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Goal

contribute mathematical and computational
innovations to development of waveform inversion

for seismic exploration



Projects

I Migration Velocity Analysis without picking
(Yujin, Yin, Jie)

I Combining Full Waveform Inversion with MVA
(Yujin, Yin, Lei, Papia)

I Fast modeling in heterogeneous media
(Muhong, Mario)
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M = model space = mechanical parameter fields
(bulk modulus, density, Cijkl(x),...)

D = data space = {d(xr , xs , t)}

F : M → D modeling operator = forward map =
solve wave equations for pressure, displacement,...,
sample at xr , t (RHS = function of xs)



Full Waveform Inversion problem:

given d ∈ D , find m ∈ M so that

F [m] ' d

Least squares inversion = FWI: minimize

JLS [m] = ‖F [m]− d‖2[+ regularizing terms]



Example: constant density acoustics
M = {κ(x) = ρc2(x)}, isotropic point radiator(

∂2

∂t2
− c2(x)∇2

x

)
p(x, xs , t) = δ(x− xs)w(t);

p ≡ 0, t << 0

F [c2] = {p(xr , xs , t)} (solve wave equation, sample
pressure field)



Bandlimited source ⇒ derivative DF makes sense
(aka linearized fwd map, Born modeling operator,
etc. etc. - Stolk 00, Blazek et al 13)

Least squares inversion for linearized map: Given d
find m, δm so that

min
m,δm
‖DF [m]δm − (d − F [m])‖2 + ...

When m is included as inversion target, no easier
than non-linearized inverse problem!



Example: constant density acoustics: background
c2(x), perturbation δc2(x)

(
∂2

∂t2
− c2(x)∇2

)
p(x, xs , t) = δ(x− xs)w(t)

(
∂2

∂t2
− c2(x)∇2

)
δp(x, xs , t) = δc2(x)∇2p(x, xs , t)

p, δp = 0, t << 0

DF [c2]δc2 = {δp(xr , xs , t)}
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Smoothed Marmousi model = c2sm = “100%”
(240 m × 240 m bilinear hat)
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Deep blue sea = c20 = “0%”
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δc2 = c21 − c2sm



For noise-free data, correct m: recovery of correct
δm, small data residual



williamsymes, Sun Feb 24 10:40 williamsymes, Sun Feb 24 10:38

Linearized inversion m = c2sm (“100%”), from 60
shot records 100m spacing. Left: estimated δc2, 50
CG its. Right: target δc2
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Relative RMS residual = 0.2. Left: predicted data,
Right, residual, shot position 6 km



However, small errors in m ⇒ large residual at
optimal δm

Away from optimum, small changes in m have little
effect on data fit - data fit does not encode m

If m is substantially incorrect, no δm is consistent
with data



williamsymes, Sun Feb 24 11:06 williamsymes, Sun Feb 24 10:38

Linearized inversion m = 0.8c2sm + 0.2c20 (“80%”),
from 60 shot records 100m spacing. Left:
estimated δc2, 50 CG its. Right: target δc2
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Right, residual, shot position 6 km
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Empirical observation (eg. Taner & Koehler 69):

May fit data subsets with perturbation δm, even
with erroneous background m

Example of “fitable” subsets: shot records (data for
single xs)



williamsymes, Sun Feb 24 12:46

Inversion of δm (= δc2) for each shot record
independently, “80%” m (= 0.8c2sm + 0.2c20 ) -
Relative RMS Error = 0.10



M = physical model space

M̄ = bigger extended model space

F̄ : M̄ → D extended modeling operator

Extension property: M ⊂ M̄ ,
m ∈ M ⇒ F̄ [m] = F [m]

Linearized extension: extended perturbation about
physical background model: DF̄ [m]δm



Linearized acoustics, shot record extension:
M̄ = {c2(x), δc2(x, xs)}(

∂2

∂t2
− c2(x)∇2

)
p(x, xs , t) = δ(x− xs)w(t)

(
∂2

∂t2
− c2(x)∇2

)
δp(x, xs , t) = δc2(x, xs)∇2p(x, xs , t)

p, δp = 0, t << 0

DF̄ [c2]δc2 = {δp(xr , xs , t)}

DF̄ [c2]T = prestack RTM operator for shot record
images



One way to deal with underdetermination of
extended inversion, extract velocity information:

Semblance operator (“annihilator”) A : M̄ → Z s.t.

Aδm = 0 ⇔ δm ∈ M

Expl: for acoustics, shot record extension, possible
choice is A = P∇xs , P = any ΨDO. Order P = -1
⇒ order A = 0



MVA by Semblance optimization: minimize over
m, δm

J[m, δm] =
1

2
‖DF̄ [m]δm − δd‖2 +

λ2

2
‖Aδm‖2

I small λ limit: inversion velocity analysis =
migration velocity analysis with LS migration

I large λ limit: least squares inversion for
linearized modeling



Semblance optimization via shot record & similar
acquisition gather extensions:

I Kern & Symes 94, Mulder & ten Kroode 02,
Chauris & Noble 01, Brandsberg-Dahl et al 03

I extension to full nonlinear propagation: S. 08,
Sun & S SEG 12, Sun thesis

I recent: Chauris, Perrone, Almomin,...



Semblance optimization via shot record & similar
acquisition gather extensions:

+ computational cost essentially same as FWI

- restrictive geometric conditions: effective only
for mild lateral heterogeneity - no multipathing,
caustics (Nolan & S. 97, Stolk & S. 04)

Today: Yin (1015), Papia (1050)



Semblance optimization via survey-sinking (or
shot-geophone or space-shift or ...) extension

I Claerbout 85, Sava & Fomel

I semblance optimization: Shen et al 03, 05,
Kabir et al. 06, Khoury et al. 06, Vyas et al
10, Fei & Wiliamson 10, Albertin 10, Almomin
& Biondi 12, Weibull & Arntsen 12, Yang &
Sava 12, Biondi & Zhang 12,...

I extension to full nonlinear propagation: S. 08,
Biondi & Almomin 12



Semblance optimization via survey-sinking
extension: compared to surface-gather extensions,

+ less restrictive ray geometric conditions:
effective for strong lateral heterogeneity, some
multipathing (de Hoop & Stolk 01, de Hoop et
al 09, Biondi & S. 04)

- straightforward implementation has high
computational complexity

Today: Yujin (0945, 1500), Lei (1400, 1520), Jie
(1420)



Beyond semblance optimization: Peng (1315)

I choose vector field V (“image residual”) on
extended model space M̄ : limit points =
physical models M

I given data d and background model m,
compute δm by migration (or inversion)

I pull back V (δm) to background model update
by least squares fit



Contraction vector field h∂h ⇒ (modified)
Fei-Williamson (SEG 10) update

Related to Biondi-Sava 04, other “warping”
methods, but no picking

A whole new world of MVA algorithms, NOT
optimizations (updates not gradients)!



Implementing MVA by Semblance optimization:
minimize over m, δm

J[m, δm] =
1

2
‖DF̄ [m]δm − δd‖2 +

λ2

2
‖Aδm‖2

Not an improvement: in acoustic expl, w = φε ∗ δ(α)

⇒ ‖DmJ[m, δm]‖ = O(ε−1) (cf. Almomin-Biondi
SEG 12)



Reduced objective (Yin, 1015):

J̃[m] = min
δm

J[m, δm]

1st order condition:

N[m]δm ≡ (DF̄ [m]TDF̄ [m]+λ2ATA)δm = DF̄ [m]Tδd

Key Observation: under suitable ray-geometry
conditions, N[m] invertible and smooth in m

⇒ computable gradient approximation with
controlled accuracy



Understanding least squares inversion and reduced
objective - Normal operator = Hessian:

DF̄ [m]TDF̄ [m]

Mapping properties understood for various sub cases
of elasticity,

I m smooth

I minor geometric restrictions



ray-theoretic restrictions depending on extension:
⇒ DF̄ [m]TDF̄ [m] is pseudodifferential operator
(“ΨDO ”)

Definition for singular sources, order, uniform
approximation with band limited sources

Composition, inverses (“micro local” = local in
phase space)

pseudo local ⇒ smooth in m, uniformly wrt band
limited source approximation



Acoustics, shot record extension:

I rays from source, receivers to scattering points
(supp δc2) may have no conjugate points (“no
multipathing”, no caustics) - fails otherwise
(Nolan & S 97, Stolk & S 04)

I singular source w = δ(α), α = −1/2 (2D) or
= −1 (3D), then order (DF̄ [c2]TDF̄ [c2]) =
zero (bounded op on L2)

I {φε}ε>0 Dirac family, w = φε ∗ δ(α) ⇒
L2-bounded, uniformly in ε→ 0 0.5cm



Contributors:

Cohen and Bleistein 77, Beylkin 85, Rakesh 86,
Bleistein 87, Beylkin & Burridge 88, Nolan & S 97,
de Hoop & Bleistein 97, Burridge et al. 98, Smit et
al 98, Stolk 00, de Hoop & Stolk 01, de Hoop,
Stolk & S. 09,...



Illustration of pseudo-local property
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(right)



Illustration of pseudo-local property
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Illustration of pseudo-local property
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Illustration of pseudo-local property
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Illustration of pseudo-local property
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“70%”: DF̄ [m]δm (left), DF̄ [m]TDF̄ [m]δm (right)



N[m] = invertible ΨDO order 0 ⇒

J̃[m] =
1

2
‖(DF̄ [m]N[m]−1DF̄ [m]T − I )δd‖2

+
λ2

2
〈δd ,DF̄ [m]N[m]−1ATAN[m]−1DF̄ [m]Tδd〉

ΨDO calculus ⇒ under extension-dependent
ray-theoretic conditions operators in inner products
are ΨDOs, order 0, w symbols depending smoothly
on m...



⇒ J̃ is smooth in m, uniformly in ε: DmJ̃ = Oε(1)

provided that ATA is a ΨDO of order 0.

In fact, if & only if (Stolk & S. 03)



Domain of convexity contains ball of radius Oε(1)

Algorithms for function value, gradient (1) requiring
only solutions of wave equations, (2) convergent
uniformly in ε with error controlled by normal
residual (Kern & S. 94, Yin 1015)

Any computation requires iterative solution of
normal equations. Preconditioning essential (Jie
1420)

and fast solution of wave equation (Muhong 1120,
Mario 1140, Lei 1520)
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FWI+MVA

Extended nonlinear (“full”) waveform inversion -
sure why not - DF̄ is derivative of a full waveform
modeling operator F̄

Shot-record & similar extensions: just let c2 depend
on xs (S. 91, Sun & S. 12)

Survey-sinking: c2 becomes operator (action at a
distance) - S. 08, Biondi & Almomin 12



FWI+MVA

Semblance objective:

J[m̄] =
1

2
‖F̄ [m̄]− d‖2 +

λ2

2
‖Am̄‖2

As for Born case, fewer local mins than FWI but
very ill-conditioned (cf Biondi-Almomin SEG 12)

D. Sun thesis: how to formulate reduced objective

Current projects (Yin, Yujin, Lei, Papia): analyze,
extend



FWI+MVA

On the horizon: combine reduced objective
construction for FWI+MVA with Peng’s
generalization of semblance
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