline{\delta m} - \delta d\|^2 + \frac{\lambda^2}{2} \|A\overline{\delta m}\|^2$$

- small \(\lambda\) limit: inversion velocity analysis = migration velocity analysis with LS migration
- ► large λ limit: least squares inversion for linearized modeling

Semblance optimization via shot record & similar acquisition gather extensions:

- Kern & Symes 94, Mulder & ten Kroode 02, Chauris & Noble 01, Brandsberg-Dahl et al 03
- extension to full nonlinear propagation: S. 08, Sun & S SEG 12, Sun thesis
- ▶ recent: Chauris, Perrone, Almomin,...

Semblance optimization via shot record & similar acquisition gather extensions:

- + computational cost essentially same as FWI
 - restrictive geometric conditions: effective only for mild lateral heterogeneity - no multipathing, caustics (Nolan & S. 97, Stolk & S. 04)

Today: Yin (1015), Papia (1050)

Semblance optimization via survey-sinking (or shot-geophone or space-shift or ...) extension

- Claerbout 85, Sava & Fomel
- semblance optimization: Shen et al 03, 05, Kabir et al. 06, Khoury et al. 06, Vyas et al 10, Fei & Wiliamson 10, Albertin 10, Almomin & Biondi 12, Weibull & Arntsen 12, Yang & Sava 12, Biondi & Zhang 12,...
- extension to full nonlinear propagation: S. 08, Biondi & Almomin 12

Semblance optimization via survey-sinking extension: compared to surface-gather extensions,

- + less restrictive ray geometric conditions: effective for strong lateral heterogeneity, some multipathing (de Hoop & Stolk 01, de Hoop et al 09, Biondi & S. 04)
 - straightforward implementation has high computational complexity

Today: Yujin (0945, 1500), Lei (1400, 1520), Jie (1420)

Beyond semblance optimization: Peng (1315)

- choose vector field V ("image residual") on extended model space M
 : limit points = physical models M
- given data d and background model m, compute $\overline{\delta m}$ by migration (or inversion)
- ▶ pull back V(\(\overline{\delta m}\)) to background model update by least squares fit

Contraction vector field $h\partial_h \Rightarrow (\text{modified})$ Fei-Williamson (SEG 10) update

Related to Biondi-Sava 04, other "warping" methods, but no picking

A whole new world of MVA algorithms, NOT optimizations (updates not gradients)!

Implementing MVA by Semblance optimization: minimize over $m, \overline{\delta m}$

$$J[m,\overline{\delta m}] = \frac{1}{2} \|D\bar{F}[m]\overline{\delta m} - \delta d\|^2 + \frac{\lambda^2}{2} \|A\overline{\delta m}\|^2$$

Not an improvement: in acoustic expl, $w = \phi_{\epsilon} * \delta^{(\alpha)}$

 $\Rightarrow \|D_m J[m, \overline{\delta m}]\| = O(\epsilon^{-1}) \text{ (cf. Almomin-Biondi SEG 12)}$

Reduced objective (Yin, 1015):

$$\widetilde{J}[m] = \min_{\overline{\delta m}} J[m, \overline{\delta m}]$$

1st order condition:

$$N[m]\overline{\delta m} \equiv (D\bar{F}[m]^T D\bar{F}[m] + \lambda^2 A^T A)\overline{\delta m} = D\bar{F}[m]^T \delta d$$

Key Observation: under suitable ray-geometry conditions, N[m] invertible and smooth in m

 \Rightarrow computable gradient approximation with controlled accuracy

Understanding least squares inversion and reduced objective - Normal operator = Hessian:

$$D\bar{F}[m]^T D\bar{F}[m]$$

Mapping properties understood for various sub cases of elasticity,

- ► *m* smooth
- minor geometric restrictions

ray-theoretic restrictions depending on extension: $\Rightarrow D\bar{F}[m]^T D\bar{F}[m]$ is *pseudodifferential operator* (" Ψ DO ")

Definition for singular sources, *order*, uniform approximation with band limited sources

Composition, inverses ("micro local" = local in phase space)

pseudo local \Rightarrow smooth in *m*, uniformly wrt band limited source approximation

Acoustics, shot record extension:

- rays from source, receivers to scattering points (supp dc²) may have no conjugate points ("no multipathing", no caustics) - fails otherwise (Nolan & S 97, Stolk & S 04)
- singular source w = δ^(α), α = −1/2 (2D) or = −1 (3D), then order (DF̄[c²]^TDF̄[c²]) = zero (bounded op on L²)
- $\{\phi_{\epsilon}\}_{\epsilon>0}$ Dirac family, $w = \phi_{\epsilon} * \delta^{(\alpha)} \Rightarrow L^2$ -bounded, uniformly in $\epsilon \to 0$ 0.5cm

Contributors:

Cohen and Bleistein 77, Beylkin 85, Rakesh 86, Bleistein 87, Beylkin & Burridge 88, Nolan & S 97, de Hoop & Bleistein 97, Burridge et al. 98, Smit et al 98, Stolk 00, de Hoop & Stolk 01, de Hoop, Stolk & S. 09,...

"100%": $D\overline{F}[m]\delta m$ (left), $D\overline{F}[m]^T D\overline{F}[m]\delta m$ (right)

"95%": $D\overline{F}[m]\delta m$ (left), $D\overline{F}[m]^T D\overline{F}[m]\delta m$ (right)

"90%": $D\overline{F}[m]\delta m$ (left), $D\overline{F}[m]^T D\overline{F}[m]\delta m$ (right)

"80%": $D\overline{F}[m]\delta m$ (left), $D\overline{F}[m]^T D\overline{F}[m]\delta m$ (right)

"70%": $D\overline{F}[m]\delta m$ (left), $D\overline{F}[m]^T D\overline{F}[m]\delta m$ (right)

$$N[m] = \text{invertible } \Psi \text{DO order } 0 \Rightarrow$$

$$\tilde{J}[m] = \frac{1}{2} \| (D\bar{F}[m]N[m]^{-1}D\bar{F}[m]^{T} - I)\delta d \|^{2}$$

$$+\frac{\lambda^2}{2}\langle \delta d, D\bar{F}[m]N[m]^{-1}A^TAN[m]^{-1}D\bar{F}[m]^T\delta d\rangle$$

 Ψ DO calculus \Rightarrow under extension-dependent ray-theoretic conditions operators in inner products are Ψ DOs, order 0, w symbols depending smoothly on *m*...

 $\Rightarrow \tilde{J}$ is smooth in *m*, uniformly in ϵ : $D_m \tilde{J} = O_\epsilon(1)$ provided that $A^T A$ is a ΨDO of order 0. In fact, if & only if (Stolk & S. 03)

Domain of convexity contains ball of radius $O_{\epsilon}(1)$

Algorithms for function value, gradient (1) requiring only solutions of wave equations, (2) convergent uniformly in ϵ with error controlled by normal residual (Kern & S. 94, Yin 1015)

Any computation requires iterative solution of normal equations. Preconditioning essential (Jie 1420)

and fast solution of wave equation (Muhong 1120, Mario 1140, Lei 1520)

Overview

Linearized Modeling and Inversion

Extended modeling and MVA

Extended Waveform Inversion

Extended nonlinear ("full") waveform inversion - sure why not - $D\bar{F}$ is derivative of a full waveform modeling operator \bar{F}

Shot-record & similar extensions: just let c^2 depend on \mathbf{x}_s (S. 91, Sun & S. 12)

Survey-sinking: c^2 becomes *operator* (action at a distance) - S. 08, Biondi & Almomin 12

FWI+MVA

Semblance objective:

$$J[\bar{m}] = \frac{1}{2} \|\bar{F}[\bar{m}] - d\|^2 + \frac{\lambda^2}{2} \|A\bar{m}\|^2$$

As for Born case, fewer local mins than FWI but very ill-conditioned (cf Biondi-Almomin SEG 12)

D. Sun thesis: how to formulate reduced objective

Current projects (Yin, Yujin, Lei, Papia): analyze, extend

FWI+MVA

On the horizon: combine reduced objective construction for FWI+MVA with Peng's generalization of semblance

Thanks to...

- Many students and colleagues
- NSF
- Sponsors of The Rice Inversion Project
- The Distinguished and Very Patient Audience

