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WI and MVA

e Waveform Inversion (WI):

o Provide model with high resolution
e Tend to get trapped in local minimum

e Migration Velocity Analysis (MVA):
e Provide background velocity robustly
o Only take single scattering into account

e Connection between WI and MVA?
o Model extension and extended modeling
e Extended waveform inversion
o Differential semblance optimization

YL and WW (TRIP) LEWI and IVA Annual Meeting 2013



Waveform Inversion (W

Extended
Model Space: M

me

- - -

‘Waveform Inversion

~  Extended Waveform Inversion ~

L~ Lo

Model Space: M

Forward Map: F

Data Space: D




Waveform Inversion (W

Extended
Model Space: M

me

Model Space: M | Data Space: D
Forward Map: F

@ Model space M := {m(x) = v%(x)}, Data space D := {d(x,,xs,w}

LEWI and IVA Annual Meeting 2018



Waveform Inversion (WI)

Extended
Model Space: M

me

- - -

Model Space: M | Data Space: D
Forward Map: F

@ Model space M := {m(x) = v%(x)}, Data space D := {d(x,,xs,w}
@ Forward map F' in acoustic constant density medium
(V2 4 w?m(x)u(x,w) = — f(w)(x - x,) (1)
d(xp, x5, w) = S(xp, X5 )u(x,w) (2)
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Waveform Inversion (WI)

Extended
Model Space: M

me

—-—- -

Model Space: M | Data Space: D
Forward Map: F

@ Model space M := {m(x) = v%(x)}, Data space D := {d(x,,xs,w}
@ Forward map F' in acoustic constant density medium
(V2 4 w?m(x)u(x,w) = — f(w)(x - x,) (1)
d(xp, X5, w) = S(Xr, Xs)u(x,w) (2)
@ Waveform inversion

minJuvilm,d) = 3 | Flm] —d | (3)
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eform Inversion (EWTI)
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‘Waveform Inversion
m LT I

Model Space: M »| Data Space: D
Forward Map: F

@ Extended Model Space M := {m(x,y) = m}
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Extended Waveform Inversion (EWT)

Extended
Model Space: M

me

—-—- -

Model Space: M | Data Space: D
Forward Map: F

@ Extended Model Space M := {m(x,y) = m}

@ Extended forward map F in acoustic constant density medium
Voulx,w) +w? [dymxy)uy.e) = - F@)00x - x.)

d(x,, Xs,w) = S(X, Xs)u(x,w)
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Extended Waveform Inversion (EWT)

Extended
Model Space: M

me

Model Space: M | Data Space: D
Forward Map: F

@ Extended Model Space M := {m(x,y) = m}
@ Extended forward map F in acoustic constant density medium
Vulxw) +? [dymixy)uly.o) = -f@x-x) (1)
d(xy, X5, w) = S(xp, X5)u(x,w) (5)
@ Extended waveform inversion

) _ 1, = _ o _
minm Jpwilm, d = o || Flm] —d [ +5 I Alm] 12 (6)
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Linearized Extended Waveform Inversion (LEWTI)

Problems of EWI: computational cost is extremely high!
Solution:

(1) Linearized approximation:

m ~ mg + dm; F[m] ~ Flmo] + DF[mg] * 6m
where DF[my)] is one order derivative of F' to m at mg

(2) LEWT:

. _ 1 = _ o _
MMy, 5m JLEWI[M0, 0] = 3 || DF[mgldm — (d — F[mg)) ||2 +§ || Adm H2

Connection with LSM and MVA

when o = 0, it limits to migration velocity analysis (MVA); when o — oo, it
limits to least-squares migration (LSM).
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Overview

© Inversion Velocity Analysis
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Linearized Extended Waveform Inversion Scheme

LEWTI:
. _ 1 = _ o _
MMy smJLEW I[M0, 0] = 3 | DF[molom — Fy) || +§ || Asm ||
Solve the above problem with two level of loops:

@ Inner Loop: Invert short scales (i.e. reflectivity) to get §mm[mo)
, - 1 7 - 2, 7 — 2
mings, JrLEw[mo, om] = 3 || DE[moldom — Fy) || +5 || Ao ||
e Outer Loop: Invert long scales (i.e. Background velocity)

X _ 1 = _ _
min o JLew 1lmo, 6m[mol] = 3 || DF[moldmfmo] — Fa) |* + || Admy[mo] |
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Gradient of short scales

The gradient of the objective function Jpg[mg,dm] with respect to dm:
Vsmdps[mo, om] = DET [mg](DF[mo)ém — Fy) + o AT Adm (7)
Set the gradient to zero gives the normal equation, i.e.
(DET[mg] DE[mg] + 0 AT A)ém = DET [mo] F (8)
which can be re-written as:

N[mo)dm = M[mo|Fy (9)

where N[my] is normal operator and M [my] is migration operator.
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Gradient of long scales

The gradient of the objective function Jpg[mg, dm[mg]] with respect to mg:
Vmo .]Ds[mo, 5mk[m0]] = B[5Tﬁk, DF[mo]émk — Fd] + B[P(N[mo})ek, Fd]

where B is bilinear operator, P(N[my]) is a polynomial in the normal
operator N[my], dmy, is the inverted reflectivity and ey is the normal equation
error DssJJps[mo, dm]. The derivation can be found in [Liu, Symes; 2013].

This formula is only justified when we use Chebyshev iteration to solve
normal equation 9 in the case of depth-oriented model extension, but we can
approzimate it in different degree, migration velocity analysis is one of the
approximations.
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Inversion Velocity Analysis Scheme

IVA:
. - 1 - - 2 , 0 _ 2
MMy smJLEW I[M0, 0] = 3 I DF[mo)om — Fy) || +§ || Adm ||
Compared with LEWI scheme, we solve the above problem separately:
@ Inner Loop: Invert short scales (i.e. reflectivity) to get §mm[mo)
1 _
ming Jrv almo, 0ml = o || DF[molom — Fy) 112

e Outer Loop: Invert long scales (i.e. Background velocity)

. _ 1 _
minm, Jrv almo, 0mg[mo]] = 5 | Asvuy [mo] |12
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Gradient of short scales and long scales

@ The gradient of the objective function Jry a[mg, dm| with respect to dm:
Vsmdrva[mo, om] = DET [mg](DF[mo)ém — Fy)

@ The gradient of the objective function Jry 4[mg, dm[mg]] with respect to
mo:

Vmo J[VA[?TLQ7 6mk[m0]} = B[P(N[mo})ATA(Smk, Fd]

If the iteration number of inner loop is set to be zero and approximate
P(N[myg]) to be identity matriz, the above formula is actually equivalent to
the gradient given by WEMVA.
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Operator formulas

@ Extended linearized Born modeling d = D F[m]ém:
Ao, %0, w) = —w” f() [ dxdh Gloxr,x + b, w)dm(x h)Glx — By xs,w)
@ Extended reverse time migration dm = DF7 [mg]d:
s, h) = — [ dxadxedw o £ ()G (ke x — B @) G (x + b xp, w)d(xr, X )
@ Bilinear operator Amgy = B[dm, Ad]:
Amo(y)

- /dxsdxrdxdhdw {Go(y, xar @) ()} {Gh (v, % — B, w)om(x, h)GE (x + b, xp, ) Ad(xr, X, )

+ /dxsdxrdxdhdw {Gov x+h,w)sm(x, h)Go(x — bz, w)w F() } 7 {GH (v, xr w) Ad(xr, x5, w)

YL and W (TRIP) LEWI and IVA

Annual Meeting 2013 15 / 33



Numerical Tests

e Numerical Tests
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Scan tests of LEWI Objective Function

Jrewi[mo, dmy[mo]] = Jors[mo, dmy[mo]] + o Jps[mo, 6my[mo]

1 _ o
= 5 | DE[mo]omu[mo] — Fu 1? +5 I Admm[mo] &

@ Scan Jors[mo, dmy[my]] along mg = pmf, p € [0.85,1.1]
@ Scan Jpg[mo, dmi[mo]] along mo = pumg, p € [0.85,1.1]

@ Scan Jpgw[mo, 0my[mo]] along mo = umg, p € [0.85,1.1]
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Scan tests of LEWI Objective Function
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Scan tests of LEWI Objec
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Scan tests of LEWI Objective Function

JLEW[[mo, 5mk[m0]] at moy = 0900m;§
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Scan tests of LEWI Objective Function

JLEW][TI’L(), 5mk[m0]] at mo = 0925m3
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Scan tests of LEWI Objective Function
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Scan tests of LEWI Objective Function
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Scan tests of LEWI Objective Function

JLEW[[TI’L(), (5mk[m0]] at mo = 100077’1,8
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Scan tests of LEWI Objective Function
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Scan tests of LEWI Objec
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Scan tests of LEWI Objec
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Scan tests of LEWI Objec
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LEWTI tests: Gaussian Model
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Figure: (a) Gaussian velocity model; (b) Synthetic data.
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LEWI tests: Gaussian
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Figure: (a) Reflectivity with extended reverse-time migration; (b)
Inverted reflectivity with Chebyshev iteration method.
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LEWTI tests: Gaussian
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Figure: (a) Data misfit residual of Chebyshev iteration method; (b)
Relative normal residual curve.

YL and WWS (TRIP) V1 and Annual MV



LEWI tests: Gaussian Model

Distance (km) Distance (km)
1 1.5 2 1 1.5 2

Distance (km)
1 1.5 2

$ 3 <
o 3 o
g
s
2 0
E 8 E S 3
L &
3 3
~7 P 1 P
E E ? E ]
X, X, 2 £
3
£ ° £ £ ©
3 3 3
g g g
K 2 g
e — =
o w o o
o
? 8
5 7
i © ° i 3
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IVA vs MVA: Gaussian-Random Model Tests
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IVA vs MVA: Gaussian-Random Model Tests
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Figure: (a) Extended reverse-time migration; (b) Least-squares
extended reverse-time migration when background velocity is correct.
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IVA vs MVA: Gaussian-Random Model Tests
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Figure: (a) Extended reverse-time migration; (b) Least-squares
extended reverse-time migration when background velocity is 3 km/s.
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IVA vs MVA: Gaussian-Random Model Tests
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Figure: Gradient computed by (a) extended reverse-time migration;
(b) least-squares extended reverse-time migration.

YL and WYV (TRIP) LEWI and IVA Annual Meeting 2013 28 / 33



@ Summary and Future Plan

Annual Meeti 29 / 33



Summary and Future Plan

Conclusion

@ The OLS objective function has local minimum problem, which can be solved with
the idea of differential semblance optimization.

@ The inverted reflectivity has higher resolution and more balanced amplitude, which is
also crucial in background velocity inversion.

@ As the inverted reflectivity image, instead of prestack migration approximation, is
used to adjust velocity model, IVA is more accurate than MVA.

Future plan
@ Improve the efficiency of IVA = Preconditioning, Compressive sensing.

@ Extend to non-linear case = Plane-wave domain, depth-oriented extension.
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