Yujin Liu

- **2012.08-Present**
 - Visiting student at Rice University
 - Advisor: Dr. William W. Symes
 - Project: EFWI, IVA, LSRTM, Sparse optimization

- **2010.09-Present**
 - PhD candidate in geophysics at China University of Petroleum (Huadong)
 - Advisor: Dr. Zhenchun Li
 - Project: Wavefield inversion, Data regularization, Image domain denoising

- **Awards**
 - CSC Scholarship
 - National Scholarship
 - National Scholarship for Encouragement
 - CNPC Scholarship
 - National Excellent PhD Thesis Scholarship of CUP
Linearized Extended Waveform Inversion and Inversion Velocity Analysis

Yujin Liu$^{[1][2]}$ William W. Symes $^{[1]}$

1Rice University
2China University of Petroleum (Huadong)

Annual Meeting 2013
Overview

1. Background

2. Inversion Velocity Analysis

3. Numerical Tests

4. Summary and Future Plan
Overview

1. Background

2. Inversion Velocity Analysis

3. Numerical Tests

4. Summary and Future Plan
Waveform Inversion (WI):

- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):

- Provide background velocity robustly
- Only take single scattering into account
Waveform Inversion (WI):
- Provide model with high resolution

Migration Velocity Analysis (MVA):
- Provide background velocity robustly
- Only take single scattering into account

Connection between WI and MVA?
- Model extension and extended modeling
- Extended waveform inversion
- Differential semblance optimization
Waveform Inversion (WI):
- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):
- Provide background velocity robustly
- Only take single scattering into account

Connection between WI and MVA?
Waveform Inversion (WI):
- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):
Waveform Inversion (WI):
- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):
- Provide background velocity robustly
WI and MVA

- **Waveform Inversion (WI):**
 - Provide model with high resolution
 - Tend to get trapped in local minimum

- **Migration Velocity Analysis (MVA):**
 - Provide background velocity robustly
 - Only take single scattering into account
Waveform Inversion (WI):
- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):
- Provide background velocity robustly
- Only take single scattering into account

Connection between WI and MVA?
Waveform Inversion (WI):
- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):
- Provide background velocity robustly
- Only take single scattering into account

Connection between WI and MVA?
- Model extension and extended modeling
Waveform Inversion (WI):
- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):
- Provide background velocity robustly
- Only take single scattering into account

Connection between WI and MVA?
- Model extension and extended modeling
- Extended waveform inversion
Waveform Inversion (WI):
- Provide model with high resolution
- Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):
- Provide background velocity robustly
- Only take single scattering into account

Connection between WI and MVA?
- Model extension and extended modeling
- Extended waveform inversion
- Differential semblance optimization
Waveform Inversion (WI)

Model Space: \(M \)

\[m \]

Data Space: \(D \)

\[d \]

Forward Map: \(F \)

Extended Model Space: \(\bar{M} \)

\[\bar{m} \]

Extended Forward Map: \(E \)

Extended Waveform Inversion

Waveform Inversion

\[\min_{m} J_{\text{WI}}[m,d] = \frac{1}{2} \| F[m] - d \|_2^2 \]
Model space $M := \{m(x) = \frac{1}{\nu^2(x)}\}$; Data space $D := \{d(x_r, x_s, \omega)\}$
Waveform Inversion (WI)

- Model space $M := \{m(x) = \frac{1}{v^2(x)}\}$; Data space $D := \{d(x_r, x_s, \omega)\}$
- Forward map F in acoustic constant density medium
 \[
 (\nabla^2 + \omega^2 m(x))u(x, \omega) = -f(\omega)\delta(x - x_s)
 \]
 \[
 d(x_r, x_s, \omega) = S(x_r, x_s)u(x, \omega)
 \]
Waveform Inversion (WI)

Model space $M := \{m(x) = \frac{1}{v^2(x)}\}$; Data space $D := \{d(x_r, x_s, \omega)\}$

Forward map F in acoustic constant density medium

$$ (\nabla^2 + \omega^2 m(x))u(x, \omega) = -f(\omega)\delta(x - x_s) $$

$$ d(x_r, x_s, \omega) = S(x_r, x_s)u(x, \omega) $$

Waveform inversion

$$ \min_m J_{WI}[m, d] = \frac{1}{2} \parallel F[m] - d \parallel^2 $$
Extended Waveform Inversion (EWI)

Model Space: \overline{M}

Data Space: D

Forward Map: F

Extended Model Space: \overline{m}

Extended Forward Map: \overline{F}

Extended Waveform Inversion

Waveform Inversion

Model Space: M

Data Space: D

Forward Map: F
Extended Model Space $\bar{M} := \{ \bar{m}(x, y) = \frac{1}{u^2(x,y)} \}$
Extended Model Space $\bar{M} := \{ \bar{m}(x, y) = \frac{1}{v^2(x,y)} \}$

Extended forward map \bar{F} in acoustic constant density medium

$$\nabla^2 u(x, \omega) + \omega^2 \int dy m(x, y) u(y, \omega) = -f(\omega)\delta(x - x_s) \quad (4)$$

$$d(x_r, x_s, \omega) = S(x_r, x_s) u(x, \omega) \quad (5)$$
Extended Model Space \(\bar{M} := \{ \bar{m}(x, y) = \frac{1}{v^2(x, y)} \} \)

Extended forward map \(\bar{F} \) in acoustic constant density medium

\[
\nabla^2 u(x, \omega) + \omega^2 \int dy m(x, y) u(y, \omega) = -f(\omega)\delta(x - x_s)
\]

(4)

\[
d(x_r, x_s, \omega) = S(x_r, x_s)u(x, \omega)
\]

(5)

Extended waveform inversion

\[
\min_{\bar{m}} J_{EWI}[\bar{m}, d] = \frac{1}{2} \| \bar{F}[\bar{m}] - d \|^2 + \frac{\sigma}{2} \| A[\bar{m}] \|^2
\]

(6)
Problems of EWI: computational cost is extremely high!

Solution:

(1) Linearized approximation:

\[\bar{m} \simeq m_0 + \delta \bar{m}; \quad \bar{F}[\bar{m}] \simeq F[m_0] + D\bar{F}[m_0] \cdot \delta \bar{m} \]

where \(D\bar{F}[m_0] \) is one order derivative of \(F \) to \(m \) at \(m_0 \)

(2) LEWI:

\[\min_{m_0, \delta \bar{m}} J_{LEWI}[m_0, \delta \bar{m}] = \frac{1}{2} \| D\bar{F}[m_0] \delta \bar{m} - (d - F[m_0]) \|^2 + \frac{\sigma}{2} \| A\delta \bar{m} \|^2 \]

Connection with LSM and MVA

when \(\sigma = 0 \), it limits to migration velocity analysis (MVA); when \(\sigma \to \infty \), it limits to least-squares migration (LSM).
Overview

1. Background

2. Inversion Velocity Analysis

3. Numerical Tests

4. Summary and Future Plan
LEWI:

\[\min_{m_0, \delta \bar{m}} J_{LEWI}[m_0, \delta \bar{m}] = \frac{1}{2} \| D\bar{F}[m_0]\delta \bar{m} - F_d \|_2^2 + \frac{\sigma}{2} \| A\delta \bar{m} \|_2^2 \]

Solve the above problem with two level of loops:

1. **Inner Loop**: Invert short scales (i.e. reflectivity) to get \(\delta \bar{m}_k[m_0] \)

\[\min_{\delta \bar{m}} J_{LEWI}[m_0, \delta \bar{m}] = \frac{1}{2} \| D\bar{F}[m_0]\delta \bar{m} - F_d \|_2^2 + \frac{\sigma}{2} \| A\delta \bar{m} \|_2^2 \]

2. **Outer Loop**: Invert long scales (i.e. Background velocity)

\[\min_{m_0} J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] = \frac{1}{2} \| D\bar{F}[m_0]\delta \bar{m}_k[m_0] - F_d \|_2^2 + \frac{\sigma}{2} \| A\delta \bar{m}_k[m_0] \|_2^2 \]
The gradient of the objective function $J_{DS}[m_0, \delta \bar{m}]$ with respect to $\delta \bar{m}$:

$$\nabla_{\delta \bar{m}} J_{DS}[m_0, \delta \bar{m}] = D\bar{F}^T[m_0](D\bar{F}[m_0]\delta \bar{m} - F_d) + \sigma A^T A \delta \bar{m}$$ \hspace{1cm} (7)

Set the gradient to zero gives the normal equation, i.e.

$$(D\bar{F}^T[m_0]D\bar{F}[m_0] + \sigma A^T A)\delta \bar{m} = D\bar{F}^T[m_0]F_d$$ \hspace{1cm} (8)

which can be re-written as:

$$N[m_0] \delta \bar{m} = M[m_0] F_d$$ \hspace{1cm} (9)

where $N[m_0]$ is normal operator and $M[m_0]$ is migration operator.
Gradient of long scales

The gradient of the objective function $J_{DS}[m_0, \delta \bar{m}[m_0]]$ with respect to m_0:

$$\nabla_{m_0} J_{DS}[m_0, \delta \bar{m}_k[m_0]] = B[\delta \bar{m}_k, D\bar{F}[m_0]\delta \bar{m}_k - F_d] + B[P(N[m_0])e_k, F_d]$$

where B is bilinear operator, $P(N[m_0])$ is a polynomial in the normal operator $N[m_0]$, $\delta \bar{m}_k$ is the inverted reflectivity and e_k is the normal equation error $D_{\delta \bar{m}} J_{DS}[m_0, \delta \bar{m}]$. The derivation can be found in [Liu, Symes; 2013].

Notes:

This formula is only justified when we use Chebyshev iteration to solve normal equation 9 in the case of depth-oriented model extension, but we can approximate it in different degree, migration velocity analysis is one of the approximations.
IVA:

\[
\min_{m_0, \delta \tilde{m}} J_{LEWI}[m_0, \delta \tilde{m}] = \frac{1}{2} \|D \tilde{F}[m_0] \delta \tilde{m} - F_d\|_2^2 + \frac{\sigma}{2} \|A \delta \tilde{m}\|_2^2
\]

Compared with LEWI scheme, we solve the above problem separately:

1. **Inner Loop**: Invert short scales (i.e. reflectivity) to get \(\delta \tilde{m}_k[m_0]\)

\[
\min_{\delta \tilde{m}} J_{IVA}[m_0, \delta \tilde{m}] = \frac{1}{2} \|D \tilde{F}[m_0] \delta \tilde{m} - F_d\|_2^2
\]

2. **Outer Loop**: Invert long scales (i.e. Background velocity)

\[
\min_{m_0} J_{IVA}[m_0, \delta \tilde{m}_k[m_0]] = \frac{1}{2} \|A \delta \tilde{m}_k[m_0]\|_2^2
\]
The gradient of the objective function $J_{IVA}[m_0, \delta \tilde{m}]$ with respect to $\delta \tilde{m}$:

$$\nabla_{\delta \tilde{m}} J_{IVA}[m_0, \delta \tilde{m}] = DF^T[m_0](DF[m_0]\delta \tilde{m} - F_d)$$

The gradient of the objective function $J_{IVA}[m_0, \delta \tilde{m}[m_0]]$ with respect to m_0:

$$\nabla_{m_0} J_{IVA}[m_0, \delta \tilde{m}_k[m_0]] = B[P(N[m_0])A^T\delta \tilde{m}_k,F_d]$$

Notes:

If the iteration number of inner loop is set to be zero and approximate $P(N[m_0])$ to be identity matrix, the above formula is actually equivalent to the gradient given by WEMVA.
Operator formulas

- Extended linearized Born modeling \(d = D\bar{F}[m_0]\delta\bar{m} \):

\[
d(x_r, x_s, \omega) = -\omega^2 f(\omega) \int dxdh \, G(x_r, x + h, \omega) \delta m(x, h) G(x - h, x_s, \omega)
\]

- Extended reverse time migration \(\delta\bar{m} = D\bar{F}^T[m_0]d \):

\[
\delta m(x, h) = -\int dxdx_r d\omega \, \omega^2 f^*(\omega) G^*(x_s, x - h, \omega) G^*(x + h, x_r, \omega) d(x_r, x_s, \omega)
\]

- Bilinear operator \(\Delta m_0 = B[\delta\bar{m}, \Delta d] \):

\[
\Delta m_0(y) = \int dx_s dx_r dx dhd\omega \, \left\{ G_0(y, x_s, \omega) \omega^4 f(\omega) \right\}^* \left\{ G_0^*(y, x - h, \omega) \delta\bar{m}(x, h) G_0^*(x + h, x_r, \omega) \Delta d(x_r, x_s, \omega) \right\}
\]

\[
\quad + \int dx_s dx_r dx dhd\omega \, \left\{ G_0(y, x + h, \omega) \delta\bar{m}(x, h) G_0(x - h, x_s, \omega) \omega^4 f(\omega) \right\}^* \left\{ G_0^*(y, x_r, \omega) \Delta d(x_r, x_s, \omega) \right\}
\]
Numerical Tests

1. Background

2. Inversion Velocity Analysis

3. Numerical Tests

4. Summary and Future Plan
Scan tests of LEWI Objective Function

SYNTHETIC DATA

ERTM with correct velocity
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] = J_{OLS}[m_0, \delta \bar{m}_k[m_0]] + \sigma J_{DS}[m_0, \delta \bar{m}_k[m_0]] \]

\[= \frac{1}{2} \| D \bar{F}[m_0] \delta \bar{m}_k[m_0] - F_d \|^2 + \frac{\sigma}{2} \| A \delta \bar{m}_k[m_0] \|^2 \]

- Scan \(J_{OLS}[m_0, \delta \bar{m}_k[m_0]] \) along \(m_0 = \mu m_0^*, \mu \in [0.85, 1.1] \)
- Scan \(J_{DS}[m_0, \delta \bar{m}_k[m_0]] \) along \(m_0 = \mu m_0^*, \mu \in [0.85, 1.1] \)
- Scan \(J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] \) along \(m_0 = \mu m_0^*, \mu \in [0.85, 1.1] \)
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \tilde{m}_k[m_0]] \text{ at } m_0 = 0.850m^*_0 \]
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta\bar{m}_k[m_0]] \text{ at } m_0 = 0.875m_0^* \]
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] \text{ at } m_0 = 0.900m_0^* \]
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] \text{ at } m_0 = 0.925 m_0^* \]
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] \text{ at } m_0 = 0.950m_0^* \]
Scan tests of LEWI Objective Function

\[J_{LEWI} [m_0, \delta \tilde{m}_k [m_0]] \text{ at } m_0 = 0.975m^*_0 \]
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] \text{ at } m_0 = 1.000m_0^* \]
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] \text{ at } m_0 = 1.025m_0^* \]
Scan tests of LEWI Objective Function

\[J_{LEWI}[m_0, \delta \bar{m}_k[m_0]] \] at \(m_0 = 1.050m^* \)
Scan tests of LEWI Objective Function

\[J_{\text{LEWI}}[m_0, \delta \tilde{m}_k[m_0]] \text{ at } m_0 = 1.075m_0^* \]
Scan tests of LEWI Objective Function

\[J_{\text{LEWI}}[m_0, \tilde{m}_k[m_0]] \text{ at } m_0 = 1.100m_0^* \]
LEWI tests: Gaussian Model

Figure: (a) Gaussian velocity model; (b) Synthetic data.
Figure: (a) Reflectivity with extended reverse-time migration; (b) Inverted reflectivity with Chebyshev iteration method.
Figure: (a) Data misfit residual of Chebyshev iteration method; (b) Relative normal residual curve.
LEWI tests: Gaussian Model

Figure: LEWI gradient of long scales (a) the first term; (b) the second term; (c) total.
IVA vs MVA: Gaussian-Random Model Model Tests

![Graph showing distance vs depth and reflectivity vs depth with color scales for velocity.](image-url)
Figure: (a) Extended reverse-time migration; (b) Least-squares extended reverse-time migration when background velocity is correct.
Figure: (a) Extended reverse-time migration; (b) Least-squares extended reverse-time migration when background velocity is 3 km/s.
Figure: Gradient computed by (a) extended reverse-time migration; (b) least-squares extended reverse-time migration.
1 Background

2 Inversion Velocity Analysis

3 Numerical Tests

4 Summary and Future Plan
Conclusion

- The OLS objective function has local minimum problem, which can be solved with the idea of differential semblance optimization.
- The inverted reflectivity has higher resolution and more balanced amplitude, which is also crucial in background velocity inversion.
- As the inverted reflectivity image, instead of prestack migration approximation, is used to adjust velocity model, IVA is more accurate than MVA.

Future plan

- Improve the efficiency of IVA ⇒ Preconditioning, Compressive sensing.
- Extend to non-linear case ⇒ Plane-wave domain, depth-oriented extension.
References

Migration velocity analysis and waveform inversion
Geophysical Prospecting 56(6), 765–790.

William W. Symes (2009)
The seismic reflection inverse problem
Inverse problems 25(12), 123008.

Yujin Liu, William W. Symes, Yin Huang, Zhenchun Li (2013)
Inversion Velocity Analysis via Differential Semblance Optimization in the Depth-oriented Extension
83nd SEG Annual International Meeting, Expanded Abstract, submitted

Inversion of reflection seismograms by differential semblance analysis: algorithm structure and synthetic examples
Geophysical Prospecting 42(6), 565–614.
Acknowledgements

- Thank CSC for supporting my visit to TRIP!
- Thank TRIP for hosting me!
- Thank the sponsors of TRIP for their support!
Thank you!