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WI and MVA

Waveform Inversion (WI):

Provide model with high resolution
Tend to get trapped in local minimum

Migration Velocity Analysis (MVA):

Provide background velocity robustly
Only take single scattering into account

Connection between WI and MVA?

Model extension and extended modeling
Extended waveform inversion
Differential semblance optimization
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Waveform Inversion (WI)
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Data Space: D
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Waveform Inversion

Extended Waveform Inversion

Model space M := {m(x) = 1
v2(x)}; Data space D := {d(xr,xs, ω}

Forward map F in acoustic constant density medium

(∇2 + ω2m(x))u(x, ω) = −f(ω)δ(x− xs) (1)

d(xr,xs, ω) = S(xr,xs)u(x, ω) (2)

Waveform inversion

minmJWI [m, d] =
1

2
‖ F [m]− d ‖2 (3)
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Extended Waveform Inversion (EWI)
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Extended Waveform Inversion

Extended Model Space M̄ := {m̄(x,y) = 1
v2(x,y)}

Extended forward map F̄ in acoustic constant density medium

∇2u(x, ω) + ω2

∫
dym(x,y)u(y, ω) = −f(ω)δ(x− xs) (4)

d(xr,xs, ω) = S(xr,xs)u(x, ω) (5)

Extended waveform inversion

minm̄JEWI [m̄, d] =
1

2
‖ F̄ [m̄]− d ‖2 +

σ

2
‖ A[m̄] ‖2 (6)
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Linearized Extended Waveform Inversion (LEWI)

Problems of EWI: computational cost is extremely high!

Solution:

(1) Linearized approximation:

m̄ ' m0 + δm̄; F̄ [m̄] ' F [m0] +DF̄ [m0] ∗ δm̄
where DF̄ [m0] is one order derivative of F to m at m0

(2) LEWI:

minm0,δm̄JLEWI [m0, δm̄] =
1

2
‖ DF̄ [m0]δm̄− (d− F [m0]) ‖2 +

σ

2
‖ Aδm̄ ‖2

Connection with LSM and MVA
when σ = 0, it limits to migration velocity analysis (MVA); when σ →∞, it
limits to least-squares migration (LSM).
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Linearized Extended Waveform Inversion Scheme

LEWI:

minm0,δm̄JLEWI [m0, δm̄] =
1

2
‖ DF̄ [m0]δm̄− Fd) ‖2 +

σ

2
‖ Aδm̄ ‖2

Solve the above problem with two level of loops:

1 Inner Loop: Invert short scales (i.e. reflectivity) to get δm̄k[m0]

minδm̄JLEWI [m0, δm̄] =
1

2
‖ DF̄ [m0]δm̄− Fd) ‖2 +

σ

2
‖ Aδm̄ ‖2

2 Outer Loop: Invert long scales (i.e. Background velocity)

minm0JLEWI [m0, δm̄k[m0]] =
1

2
‖ DF̄ [m0]δm̄k[m0]− Fd) ‖2 +

σ

2
‖ Aδm̄k[m0] ‖2
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Gradient of short scales

The gradient of the objective function JDS [m0, δm̄] with respect to δm̄:

∇δm̄JDS [m0, δm̄] = DF̄T [m0](DF̄ [m0]δm̄− Fd) + σATAδm̄ (7)

Set the gradient to zero gives the normal equation, i.e.

(DF̄T [m0]DF̄ [m0] + σATA)δm̄ = DF̄T [m0]Fd (8)

which can be re-written as:

N [m0]δm̄ = M [m0]Fd (9)

where N [m0] is normal operator and M [m0] is migration operator.
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Gradient of long scales

The gradient of the objective function JDS [m0, δm̄[m0]] with respect to m0:

∇m0
JDS [m0, δm̄k[m0]] = B[δm̄k, DF̄ [m0]δm̄k − Fd] +B[P (N [m0])ek, Fd]

where B is bilinear operator, P (N [m0]) is a polynomial in the normal
operator N [m0], δm̄k is the inverted reflectivity and ek is the normal equation
error Dδm̄JDS [m0, δm̄]. The derivation can be found in [Liu, Symes; 2013].

Notes:
This formula is only justified when we use Chebyshev iteration to solve
normal equation 9 in the case of depth-oriented model extension, but we can
approximate it in different degree, migration velocity analysis is one of the
approximations.
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Inversion Velocity Analysis Scheme

IVA:

minm0,δm̄JLEWI [m0, δm̄] =
1

2
‖ DF̄ [m0]δm̄− Fd) ‖2 +

σ

2
‖ Aδm̄ ‖2

Compared with LEWI scheme, we solve the above problem separately:

1 Inner Loop: Invert short scales (i.e. reflectivity) to get δm̄k[m0]

minδm̄JIV A[m0, δm̄] =
1

2
‖ DF̄ [m0]δm̄− Fd) ‖2

2 Outer Loop: Invert long scales (i.e. Background velocity)

minm0JIV A[m0, δm̄k[m0]] =
1

2
‖ Aδm̄k[m0] ‖2
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Gradient of short scales and long scales

The gradient of the objective function JIV A[m0, δm̄] with respect to δm̄:

∇δm̄JIV A[m0, δm̄] = DF̄T [m0](DF̄ [m0]δm̄− Fd)

The gradient of the objective function JIV A[m0, δm̄[m0]] with respect to
m0:

∇m0
JIV A[m0, δm̄k[m0]] = B[P (N [m0])ATAδm̄k, Fd]

Notes:
If the iteration number of inner loop is set to be zero and approximate
P (N [m0]) to be identity matrix, the above formula is actually equivalent to
the gradient given by WEMVA.
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Operator formulas

Extended linearized Born modeling d = DF̄ [m0]δm̄:

d(xr,xs, ω) = −ω2
f(ω)

∫
dxdhG(xr,x + h, ω)δm(x,h)G(x − h,xs, ω)

Extended reverse time migration δm̄ = DF̄T [m0]d:

δm(x,h) = −
∫

dxsdxrdω ω
2
f
∗
(ω)G

∗
(xs,x − h, ω)G

∗
(x + h,xr, ω)d(xr,xs, ω)

Bilinear operator ∆m0 = B[δm̄,∆d]:

∆m0(y)

=

∫
dxsdxrdxdhdω

{
G0(y,xs, ω)ω

4
f(ω)

}∗ {
G

∗
0(y,x − h, ω)δm̄(x,h)G

∗
0(x + h,xr, ω)∆d(xr,xs, ω)

}
+

∫
dxsdxrdxdhdω

{
G0(y,x + h, ω)δm̄(x,h)G0(x − h, xs, ω)ω

4
f(ω)

}∗ {
G

∗
0(y,xr, ω)∆d(xr,xs, ω)

}
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Scan tests of LEWI Objective Function
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] = JOLS [m0, δm̄k[m0]] + σJDS [m0, δm̄k[m0]]

=
1

2
‖ DF̄ [m0]δm̄k[m0]− Fd ‖2 +

σ

2
‖ Aδm̄k[m0] ‖2

Scan JOLS [m0, δm̄k[m0]] along m0 = µm∗
0, µ ∈ [0.85, 1.1]

Scan JDS [m0, δm̄k[m0]] along m0 = µm∗
0, µ ∈ [0.85, 1.1]

Scan JLEWI [m0, δm̄k[m0]] along m0 = µm∗
0, µ ∈ [0.85, 1.1]
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 0.850m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 0.875m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 0.900m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 0.925m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 0.950m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 0.975m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 1.000m∗0

YL and WWS (TRIP) LEWI and IVA Annual Meeting 2013 19 / 33



Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 1.025m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 1.050m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 1.075m∗0
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Scan tests of LEWI Objective Function

JLEWI [m0, δm̄k[m0]] at m0 = 1.100m∗0
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ERTM vs LSERTM
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LEWI tests: Gaussian Model

Figure: (a) Gaussian velocity model; (b) Synthetic data.
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LEWI tests: Gaussian Model

Figure: (a) Reflectivity with extended reverse-time migration; (b)
Inverted reflectivity with Chebyshev iteration method.
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LEWI tests: Gaussian Model

Figure: (a) Data misfit residual of Chebyshev iteration method; (b)
Relative normal residual curve.
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LEWI tests: Gaussian Model

Figure: LEWI gradient of long scales (a) the first term; (b) the second
term; (c) total.
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IVA vs MVA: Gaussian-Random Model Tests
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IVA vs MVA: Gaussian-Random Model Tests

Figure: (a) Extended reverse-time migration; (b) Least-squares
extended reverse-time migration when background velocity is correct.
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IVA vs MVA: Gaussian-Random Model Tests

Figure: (a) Extended reverse-time migration; (b) Least-squares
extended reverse-time migration when background velocity is 3 km/s.
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IVA vs MVA: Gaussian-Random Model Tests

Figure: Gradient computed by (a) extended reverse-time migration;
(b) least-squares extended reverse-time migration.
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Summary and Future Plan

Conclusion

The OLS objective function has local minimum problem, which can be solved with
the idea of differential semblance optimization.

The inverted reflectivity has higher resolution and more balanced amplitude, which is
also crucial in background velocity inversion.

As the inverted reflectivity image, instead of prestack migration approximation, is
used to adjust velocity model, IVA is more accurate than MVA.

Future plan

Improve the efficiency of IVA ⇒ Preconditioning, Compressive sensing.

Extend to non-linear case ⇒ Plane-wave domain, depth-oriented extension.
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Thank you!
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