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ERTM vs LSERTM

ERTM (Extended Reverse-Time Migraion):

is only adjoint of linearized extended Born Modeling
(LEBM) operator
provides extended image with limited resolution and
imbalanced amplitudes

LSERTM (Least-Squares ERTM):

approximates inverse of LEBM operator using
iteration methods
provides extended image with high resolution and
balanced amplitude
is more reliable in velocity analysis and AVO/AVA
is more expensive!
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Review of Phase Encoding

Main idea: Encode all of shot gathers into one or several super-shot
gathers with designed encoding functions so as to solve a smaller
number of wave equations.

Random phase encoding (Morton,1998; Romero,2000; Kreb et.al 2009;
Tang, 2009; ...)

Plane-wave phase encoding (Zhang, 2005; Liu, 2006; Tang, 2009; ...)

Amplitude encoding (Godwin el al. 2010)

Deterministic source encoding (Symes, 2010; Gao, 2010)

...
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Main idea: Using preconditioner to accelerate the convergent rate of
iteration

Approximated diagonal of Hessian (Pratt, 1999; Shin, 2001; Tang, 2010; ...)
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Linearized Born approximation

Acoustic constant density(ACD) wave equation:

(∇2 + ω2m(x, z))u(x, z, w) = −f(w)δ(x− xs) (1)

Extended ACD wave equation:

∇2u(x, z, w) + ω2

∫
dym(x,y, z)u(y, z, w) = −f(w)δ(x− xs) (2)

Split the extended model into two parts:

m(x,y, z) = b(x, z)δ(x− y) + r(x,y, z) (3)

Linearized approximation:

(∇2 + ω2b(x, z))u0(x, z, w) = f(w)δ(x− xs) (4)

(∇2 + ω2b(x, z))δu(x, z, w) = −ω2

∫
dyr(x,y, z)u0(y, z, w) (5)
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LEBM operator and its adjoint

Linearized extended Born modeling (LEBM):

d(xr,xs, ω) = −ω2f(ω)

∫
dxdhG(xr,x + h, ω)r(x,h)G(x− h,xs, ω)

Extended reverse time migration (ERTM):

r(x,h) = −
∫

dxsdxrdω ω
2f∗(ω)G∗(xs,x−h, ω)G∗(x+h,xr, ω)d(xr,xs, ω)



Background Theory and Implementation Numerical tests Conclusion and Discussion

Encoded LEBM and ERTM

Encoding function:

α(xs, ps) =
1√
N
γ(xs, ps)

(ps: realization index; N : realization number; γ random sequence of signs.)

Encoded seismic data:

d̃obs(xr, ps, ω) =

∫
dxs α(xs, ps)dobs(xr,xs, ω)

Encoded source wavefield:

S(x, ps, ω) =

∫
dxsα(xs, ps)f(ω)G(x,xs, ω)
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Encoded LEBM and ERTM

Encoded LEBM:

d̃(xr, ps, ω) = −ω2

∫
dxdhG(xr,x + h, ω)r(x,h)S(x− h, ps, ω)

Encoded ERTM:

r(x,h) = −
∫

dpsdxrdω ω
2S∗(ps,x− h, ω)G∗(x + h,xr, ω)d̃(xr, ps, ω)
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Preconditioner: approximated diagonal of Hessian

Diagonal of Hessian in the subsurface offset domain (Valenciano, 2006):

D(x,h) =

∫
dxsdxrdω ω4|f(ω)|2 |G(x− h,xs, ω)|2|G(x + h,xr, ω)|2.

Encode receiver wavefield with β(xr, pr) = 1
N
γ(xr, pr),

R(x, pr, ω) =

∫
dxr β(xr, pr)G(x,xr, ω).

Encoded Diagonal of Hessian:

D̃(x,h, ps, pr) =

∫
dω ω4|S(x− h, ps, ω)R(x + h, pr, ω)|2.

More approximation:

D̃SS(x,h, ps) =

∫
ω ω4|S(x− h, ps, ω)|2|S(x + h, ps, ω)|2.

Observation:

It has shown that this approximation seems to be accurate enough as a
preconditioner in least-squares inversion (Tang, 2010). Here we extend this idea
into subsurface offset domain.
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Inversion Scheme: PGG Method

Encoded LEBM can be written in a compact form:

d̃ = L̃m

Encoded Least-squares extended reverse-time migration:

minmJLSM [m] =
1

2
‖ L̃m− d̃obs ‖p +

σ

2
‖m ‖p

where ‖ · ‖p denotes `p norm with 1 ≤ p ≤ 2.
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Inversion Scheme: PGG Method

Equivalent form:

minmJLSM [m] =
1

2
‖Wr(L̃m− d̃obs) ‖2 +

σ

2
‖Wmm ‖2

Methods:

Iteratively Reweighted Least-Squares (IRLS) method (Claerbout, 1992)

Non-linear inverse problem
Need to calculate weighting matrix at the outer loop of CG

Conjugate Guided Gradient (CGG) method (Ji, 2006)

A variant of IRLS
Linear inverse problem
Only one calculation of L and LT is needed at each iteration

Preconditioning Guided Gradient (PGG) method

Updated version of CGG
Incorporates preconditioner into CGG
Adapts to phase encoding scheme
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Inversion Scheme: PGG Method

Algorithm 1 MLSERTM with PGG

1: for k = 0 · · ·niter do
2: generate random sequence of signs γ
3: encode sources and data to get L̃ and d̃obs

4: rk = L̃m̂k − d̃obs

5: compute Ŵk
r

6: compute Ŵk
m

7: dmk = ŴT,k
m D̃−1

SSL̃
TŴT,k

r rk

8: drk = L̃dmk

9: αk =
〈drk,rk〉
〈drk,drk〉

10: mk+1 = mk+1 − αkdm
k

11: end for
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Reflectivity imaging test

Figure: Velocity model
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Reflectivity imaging test

Figure: Reflectivity
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Reflectivity imaging test

Figure: RTM
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Reflectivity imaging test

Figure: RTM after Laplacian filter
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Reflectivity imaging test

Figure: Approximated diagonal of Hessian
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Reflectivity imaging test

Figure: LSRTM without preconditioning
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Reflectivity imaging test

Figure: LSRTM with preconditioning
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Reflectivity imaging test

Figure: LSRTM with preconditioning and `1.5 norm on model
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Reflectivity imaging test

Figure: LSRTM with preconditioning and `1 norm on model
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Extended reflectivity imaging test

Figure: Approximated diagonal Hessian in subsurface offset domain
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Extended reflectivity imaging test

Figure: LSERTM with preconditioning
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Extended reflectivity imaging test

Figure: LSERTM with preconditioning and `1.5 norm on model
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Conclusion and Discussion

LSERTM provides reflectivity image with higher resolution and
more balanced amplitude, which is useful in the following
migration velocity analysis and AVO/AVA analysis;

Seismic data is compressed greatly with the help of phase
encoding so that the efficiency of seismic imaging is improved
dramatically;

Using approximated diagonal of Hessian as preconditioner can
improve the convergent rate of LSM;

A modified CGG inversion scheme namely PGG is proposed to
solve `p norm problem flexibly and efficiently;

Sparsity seems to be a good prior information in suppressing
crosstalk introduced by phase encoding, especially in imaging of
extended reflectivity.
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