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@ ERTM (Extended Reverse-Time Migraion):

e is only adjoint of linearized extended Born Modeling
(LEBM) operator

e provides extended image with limited resolution and
imbalanced amplitudes

@ LSERTM (Least-Squares ERTM):

e approximates inverse of LEBM operator using
iteration methods

e provides extended image with high resolution and
balanced amplitude

e is more reliable in velocity analysis and AVO/AVA

e is more expensive!
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Review of Phase Encoding

Main idea: Encode all of shot gathers into one or several super-shot
gathers with designed encoding functions so as to solve a smaller
number of wave equations.

@ Random phase encoding (Morton,1998; Romero,2000; Kreb et.al 2009;
Tang, 2009; ...)

Plane-wave phase encoding (Zhang, 2005; Liu, 2006; Tang, 2009; ...)
Amplitude encoding (Godwin el al. 2010)

Deterministic source encoding (Symes, 2010; Gao, 2010)

e 6 6 o
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Review of Preconditioning

Main idea: Using preconditioner to accelerate the convergent rate of
iteration

@ Approximated diagonal of Hessian (Pratt, 1999; Shin, 2001; Tang, 2010; ...)
@ Structure-oriented filter (Prucha, 2002; Clapp, 2005)

Deblurring filter (Aoki et al., 2009)

Sparsity promotion (Herrmann et al. 2009)

Image-guided filter (Ma et al., 2010)



Theory and Implementation

Outline

© Theory and Implementation
e ERTM with Phase Encoding
@ Preconditioner: approximated diagonal of Hessian
@ Inversion Scheme: PGG method



Theory and Implementation
@000

Linearized Born approximation

Acoustic constant density(ACD) wave equation:
(V2 + w?m(x, 2))u(x, z,w) = — f(w)d(x — X) (1)
Extended ACD wave equation:
Voulx,z,w) 4 [dymlx,y.2July,zw) = —f@)itx-x) (2
Split the extended model into two parts:

m(vaaZ) = b(X,Z)(S(X - y) +T(X,y,2) (3)
Linearized approximation:

(V2 4+ w?b(x, 2))ug (X, z,w) = f(w)d(x — x,) (4)

(V4 b, 2,20 0) = o [dyrey, unlyizw)  (6)
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LEBM operator and its adjoint

Linearized extended Born modeling (LEBM):
d(x,, x5,w) = —w” f(w) /dxdh G(x,x + h,w)r(x,h)G(x — h,x,,w)
Extended reverse time migration (ERTM):

r(x,h) = — /dxsdxrdw W2 f*(w)G* (x4, x—h,w)G* (x+h, x,., w)d(%,, X, w)
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Encoded LEBM and ERTM

@ Encoding function:

a(xs7ps) = \/%v(xsaps)

(ps: realization index; N: realization number; v random sequence of signs.)

@ Encoded seismic data:

dobs (er Ds, w) = /dXS Oé(Xs,Ps)dobs (er Xs, W)
@ Encoded source wavefield:

S(vasvw) = /dXSOé(XS,pS)f(W)G(X, stw)
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Encoded LEBM and ERTM

@ Encoded LEBM:

d(Xp, ps,w) = —w? /dxth(xr,x + h,w)r(x,h)S(x — h, p,,w)

@ Encoded ERTM:

r(x, h) /dpédxrdwaS*(ps, —h,w)G*(x+h,x,,w )d(x,,pé, w)
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Preconditioner: approximated diagonal of Hessian

Diagonal of Hessian in the subsurface offset domain (Valenciano, 2006):
D(x,h) = /dxsdxrdw4;.J4|f(w)|2 |G(x — h,xs,w)|?|G(x + h, x,,w) 2.
Encode receiver wavefield with 8(xr,pr) = %’y(xr,pr)7
R(x,pr,w) = /dxr B(xr, pr)G(x,%xr,w).
Encoded Diagonal of Hessian:
D(x,h, ps,pr) = /dww4|5(x —h, ps,w)R(x + h, p.,w)|%
More approximation:

Dss(x,h,ps) = /ww4\s<x — b, ps, ) [2S(x + h, py, w) 2.

It has shown that this approximation seems to be accurate enough as a
preconditioner in least-squares inversion (Tang, 2010). Here we extend this idea
into subsurface offset domain.




Theory and Implementation
[ le]e}

Inversion Scheme: PGG Method

Encoded LEBM can be written in a compact form:
d=1Lm
Encoded Least-squares extended reverse-time migration:
minJesyfm] = 3 | B — do [, +2 | m ),

where || - ||, denotes 7 norm with 1 <p < 2.
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Inversion Scheme: PGG Method

Equivalent form:
. 1 - ~ o
minmJpsy[m] = 3 | Wr(Lm — dops) [|2 +§ | Winm |2

Methods:

@ TIteratively Reweighted Least-Squares (IRLS) method (Claerbout, 1992)
@ Non-linear inverse problem
@ Need to calculate weighting matrix at the outer loop of CG

@ Conjugate Guided Gradient (CGG) method (Ji, 2006)

@ A variant of IRLS
@ Linear inverse problem
@ Only one calculation of L and L7 is needed at each iteration

@ Preconditioning Guided Gradient (PGG) method

@ Updated version of CGG
@ Incorporates preconditioner into CGG
@ Adapts to phase encoding scheme
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Inversion Scheme: PGG Method

Algorithm 1 MLSERTM with PGG

for £k =0---niter do
generate random sequence of signs v
encode sources and data to get L and dgps
r¥ = Lm* — dops
compute Vy,’Y
compute W,’;
dm* — WEFD LT Wk
dr* = Ldm*
_ (drF.rk)
~ (drk,drk)
10: mFtl = mFtl — o) dmF
11: end for

Qg
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e Numerical tests
@ Salt Model
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Reflectivity imaging test

Figure: Velocity model
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Reflectivity imaging test

Figure: Reflectivity
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Reflectivity imaging test

Figure: RTM
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Reflectivity imaging test

Figure: RTM after Laplacian filter
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Reflectivity imaging test

Figure: Approximated diagonal of Hessian
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Reflectivity imaging test

Figure: LSRTM without preconditioning
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Reflectivity imaging test

Figure: LSRTM with preconditioning
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Reflectivity imaging test

Figure: LSRTM with preconditioning and #; 5 norm on model
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Reflectivity imaging test

Figure: LSRTM with preconditioning and ¢; norm on model
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Extended reflectivity imaging test

Figure: Approximated diagonal Hessian in subsurface offset domain
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Extended reflectivity imaging test

Figure: LSERTM with preconditioning
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Extended reflectivity imaging test

Figure: LSERTM with preconditioning and ¢; 5 norm on model
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Conclusion and Discussion

@ LSERTM provides reflectivity image with higher resolution and
more balanced amplitude, which is useful in the following
migration velocity analysis and AVO/AVA analysis;

@ Seismic data is compressed greatly with the help of phase
encoding so that the efficiency of seismic imaging is improved
dramatically;

@ Using approximated diagonal of Hessian as preconditioner can
improve the convergent rate of LSM;

@ A modified CGG inversion scheme namely PGG is proposed to
solve £, norm problem flexibly and efficiently;

@ Sparsity seems to be a good prior information in suppressing
crosstalk introduced by phase encoding, especially in imaging of
extended reflectivity.
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