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ABSTRACT

This paper provides a theoretical foundation for some common formulations of inverse problems in

wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded

and measurable coefficients. The coefficients of these time-dependent partial differential equations

respresent parametrically the spatially varying mechanical properties of materials. Rocks, manu-

factured materials, and other wave propagation environments often exhibit spatial heterogeneity

in mechanical properties at a wide variety of scales, and coefficient functions representing these

properties must mimic this heterogeneity. We show how to choose domains (classes of nonsmooth

coefficient functions) and data definitions (traces of weak solutions) so that optimization formula-

tions of inverse wave problems satisfy some of the prerequisites for application of Newton’s method

and its relatives. These results follow from the properties of a class of abstract first-order evolution

systems, of which various physical wave systems appear as concrete instances. Finite speed of

propagation for linear waves with bounded, measurable mechanical parameter fields is one of the

by-products of this theory.
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INTRODUCTION

Inverse problems for waves in heterogeneous materials occur in seismology, ultrasonic nondestructive

evaluation and biomedical imaging, some electromagnetic imaging technologies, and elsewhere.

The data of such problems are often idealized as traces of wave fields on space-time hypersurfaces

(or surfaces of even lower dimension), and nonlinear least-squares (or other data-fitting) methods

developed for their numerical solution, that is, for finding the coefficients in the systems of partial

differential equations chosen to model the wave physics. Newton’s method (or one of its relatives)

is a natural choice of solution method for these optimization formulations, as its rapid convergence

compensates to some extent for the very large computational size of reasonable discretizations - see

for example Epanomeritakis et al. (2009).

Natural and man-made materials may be so heterogeneous that few limits can be placed on the

spatial regularity of coefficients representing material parameters (for the case of sedimentary rocks,

see for instance (Walden and Hosken, 1986; Bourbie et al., 1987; White et al., 1990)). However,

traces are well-defined only for fields possessing some space-time regularity, and optimal convergence

of Newton-like methods requires that objective functions and constraints be regular functions of

the model parameters, in some sense. Since nonsmoothness of the material parameter (coefficient)

fields implies nonsmoothness of dynamical (solution) fields, it is a priori unclear that the required

traces exist, or that the fields depend sufficiently smoothly on the material parameter (coefficient)

functions to permit Newton-like optimization methods to be applied. While discretized models

may a fortiori produce nominally well-defined data simulations and smooth objective (data misfit)

functions, accurate approximation of the continuum fields implies that the continuum limit will

determine the behavior of solution algorithms for the corresponding discretized inverse problems.

Also, numerical solutions to discretized inverse problems respect the underlying continuum physics

only insofar as they converge under refinement of the discretization (at least in principle), and such

convergence generally requires that the continuum problems have well-behaved solutions.

The theory presented here provides a mathematical foundation for some common idealizations

of inverse problems in wave propagation and approaches to their solution, for material models of

bounded and measurable dependence on space variables. Measurability means roughly the existence

of averages over arbitrary volumes, which seems a reasonable requirement for physical parameter

fields. Most such fields are bounded as a matter of principle (positivity of density) or observation

(p-wave velocity range in metals,...).
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The dynamical laws considered in this paper may be cast as symmetric hyperbolic systems,

either differential or integro-differential, for vector-valued fields u defined on a domain Ω ⊂ Rd

(typically d = 1, 2 or 3). Denoting the dimension of the dynamical state vector u by k ∈ N, the

systems treated in this paper take the form

a
∂u

∂t
+ p(∇)u+ bu+ q ∗ u = f in Ω×R; u = 0 for t < 0, (1)

in which a, b are k× k matrix-valued functions on Ω, q is a k× k matrix-valued function on Ω×R

with q(x, t) = 0 for t < 0, and p(∇) is a k × k matrix of constant-coefficient first-order differential

operators in the space variables:

p(∇)u =
d∑
j=1

pj
∂u

∂xj
, pj ∈ Rk×k, j = 1, ..., d. (2)

Such a system is symmetric hyperbolic if a(x), q(x, t) and pj are symmetric for all x ∈ Ω, t ∈ R,

respectively j = 1, ..., d, and a(x) is uniformly positive-definite: C∗, C
∗ ∈ R exist so that 0 < C∗ ≤

C∗, and

C∗I ≤ a(x) ≤ C∗I, a. e. x ∈ Ω (3)

in which I is the d×d identity matrix, and the inequality sign signifies that the matrix on the right

differs from the matrix on the left by a positive definite symmetric matrix.

This paper has three central objectives. First, we describe constraints on data (coefficients

a, b, p, q and right-hand side f) and solution under which (1) is well-posed, even when the coefficient

functions a, b, q are permitted to be quite irregular in their dependence on x ∈ Ω - in fact, merely

bounded and measurable. Second, we determine a sense in which the solution of (1) is regular (Ck,

k ≥ 0) as a function of its coefficients. Third, we characterize conditions under which traces of

solutions on time-like hypersurfaces are well-defined, and regular as functions of the coefficients.

The complete description of the system (1) requires the specification of domains and ranges for

all of the operators appearing in it. We will require that these be chosen so that the expression

p(∇) defines a skew-adjoint operator.

We will describe two important examples (acoustics and viscoelasticity) in detail below, as

symmetric hyperbolic problems of the form (1). The coefficient matrices a, b and q encapsulate

spatially varying relations between space and time rates of change of the dynamical state u. A

particularly important example, a common component of all linear continuum mechanical systems,

is the linearized Newton’s law, in which the product of the material density and the time rate of
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change of velocity balances the sum of internal and external forces acting on the material. The

internal forces are expressed as the divergence of a stress tensor. The material density may vary

with position and appears somewhere in a, the velocity and stress fields form part of u, and the

(spatially invariant) divergence is part of p. These relations may be expressed in algebraically

equivalent form via other constitutive laws governing particular examples, but are always present

in some form. The time convolution kernel q expresses dissipative and dispersive mechanisms built

into the mechanical laws. These mechanisms may originate in upscaling of microscopic physics (for

example, poroelasticity), or express generic dissipative mechanisms (viscoelasticity), or be absent

(elasticity, acoustics), in particular examples of (1). The right-hand side vector f is a k-vector

valued function on Ω×R, vanishing for t < 0 and representing energy input to the system, in the

form of external forces, defects in the constitutive laws, and so on.

As in the similar study of Stolk (2000) for second-order hyperbolic systems, we represent (1) as

an instance of a class of abstract autonomous integro-differential systems. We study these abstract

systems within a framework modeled after the duality approach introduced by J.-L. Lions and

his collaborators in the 1960’s (Lions, 1971; Lions and Magenes, 1972). A natural notion of weak

solution is central to this approach, and complements that of strong (pointwise) solution. The

class of first-order systems studied here possesses a remarkable property: smoothing solutions in

time converts weak solutions to strong (pointwise in t) solutions. Specialized to systems such as

acoustics or elastodynamics, this property implies that appropriate traces of solutions are well-

defined, provided that the right-hand-side or source term is minimally smooth in time (only!).

Existence, uniqueness, and regularity of the solution as function of problem data - both right-hand

side and (operator) coefficients - also follows from this fact.

The abstract theory accomplishes even more than that, as it applies to a much wider range

of dynamics than those commonly occurring in continuum mechanics, accommodating first-order

systems with operator coefficients. This added generality creates no additional difficulty for the

basic theory. It is in fact very useful: as will be explained in the Discussion section, it justifies

certain infeasible-model methods for inverse problems in wave propagation.

Another useful by-product of the theory is the finite speed of propagation property for hyperbolic

systems with bounded, measurable coefficients, a result which so far as we can tell is new. This

follows from the similar property for systems with smooth coefficients via the continuous dependence

of solutions on the coefficients in the sense of convergence in measure.
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The next section of this paper states and discusses the main results to be established for sym-

metric hyperbolic systems (1). In the third section, we show how acoustics may be construed as

an example of our framework: we formulate the physics of linear acoustics in the form of a sym-

metric hyperbolic system, and show how to define the operators involved so that our main results

apply to this example, in particular so that the differential operator p(∇) is skew-adjoint. In the

following section, we do the same for viscoelastodynamics. Following these extended examples,

the fifth section of the paper introduces a class of abstract evolution systems encompassing all of

the concrete systems mentioned earlier, and lists the main results to be established concerning it.

Having explained our main results and some important examples to which they apply, we devote

the sixth section to a discussion of the related literature and various implications for inverse prob-

lems in wave propagation, including the importance of the general (operator coefficient) case of the

abstract theory in formulating certain inversion algorithms, representation of energy sources, and

several other matters not addressed in the remainder of the paper. The succeeding sections develop

proofs of the main results for the abstract evolution class described in the fifth section. The final

section of the paper specializes these abstract results to provide proofs of the theorems stated in

the next section. Two appendices discuss skew-adjointness of the acoustic grad-div operator, and

the case of systems with no memory term (q = 0 in (1)), for which initial value problems make

sense.

MAIN RESULTS FOR SYMMETRIC HYPERBOLIC SYSTEMS

Our results hinge on an assumption concerning the skew-symmetric differential operator p(∇),

which to begin with may be viewed as a densely-defined operator on L2(Ω)k, whose domain is a

subset of C∞(Ωint)k that contains C∞0 (Ωint)k. We assume that p(∇) extends to a skew-adjoint

operator P with dense domain V ⊂ L2(Ω)k, and that V is metrized with the graph norm of p(∇)

or its equivalent, which we denote by ‖ · ‖V .

The first of our two major sets of results on symmetric hyperbolic systems addresses well-

posedness.

Theorem 1. Suppose that, in addition to the hypotheses explained above, the right-hand side f

has a square-integrable t-derivative: f ∈ H1
loc(R, L

2(Ω)k), and is causal, that is, f(t) = 0 for t < 0.

Then there exists a unique causal u ∈ C1(R, L2(Ω)k)∩C0(R, V ) satisfying (1) a. e. in Ω for each
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t ∈ R. Moreover, there exists an increasing function C : R+ → R+, depending on C∗, C
∗, and

bounds for b, q, so that for every t ∈ R,∥∥∥∥∂u∂t (·, t)
∥∥∥∥2

L2(Ω)k
+ ‖u(·, t)‖2V ≤ C(t)

∫ t

0
dτ

[
‖f(·, τ)‖2L2(Ω)k +

∥∥∥∥∂u∂t (·, τ)

∥∥∥∥2

L2(Ω)k

]
(4)

The second main result addresses the existence of traces and their regular dependence on the

coefficients. Suppose that Γ ⊂ Ω is a smoothly embedded m-dimensional submanifold, m < d.

Denote by ΣΓ the trace map C∞0 (Ωint)k → L2(Γ)k. Suppose that l ∈ N and m ∈ C∞0 (Γ,Rl×k).

Define S[m] : C∞0 (Ωint)k → L2(Γ)l by

S[m]u = mΣΓu.

Note that S[m] induces a map L2([0, T ], C∞0 (Ωint)k) → L2([0, T ], L2(Γ)l), for any T > 0. Abusing

notation, call this induced map S[m] as well.

Having parametrized the various possible trace maps, we define the data prediction, or forward,

operator, Ff,m, by

Ff,m(a, b, q) = S[m]u

in which u is the causal solution of (1) provided by Theorem 1. A suitable domain for Ff,m is

M ⊂ L∞(Ω,Rk×k
symm)× L∞(Ω,Rk×k)× L1(R+, L

∞(Ω,Rk×k
symm)), defined by

M(C∗, C
∗, CB, CQ) = {(a, b, q) : C∗I < a(x) < C∗I for all x ∈ Ω, ‖b‖L∞(Ω,Rk×k) < CB,

‖q‖L1(R+,L∞(Ω,Rk×k
symm)) < CQ, q(t) = 0 for t < 0},

M =
⋃
{M(C∗, C

∗, CB, CQ) : 0 < C∗ ≤ C∗, CB, CQ ∈ R+}.

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that S[m] extends continuously

to V . Then for any T > 0,

i. if f ∈ Hs
loc(R, L

2(Ω)k), s ≥ 1, then Ff,m defines a continuous map: M → Cs−1([0, T ], L2(Γ)l);

ii. if also s ≥ 2 and , then Ff,m : M → Cs−2([0, T ], L2(Γ)l) is of class Cs−1.

A stronger result concerning continuity per se, involving a weaker topology on the coefficient

set M , is also important. Recall that a sequence of real-valued measurable functions {gm : m ∈

N} ⊂ L∞(Ω) converges to zero in measure iff for any ε > 0,

em = |{x : |gm(x)| > ε}|

is a null sequence.
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Theorem 3. Suppose that 0 < C∗ ≤ C∗, 0 ≤ CB, 0 ≤ CQ, {(am, bm, qm) : m ∈ N} ⊂M(C∗, C
∗, CB, CQ),

and (a, b, q) ∈M(C∗, C
∗, CB, CQ). Suppose further that

i. am → a in measure,

ii. bm → b in measure,

iii.
∫ t

0 |qm − q| → 0 in measure

Denote by um the (strong) solution of (1) provided by Theorem 1, with coefficients am, bm, and

qm, likewise by u the solution with coefficients a, b, and q, with common causal right-hand side

f ∈ H1
loc(R, L

2(Ω)k). Then for any T > 0,

lim
m→∞

‖um − u‖L∞([0,T ],L2(Ω)) = 0.

One way to generate sequences converging in measure is by mollification. We exploit this

observation to use Theorem 3 in conjunction with a well-known fact about symmetric hyperbolic

systems with smooth coefficients, to prove

Theorem 4. Suppose that (a, b, q) ∈M , ε > 0, and that τ ∈ R+ satisfies

τa(x) +

d∑
i=1

piξi ≥ 0 (5)

for almost every x ∈ Ω and every ξ ∈ Rd for which |ξ| = 1. Suppose ω ⊂ Ω, T > 0, and that

f ∈ H1
loc(R,  L2(Ω)k) is causal and satisfies f(x, t) = 0 if |x− x0| ≤ τ(T − t) for all x0 ∈ ω. Then

the causal solution u ∈ C1(R, L2(Ω)k)∩C0(R, V ) of (1) with coefficients a, b, q and right-hand side

f vanishes in ω × [0, T ].

Remark: Note that Theorem 2 expresses “differentiability with a loss of one derivative”, in two

senses. First, taking k = 2, even though f ∈ H2
loc(R, L

2(Ω)k), the map Ff,m is only once differen-

tiable. Second, even though Ff,m a priori takes values in C1([0, T ], L2(Γ)l), it is of class C1 only

as a map with range C0([0, T ], L2(Γ)l).

This “loss of derivative” phenomenon is a fundamental feature of the coefficient-to-solution map

for symmetric hyperbolic PDEs, and accounts for much of the ornery nature of the related inverse

problems. A simple explicit example illustrates the second sense of derivative loss, and shows that

the hypotheses of Theorems 1 and 2 cannot be significantly weakened.
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The linear advection equation (
1

c

∂u

∂t
− ∂u

∂x

)
(t, x) = f(t, x), (6)

for waves moving to the left with speed c > 0, conforms to the requirements of Theorem 1, with

Ω = R, with the choices

p(∇) =
∂

∂x
, V = H1(R),

and A = multiplication by 1/c. A proof that p(∇) is self-adjoint with domain V follows from use

of Lemma 6 from Appendix A, together with the Fourier transform characterization of H1(R).

The trace manifold in this example is Γ = {x = 0}, and k = l = 1; the map m is simply the

identity, and is suppressed from the notation. Thus traces take values in L2(Γ) = R.

The causal solution of (6) is formally

u(t, x) =

∫ ∞
x

f

(
t+

x− y
c

, y

)
dy.

That is, this expression gives the solution guaranteed by Theorem 1 when f ∈ C∞0 (R2).

It’s easy to check that for causal f ∈ L2
loc(R

2), the integral defines a locally square-integrable

distribution with well-defined trace on x = 0 - in fact, a weak solution of (6) in the sense explained

in the section 6. Weak solutions do not generally possess well-defined traces; the reasons for

this exception are mentioned briefly below, and at more length in the Discussion section. In this

particular example, the trace on x = 0 defines a continuous map : R 7→ L2
loc(R). For the particular

choice

f(t, x) = H(t+ x− 1)H(t)

(H being the Heaviside function), one finds that for c = 1,

Ff [1](c) = tH(t− 1),

(m is suppressed, as it is simply the identity in this case). Thus with f ∈ L2
loc(R, L

2(R)), we cannot

conclude that Ff takes values in C0(R,R).

For c > 1,

u(t, 0) =



0, t < c
2c−1

c
c−1((2c− 1)t− c), c

2c−1 ≤ t ≤ 1

ctH(t− 1), t > 1
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It follows that Ff [c]→ Ff [1] as c→ 1 in the mean-square sense, but not in the sense of C0(R,R).

Thus the condition f ∈ H1
loc(R, L

2(R)) cannot be replaced by f ∈ L2
loc(R, L

2(R)) in Theorem 2,

(i).

To illuminate the connection between right-hand side regularity and regularity of F (Theorem

2, part (ii)), select w ∈ L2
loc(R) and multiply by the characteristic function of an interval [a, b], 0 <

a < b, to generate a right-hand side:

g(t, x) = w(t)1[a,b].

A brief computation shows that

Fg[c](t) = w ∗ 1[ac ,
b
c ]

(t).

The Lebesgue Differentiation Theorem implies that for any T > 0, Fg : R+ → C0([0, T ],R)

is continuous, but not differentiable: indeed, if w is discontinuous, then the Newton quotient

converges point-wise a. e. to a discontinuous limit.

If w ∈ H1
loc(R) is causal, then Fg is well-defined as a map R+ → C1(R,R). The formal

computation of the derivative,

(DFg[c]δc)(t) =
δc

c2

(
bw

(
t− b

c

)
− aw

(
t− a

c

))
,

actually expresses the derivative of Fg : R+ → C0(R,R), but Fg : R+ → C1(R,R) is not

differentiable - if it were, the value of the derivative would necessarily be the same distribution

as with respect to the weaker metric, but under the assumption on w one can only conclude that

DFg[c]δc ∈ C0(R,R).

In general, if w ∈ Hs
loc(R) is causal, then Fg is well-defined and continuous R+ → Cs(R,R) but

differentiable only as a map R+ → Cs−1(R,R). This example exhibits the property “differentiable

with loss of derivative” in the second sense mentioned after the statement of Theorem 2.

This example does not illustrate first type of derivative loss described in the theorem, that is, the

further drop of regularity in t required in general to define the trace. The reason for this is related

to the existence of traces even for merely square-integrable right-hand sides, flowing in turn from

the propagation of singularity principle for the system (6) (and indeed solution via the method of

characteristics, an even more special property). Propagation of singularities along bicharacteristics

holds for symmetric or strictly hyperbolic systems with smooth coefficients (see for example Taylor

(1981)), and to some limited extent for systems with less regular coefficients (Beals and Reed, 1982,
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1984; Symes, 1986; Lewis and Symes, 1991; Bao and Symes, 1996). Anomalous trace regularity

follows for such systems: the system (6) is a particularly simple example. Some other consequences

of this phenomenon will be mentioned in the Discussion section.

EXAMPLE: ACOUSTICS

Linear acoustics provides an important example of the theoretical framework described in the last

section. Acoustic wave propagation does not include the memory effect modeled by the convolu-

tional term in (1), but illustrates several other features of the class of problems studied in this

paper.

For this example, d = 3, and we suppose that the domain Ω ⊂ R3 is smoothly bounded (the

smoothness requirement can be relaxed to some extent, as discussed briefly in Appendix A). The

momentum balance and constitutive laws of linear acoustics relate the excess pressure p(t,x) and

velocity fluctuations v(t,x) = (v1(x, t), v2(x, t), v3(x, t))T , x ∈ R3, to mass density ρ(x), bulk

modulus κ(x), constitutive law defect g(t,x), and body force density f(t,x) by

ρ
∂v

∂t
= −∇p+ f ,

1

κ

∂p

∂t
= −∇ · v + g. (7)

In this example, k = 4, and

au = diag

(
1

κ
, ρ, ρ, ρ

)
u, u =



p

v1

v2

v3


∈ L2(Ω)4

Densities and bulk moduli of sedimentary rocks in the upper crust, for example, lie between definite

bounds. To express these natural bound conditions in a sufficiently flexible manner for present

purposes, choose 0 < C∗ ≤ C∗, and define

Mac(C∗, C
∗) = {(κ, ρ) ∈ L∞(Ω)2 : C∗ ≤ 1/κ, ρ ≤ C∗ a.e. in Ω}.

The notation is chosen so that if (κ, ρ) ∈Mac(C∗, C
∗), the matrix a satisfies the bounds (3).
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Remark: It is assumed that the fields appearing in equations (7), particularly κ and ρ, have been

rendered dimensionless by appropriate scaling. Similar assumptions will be made for other physical

systems mentioned in this paper, without comment.

The right-hand side of (7) involves the matrix partial differential operator

p(∇) = −



0 ∂
∂x1

∂
∂x2

∂
∂x3

∂
∂x1

0 0 0

∂
∂x2

0 0 0

∂
∂x3

0 0 0


. (8)

This matrix operator defines a skew-adjoint operator with domain V = H1
0 (Ω)×H1

div(Ω) ⊂ L2(Ω)4.

[H1
div(Ω) consists of v ∈ L2(Ω)3 for which the distribution ∇ · v ∈ L2(Ω)3. For the reader’s

convenience, we present a proof that p(∇) : V → L2(Ω)4 is skew-adjoint, in Appendix A.]

Finally, the source vector f is defined by

f(t) = (g(t, ·), f(t, ·))T ∈ L2(Ω)4,

With these conventions, the acoustics system (7) is symmetric hyperbolic and satisfies the

conditions of Theorem 1.

Note that if κ and/or ρ are discontinuous, then the form of the equations (7) immediately

implies that no solutions of class C1 may exist, even if the right-hand side f (that is, the body

force density f) is smooth. Physically reasonable fluid configurations thus exist for which solutions

in the classical sense cannot be defined, for example piecewise homogeneous mixtures with jump

discontinuities of density and/or bulk modulus across smooth interfaces. However, Theorem 1

provides a solution with physical sense, as the strain energy

E(t) =
1

2

∫
Ω

[
ρv · v +

p2

κ

]
(·, t) =

1

2
〈u(t), au(t)〉L2(Ω)4

is well-defined for any such solution, and even of class C1 in t. The equivalence of the quadratic

form defining E and the (square of the) norm in L2(Ω)4 follows from the assumption that (κ, ρ) ∈

Mac(C∗, C
∗), as already noted.

Theorem 1 gives u ∈ C0(R, V ), provided that f ∈ H1
loc(R, L

2(Ω)4). To obtain differentiable

dependence on the coefficients, it is necessary to sacrifice one more time derivative (Theorem 2).
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This sacrifice seems minor, as modeled energy sources (represented by the right-hand side in (1))

are in many cases quite smooth in time, reflecting the finite bandwidth of energy generation and

recording equipment and the loss of high frequencies to dissipative mechanisms during propagation.

Membership in V = H1
0 (Ω)×H1

div(Ω) implies that some (but not all!) traces of u are well-defined. In

the notation of Theorem 2, given a smoothly embedded hypersurface Γ, choose l = 1 and m = mD

or m = mN , where

mD(x) = [1, 0, 0, 0], mN (x) = [0, n1(x), n2(x), n3(x)], x ∈ Γ,

and n = (n1, n2, n3)T is a smooth normal field on Γ. Both S[mD] and S[mN ] extend continuously

to V . Note that traces of tangential components of v do not so extend. The end result is that

both Ff,mD (pressure data) or Ff,mN (normal velocity data) are well-defined and differentiable as

functions of the coefficients, of class Cs−1 if f ∈ Hs
loc(R, L

2(Ω)4) (Theorem 2). The domain of

either version of F in this case is the open set Mac ⊂ L∞(Ω)2, defined by

Mac =
⋃
{Mac(C∗, C

∗) : 0 < C∗ ≤ C∗}.

The relation (5) in Theorem 4 states that τ is larger than the largest generalized eigenvalue

of the matrix
∑
piξi with “mass” matrix a, at a. e. x ∈ Ω . There are two nonzero generalized

eigenvalues for each x ∈ Ω, namely ±
√
κ(x)/ρ(x), as is easily verified. Thus under the conditions

of Theorem 4, the solution u vanishes at in ω up to time T if at every intermediate time t, the

support of the right-hand side lies at least distance τ(T − t) away from ω. Since τ ≥
√
κ(x)/ρ(x)

for a. e. x ∈ Ω, this conclusion is just what one would expect: waves move with speed at most

‖
√
κ/ρ‖L∞(Ω).

EXAMPLE: VISCOELASTICICTY

Viscoelasticity provides an example of the symmetric hyperbolic dynamics with dissipation and

frequency dispersion of wave energy, unlike acoustics. Th.

ρ
∂v

∂t
= ∇ · σ + f ,

S ∗ ∂σ
∂t

=
1

2
(∇v +∇vT ). (9)

in which v is the particle velocity field, σ the stress tensor, f a body force density, ρ the mass

density, and S the inverse Hooke operator, or compliance tensor (Christensen, 1983; Pipkin, 1986).
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Viscoelasticity generalizes elasticity in that the inverse Hooke operator is a causal convolution

operator (in time), rather than a temporally local multiplication operator. Of course, elasticity is

a special case of viscoelasticity, in which S is proportional to δ(t).

We will assume instantaneous elastic response: a nonzero strain rate arises immsediately from

a stress impulse. Under this assumption, the kernel S can be decomposed as

S(t) = Seδ(t) + s(t),

in which Se is the elastic inverse Hooke tensor (inverse of the unrelaxed modulus), and s is a causal

kernel. Both the elastic kernel Se and the memory kernel s(t) act as spatially-variable, symmetry-

preserving linear operators on symmetric tensor fields. The conventional representation of such

things by 4-index tensors,

Se =
(
Seijkl

)∣∣3
i,j,k,l=1

, s = (sijkl)|3i,j,k,l=1 ,

thus entail the symmetries

Seijkl = Sejikl = Seijlk = Seklij , i, j, k, l = 1, 2, 3, (10)

and similarly for s.

To avoid technical complications, assume that the viscoelastic material occupies all of R3. We

require that, for some 0 < g∗ ≤ g∗,

1. Se is elliptic: for any symmetric σ ∈ R3×3,

g∗‖σ‖ ≤ ‖Se(x)σ‖ ≤ g∗‖σ‖, x ∈ R3; (11)

2. Se ∈ L∞(R3,B(R3×3
symm));

3. s ∈W 1,1(R, L∞(R3,B(R3×3
symm))).

For the “state space”H of the viscoelastic system we chooseH = L2(R3,R9) ≡ L2(R3,R3×3
symm)×

L2(R3,R3). The inner product in H is defined by

〈u1, u2〉 =

∫
R3

trσT1 σ2 + vT1 v2, u =

 σ

v

 .
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The assumptions 1-3 above and the symmetries (10) imply that

Au =

 Seσ

ρv

 , u =

 σ

v

 ∈ H
defines a bounded, self-adjoint positive-definite operator A ∈ B(H).

Define the differential operator p(∇) : C∞0 (R3,R9)→ C∞0 (R3,R9) by

p(∇)u = −

 1
2(∇v +∇vT )

∇ · σ

 , u =

 σ

v

 ∈ C∞0 (R3,R9) ≡ C∞0 (R3,R3×3
symm)× C∞0 (R3,R3).

p(∇) is antisymmetric and densely defined in H. Define

• H1
div(Ω,R3×3

symm) to be the subspace of L2(Ω,R3×3
symm) consisting of square-integrable symmetric

matrix valued functions, each column of which has a square-integrable divergence;

• H1
free(Ω) to be the subspace of vectors σ ∈ H1

div(Ω,R3×3
symm) satisfying

σ(x) · n = 0, a. e. x ∈ ∂Ω;

• V = H1
free(Ω)×H1(Ω)3.

An argument similar to that explained in Appendix A shows that p(∇) has a self-adjoint extension

P : V → H, and that the natural norm on V is equivalent to the graph norm of P .

Let

b = lim
t→0+

s(t, ·) ∈ L∞(R3,B(R3×3
symm)),

and

q = lim
t→0+

1[t,∞)
∂s

∂t
∈ L1(R, L∞(R3,B(R3×3

symm))).

Then

s ∗ ∂σ
∂t

= bσ + q ∗ σ.

Define B ∈ B(H) and Q ∈ L1(R,B(H)) by

Bu =

 bσ

0

 , Q(t)u =

 q(t)σ

0

 , u =

 σ

v
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Finally, define f ∈ L2
loc(R, H) by f = (0, f)T .

With these definitions, the system (9) is formally equivalent to the evolution problem (13).

The theory developed here thus assures the existence of weak solutions of (9), in material models

including discontinuities of densities and/or elastic moduli and/or relaxation moduli.

An immediate consequence of Theorem 4 is

Corollary 1. Denote by cp the maximum quasi-p-wave velocity of the viscoelastic system (9),

defined as

cp = ess sup{λmax(Se(x)[ξξT ]/ρ(x) : x, ξ ∈ R3, ξT ξ = 1}.

Suppose that (x0, t0) satisfies

|x− x0| > cp(t0 − t)

for every (x, t) ∈ supp f . Then the causal weak solution (σ,v) of (9) vanishes in a neighborhood of

(x0, t0).

A CLASS OF ABSTRACT FIRST ORDER EVOLUTION EQUATIONS AND

THEIR PROPERTIES

Much of the theory developed in this paper applies equally well to a type of abstract evolution

equation, of which (1) and its specializations are concrete realizations. Both to clarify the logical

structure of the arguments, and because these systems have intrinsic interest, we formulate the

basic facts about symmetric hyperbolic systems in terms of this abstraction.

LetH be a separable real Hilbert space, with inner product 〈·, ·〉 and norm ‖·‖. We will denote by

V ⊂ H a dense subspace, itself a separable Hilbert space with inner product 〈·, ·〉V and norm ‖ ·‖V ,

defining a stronger topology on V than that induced by H. B(H) is the Banach space of bounded

linear operators on H, with the operator (uniform) norm. Bsymm(H) is the subspace of bounded

self-adjoint operators, and B+
symm(H) is the cone of bounded self-adjoint coercive operators. We

suppose that

• A ∈ B+
symm(H), 0 < C∗ ≤ C∗ so that C∗I ≤ A ≤ C∗I.

• B ∈ B(H);
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• Q ∈ L1(R,Bsymm(H)) ∩ C0(R+,B(H)), and is causal, that is, Q(t) = 0 for t < 0;

• P is a skew-adjoint operator with domain V , for which the graph norm is equivalent to ‖ · ‖V .

The kernel Q defines a continuous linear operator R : L2
+(R, H)→ L2

+(R, H) on the space

L2
+(R, H) = {v ∈ L2

loc(R, H) : for each T ∈ R, v ∈ L2((−∞, T ], H)}

with the natural countably normed topology, by

R[u](t) =

∫
Q(t− s)u(s) ds. (12)

R is well-defined since Q is causal. Note that if u ∈ L2
loc(R, H) is causal, that is, suppu ⊂ [T,∞)

for some T ∈ R, then u ∈ L2
+(R, H), R[u] is causal also and suppR[u] ⊂ [T,∞). The formal

(distribution) adjoint

R∗[u](t) =

∫
Q(s− t)u(s) ds

satisfies a similar condition: if suppu ⊂ (−∞, T ] for some T ∈ R, then suppR∗[u] ⊂ (−∞, T ].

The components described above combine to yield the formal evolution problem: find an H-

valued function of t, say u, which solves, in a suitable sense,

Au′ + Pu+Bu+R[u] = f, (13)

in which the right-hand side f is also an H-valued function of t.

We follow (Lions, 1971; Lions and Magenes, 1972; Stolk, 2000) in defining weak solutions u ∈

L2
loc(R, H) of the formal evolution problem (13) by integration against smooth test functions.

Inspection of (13) suggests that a similar constraint must also be placed on the right-hand side:

henceforth, we assume f ∈ L2
loc(R, H). Because the operator kernel Q may have unbounded

support, we must constrain the growth of candidate members of L2
loc(R, H) on the negative half-

axis. Accordingly, a weak solution of the formal evolution problem (13) is a member of u ∈

L2
loc(R, H) satisfying

1. u ∈ L2
+(R, H);

2. ∫
〈u(t), (Aφ′ + Pφ−B∗φ−R∗[φ])(t)〉 dt = −

∫
〈f(t), φ(t)〉 dt; (14)

for all φ ∈ C∞0 (R, V ).
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Note that since R∗[φ] is supported in the half-axis (−∞, sup suppφ], and is square-integrable,

assumption 1. implies that the last term on the left-hand side of (14) is well-defined.

We will reserve the term strong solution to designate a function u ∈ C1(R, H) ∩ C0(R, V ) ∩

L2
+(R, H) which solves (13) pointwise. Clearly a strong solution is a weak solution. Existence of a

strong solution in this sense also implies that f ∈ C0(R, H).

Because of the causal assumption on the convolution kernel Q, existence of a causal weak

solution vanishing for t < T0 implies that the right-hand side f must also be causal, in fact vanish

for t < T0.

Concerning the fundamental questions of uniqueness and existence, we prove

Theorem 5. Assume that H, V , A, B, P , and Q have the properties listed above, and that

f ∈ L2
loc(R, H) is causal. Choose T0 so that supp f ⊂ [T0,∞). Then there exists a unique causal

weak solution u ∈ C0(R, H) of (13) with suppu ⊂ [T0,∞). For every T ≥ T0, there exists CT0,T ≥ 0

depending on T0, T , C∗, C
∗, ‖B‖B(H), and ‖Q‖L1(R,B(H)), so that for any t ≤ T ,

‖u(t)‖2H ≤ CT0,T
∫ t

−∞
ds ‖f(s)‖2. (15)

Regularity in time of the right-hand side implies that the weak solution is strong:

Theorem 6. In addition to the assumptions of Theorem 5, suppose that f ∈ L2
+(R, H)∩Hk

loc(R, H),

k ≥ 1. Then the causal weak solution u of (14) satisfies u ∈ Ck(R, H) ∩ Ck−1(R, V ). For every

T ≥ T0, there exists CT0,T ≥ 0 depending on T0, T , C∗, C
∗, ‖B‖B(H), and ‖Q‖L1(R,B(H)), so that

for any t ≤ T ,

‖u(j)(t)‖2V ≤ CT0,T
j+1∑
l=0

∫ t

−∞
ds ‖f (l)(s)‖2, j = 0, ...k − 1. (16)

in which u(j) denotes the jth time derivative of u. In particular, u ∈ C1(R, H) ∩ C0(R, V ) is a

strong solution of (13). For each j = 0, ..., k, u(j) is the weak solution of (13) with right-hand side

f (j).

Regularity of weak solutions u as functions of the coefficients A,B,Q is expressed through

estimates which are uniform over certain sets of problems (that is, certain sets of coefficients),

which are important enough to merit a definition: given 0 < C∗ ≤ C∗, 0 ≤ CB, 0 ≤ CQ, define

P(C∗, C
∗, CB, CQ) = {(A,B,Q) ∈ B+

symm(H)× B × [L1(R,Bsymm(H)) ∩ C0(R+,B(H))] :
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C∗I ≤ A ≤ C∗I, ‖B‖B(H) ≤ CB, ‖Q‖L1(R,H) + ‖Q‖L∞(R,H) ≤ CQ};

P = ∪{P(C∗, C
∗, CB, CQ) : 0 < C∗ ≤ C∗, 0 ≤ CB, 0 ≤ CQ}. (17)

Strong convergence of the coefficient operators, in an appropriate sense, leads to uniform con-

vergence of the corresponding weak solutions on compact sets in R. For simplicity, and because all

of the examples we have in mind satisfy this restriction, we assume that all of the systems appear-

ing the formulation of this continuity result share the same “spatial” operator P . It is possible to

weaken this assumption, that is, to approximate P as well; we leave the formulation and proof of

this (slightly) stronger result to the reader.

Theorem 7. Suppose that H,V are as described, P : V → H is skew-adjoint, 0 < C∗ ≤ C∗, 0 ≤

CB, 0 ≤ CQ, {(Am, Bm, Qm) : m ∈ N} ⊂ P(C∗, C
∗, CB, CQ), (A,B,Q) ∈ P(C∗, C

∗, CB, CQ), and

1. limm→∞ ‖(Am −A)w‖ → 0 for all w ∈ H;

2. limm→∞ ‖(Bm −B)w‖ → 0 for all w ∈ H;

3. the convolution operators Rm, R with kernels Qm, Q satisfy limm→∞ ‖Rm[w]−R[w]‖L2((−∞,T ]) →

0 for any T ∈ R, all w ∈ L2
+(R, H).

Let um, respectively u, be causal weak solutions of the differential equation (13) with coefficients

(Am, P,Bm, Qm), respectively (A,P,B,Q). and (common) causal right-hand side f ∈ L2
loc(R, H).

Then for any choice of T0 ≤ T ∈ R,

lim
m→∞

‖um − u‖L∞([T0,T ],H) = 0.

With additional regularity of the right-hand side, solutions of (13) have directional (Gâteaux)

derivatives as functions of the coefficient operators:

Theorem 8. Suppose that H,V are as described, P : V → H is skew-adjoint, (A,B,Q) ∈ P,

and f ∈ H1(R, H) is causal. Denote by u ∈ C1(R, H) ∩ C0(R, V ) the causal strong solution of

(13) with these choices of coefficients and right-hand side. Assume that δA, δB ∈ B(H), δA is

self-adjoint, and δQ ∈ L1(R,Bsymm(H))
⋂
C0(R+,B(H)), δQ = 0 for t < 0. Define for h ∈ R

Ah = A+ hδA, Bh = B + hδB, Qh = Q+ hδQ.
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For sufficiently small h, (Ah, Bh, Qh) ∈ P, so that the problem (13) with coefficients Ah, P,Bh, Qh

and right-hand side f has a unique (strong) solution uh ∈ C1(R, H) ∩ C0(R, V ). Denote by

δu ∈ C0(R, H) the weak solution of the formal evolution problem

Aδu′ + Pδu+Bδu+R[δu] = −δAu′ − δBu− δR[u], (18)

in which R (δR) is the convolution operator with kernel Q (δQ), as usual. Then for any choice of

T0 ≤ T ∈ R,

lim
h→0

∥∥∥∥uh − uh
− δu

∥∥∥∥
L∞([T0,T ],H)

= 0. (19)

With the correct choice of topology, the solution is (Fréchet) differentiable as a function of the

coefficients, assuming as in Theorem 8 that the right-hand side is somewhat regular in t. To express

this fact in a form most useful for application to inverse problems, introduce another Hilbert space

W (of “measurements”), and a “sampling” map S : V → W , assumed continuous, Of course S

induces a continuous map : Ck(R, V )→ Ck(R,W ) for any k ∈ N; we abuse notation by writing S

for this induced map also.

For causal f ∈ H1
loc(R, H), define Ff : P 7→ C1(R,W ) by

Ff [A,B,Q] = Su, (20)

in which u ∈ C1(R, H)∩C0(R, V ) is the causal (strong) solution of (13) with coefficients A,P,B,Q

and right-hand side f . It follows from Theorem 6 that Ff is well-defined.

Theorem 9. Suppose that f ∈ Hk
loc(R, H) is causal, k ≥ 2, and view P as an open subset of the

Banach space M = Bsymm(H)× B(H)× [L1(R,Bsymm(H)) ∩ C0(R+,B(H))], with norm

(A,B,Q) 7→ ‖(A,B,Q)‖M = ‖A‖B(H) + ‖B‖B(H) + max(‖Q‖L1(R+,B(H)), ‖Q‖L∞(R+,B(H))).

Then for any T0 ≤ T1 ∈ R, Ff ∈ Ck−1(P, C0([T0, T1],W )).

DISCUSSION

The theory developed in this paper established a number of properties of that the relation between

coefficients and solutions of symmetric hyperbolic integro-differential systems, such as continu-

ity, differentiability, finite domain of influence, and so on. These properties are assumed (usually

without comment) in the applied literature on inverse problems for wave propagation in highly
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heterogeneous materials. The minimal hypotheses required by our theory allow for a degree of

irregularity in the spatial dependence of coefficients which seems adequate to model the hetero-

geneity observed in real materials. The methods of proof date to the middle of the last century,

yet so far as we are aware these results have not previously been explicitly formulated or collected

in one place.

It remains to place our work in the context of related literature, and describe consequences for

the solutions of inverse problems. This section begins with a review of related work on hyperbolic

systems with non-smooth coefficients. Following this review, we discuss several by-products of the

theory with implications for inverse problems in wave propagation: systems with operator coeffi-

cients, recently arisen as a key element of convexifying relaxations for seismic waveform inversion;

computing descent directions for functions on non-reflexive Banach spaces; trace regularity under

additional constraints and implications for the definition of “Dirichlet-to-Neumann” maps; and

various other possible extensions of the theory and open questions.

Prior Art

We begin with a brief overview of prior work on the solution of (1). The well-posedness of sym-

metric hyperbolic systems with regular (smooth) coefficients has been well-understood for decades

(Courant and Hilbert, 1962; Lax, 2006). Some effort has also been devoted to describing solutions

for first- or second-order hyperbolic systems with less-than-smooth (but still continuous) coeffi-

cients, mostly focused on the propagation of regularity along bicharacteristics, or the existence of

traces (for example, (Beals and Reed, 1982; Symes, 1983; Beals and Reed, 1984; Lasiecka, 1986;

Lasiecka and Trigianni, 1989; Bao and Symes, 1991, 1993; Smith, 1998). Those works treating

the continuity or differentiability of the solution as a function of the coefficients have mostly re-

quired more smoothness of the coefficients than is allowed in the present work, or dealt only with

one-dimensional problems (Bamberger et al., 1979; Symes, 1986; Lewis and Symes, 1991; Bao and

Symes, 1996; Salo, 2006; Stefanof and Uhlmann, 2009). An exception is (Fernandez-Berdaguer

et al., 1996), in which (results which imply) a special case of Theorem 2 is established.

A large number of articles have appeared on abstract first- or second-order hyperbolic equations

and related inverse problems, for example (Lavrentiev et al., 1986; Choulli, 1991; Lorenzi and

Ramm, 2001; Ramm and Koshkin, 2001; Awawdeh, 2010; Orlovsky et al., 2010), mostly using the

theory of strongly continuous semigroups (or cosine operators, in the second order case) to obtain
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a hold on well-posedness. Of these, the closest in spirit to the present work is that of Orlovsky

et al. (2010), which treats second order systems via the cosine operator approach but observes that

smoothness in time of data implies that weak solutions are strong solutions, analogous to a crucial

intermediate result in our work. Choulli (1991) established that a first-order abstract integro-

differential initial value problem, resembling those of our abstract framework to be detailed in the

next section, is well-posed, and also proved uniqueness for the solution of a related inverse problem.

The form of the integral term is actually a generalization of our convolutional memory operator, and

the requirement on the “spatial” operator is also a generalization (generates a strongly continuous

semigroup - in the problem considered here, this operator is skew-adjoint, and generates a unitary

group). However Choulli formulates an inverse problem which involves only determining lower-

order terms, rather than the principal part, the inverse problem data does not involve time-like

traces, and Choulli does not investigate the regularity of any analogue of F .

The immediate predecessor of our work is Chapter 2 of the second-named author’s PhD thesis

(Stolk, 2000), which treated second-order hyperbolic systems with nonsmooth coefficients, includ-

ing the displacement formulation of elastodynamics, beginning with the techniques of J.-L. Lions

and his collaborators (Lions, 1971; Lions and Magenes, 1972) but going beyond well-posedness to

study the dependence of solutions on coefficients. The results on strong convergence and Gâteaux

differentiability (Theorems 7 and 8) are direct translations of arguments from this source, as is

the observation that convergence in measure of L∞ multipliers implies strong convergence of the

corresponding multiplication operators on L2 (Lemma 4).

Descent directions

We have shown how to formulate the “forward map” (Ff,m in the notation of Theorem 2) as a

continuously differentiable map on an open subset of a suitable Banach space, with values in a

(subset of a) suitable Hilbert space. Thus least squares objective functions for such problems are

continuously differentiable in a well-defined sense. However, the domain metric specified by the

theory is some version of L∞, in the case of concrete problems of form (1), or the operator norm

in the case of abstract problems (Theorem 9). Thus the ambient Banach space is in all cases

nonreflexive, and does not have the properties required for a sensible definition of gradient, as

explained for instance by Kaltenbacher et al. (2008). Thus differentiability does not necessarily

bring with it natural access to descent directions.

21



Additional information about the derivative is available, however, via the well-known adjoint

state method. For brevity, we explain this construction in the case of the abstract evolution

problem (13) in the differential case and without lower-order term, that is, B,R = 0, and we

proceed formally. With notation as in the statement of Theorem 9, we define

Ff,m : B+
symm(H)→ L2([0, T ],W )

by

Ff,m[A] = S[m]u,

where u ∈ C1(R, H) ∩ C0(R, V ) is the solution of

Au′ + Pu = f ∈ Hk
loc(R, H), f(t), u(t) = 0, t < 0

guaranteed by the theory. If k ≥ 2, then Ff,m is of class C1, and its derivative is given by

DFf,m[A]δA = S[m]δu,

where

Aδu′ + Pδu = −δAu′, δu(t) = 0, t < 0

Suppose that we are provided data d ∈ L2([0, T ],W ). The adjoint state method (Plessix, 2006)

represents the derivative of the least-squares function

Jf,m[A; d] =
1

2
‖Ff,m[A]− d‖2

as follows. Suppose that w is a strong solution of

A′w + Pw = S[m]∗(d−Ff,m[A]); w(t) = 0, t > T. (21)

Then for any δA ∈ Bsymm(H),

DJf,m[A; d]δA =

∫ T

0
dt 〈δAu′(t), w(t)〉. (22)

It is possible to extract a gradient, that is, a direction of fastest ascent for Jf,m, from this repre-

sentation of the derivative. Write (for u, v ∈ H) u ⊗ v for the rank 1 member of B(H) defined by

u ⊗ v(w) = 〈v, w〉u. Such rank-1 operators are very special instances of operators of trace class.

We refer to Conway (1990), pp. 267-268 and 275 for the properties of this subspace of B(H) cited

here, in particular these: the product of a bounded operator and a trace-class operator is of trace
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class; a real-valued linear trace function tr is defined on the trace class, generalizing the trace of

matrices. The adjoint-state expression (22) is equivalent to

DJf,m[A; d]δA = tr

(
δA

∫ T

0
dt u′(t)⊗ w(t)

)
, (23)

well-defined since the integral inside the parenthesis defines a trace-class operator. This trace of

the product defines a duality pairing, expressing the trace class as the “predual” of B(H).

Assuming that f, d are sufficiently smooth in t, the integrand in (23) is well-approximated by

quadrature:

DJf,m[A; d]δA = tr

δA∆t

[T/∆t]∑
n=0

u′(n∆t)⊗ w(n∆t)

 (24)

Linear functionals on B(H) of the form given by the right-hand side of (24) form precisely the

subset of the dual B(H)∗ consisting of functionals continuous in the weak operator topology. Since

the unit ball of B(H) is compact with respect to weak convergence, the functional defined by the

right-hand side of (24) has a maximizer over the ball, which is a candidate for an approximate

gradient of Jf,m at A.

This observation remains correct if A and δA are restricted to subspaces of B(H), for example

L∞ matrix-valued functions as in the definition of symmetric hyperbolic systems (1).

The program outlined in the preceding paragraphs leaves a number of details to be filled in.

For example, actually finding the maximizer of the linear functional in (24) is in some sense a

finite dimensional problem, but not a particularly simple one. Also, the precise relation between

right-hand sides of (23) and (24) remains to be established. Finally, the adjoint state evolution

problem (21) involves a right-hand side (S[m]∗(d− Fm,f [A]) ∈ L2
loc(R, V

∗) outside of the class for

which solutions, strong or weak, have been shown to exist. We will address this latter problem in

the next subsection.

We also note that the gradient, defined as a direction of fastest ascent, is not smooth, or even

necessarily a function, even under hypotheses which guarantee that Jf,m has several derivatives.

This observation leads to various developments in convex optimization, beyond the scope of this

paper. We note merely that Bamberger et al. (1979), a landmark early paper on inverse problems

in wave propagation, addressed this point explicitly.
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Sharpness of trace regularity and source definition

Theorem 2 gives sufficient conditions for the trace of a solution of the symmetric hyperbolic system

to be well-defined and depend smoothly on the coefficients and right-hand side in (1). However

these conditions are only sufficient, not necessary. Under some conditions, the trace of even a weak

solution may be well-defined and depend continuously on the coefficients and right-hand side. We

saw an example of such anomalously well-behaved traces already in the discussion of the advection

equation (6) in section 2, however the phenomenon is much more general.

For example, suppose that the coefficients of (1) are smooth in a neighborhood ω of the boundary

∂Ω and containing the measurement surface Γ, that the right-hand side is supported outside of

this neighborhood, and that no rays of geometric optics originating outside this neighborhood

are tangent to the boundary. Then microlocal propagation of regularity shows that the the map

f ∈ H1
0 ([0, T ], L2(Ω \ ω)k) → L2([0, T ], L2(Γ)l) extends continuously to a map L2([0, T ], L2(Ω \

ω)k)→ L2([0, T ], L2(Γ)l). See for example (Symes, 1983; Lasiecka, 1986).

By duality, sources supported on Γ also give rise to well-defined solutions with estimates similar

to those proven in the body of this paper. Combining these two observations leads to definition of

variants of the Dirichlet-to-Neumann map (Sylvester and Uhlmann, 1990) which forms the natural

abstraction of “data” for many inverse problems. These mappings, from suitable (source) data

supported on Γ to other data supported on Γ ( or on another similar surface), thus inherit a

definition and regularity properties for minimally regular coefficient classes as described above.

Nonphysical extension via operator coefficients

Perhaps surprisingly, the results on systems with operator coefficients (Theorems 5 - 9) seem likely

to be useful in themselves. This utility originates in the resistance of inverse problems for hyperbolic

systems to the least-squares (or least-error) approaches that have successfully treated many other

types of inverse problems in science and engineering. Natural objective functions change rapidliy

in some directions, not in others, and appear to possess many stationary points far from any useful

model estimate, a nearly fatal feature for variants of Newton’s method, often the only feasible

approach to model estimation (Gauthier et al., 1986; Santosa and Symes, 1989).

The last-named author has suggested that use of operator coefficients as an extension of normal

continuum physics could conceivably convexify the normal least-squares objective (Symes, 2008).
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Far from an arbitrary introduction of additional degrees of freedom, this reformulation of the inverse

problem is closely related to well-tested ideas in seismic data processing, and has already a partial

theoretical justification (Stolk et al., 2009; Shen and Symes, 2008). Very recently, implementations

of extended least squares inversion using operator coefficients have produced very promising early

results (Biondi and Almomin, 2012) which tend to support the convexification hypothesis.

And so on...

The fundamental model problem (1) does not include static differential constraints, so the results

established above do not apply directly to Maxwell’s equations, for example. We suspect that the

theory can be extended to accommodate such problems.

Imposition of additional regularity requirements on coefficient matrices, beyond boundedness

and measurability, leads to existence of well-behaved solutions with more regularity, and (by duality)

less regularity as well. Stolk (2000) offers some results concerning second-order problems with

additional regularity of both coefficients and data.

Both physical heuristics and numerical evidence for inverse problems in seismology (Virieux

and Operto, 2009) suggest strongly that the mapping F is more linear when the right-hand side

is smoother in time. Estimates similar to those developed in the proof of Theorem 9 show that

for right-hand sides of the form f(εt), the Newton quotient remainder is O(hε) relative to the

directional derivative, for any (δA, δB, δQ) not in the null space of DF . This observation can be

developed into a theoretical justification of the frequency continuation strategy employed in every

successful contemporary algorithm for least squares inversion of seismic data.

THE ENERGY INEQUALITY

Define the energy E(t) of a weak solution u of (13) by

E(t) =
1

2
〈u(t), Au(t)〉 (25)

It follows from the definition of weak solution that E is well-defined almost everywhere, and locally

integrable. Because A is positive-definite,

C∗‖u(t)‖2 ≤ E(t) ≤ C∗‖u(t)‖2 (26)
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hold for almost all t ∈ R, for suitable C∗ ≥ C∗ > 0.

Remark. In the linear acoustics and viscoelasticity examples described earlier in this paper, E(t)

is precisely the mechanical (kinetic plus potential) energy of the dynamical field u at time t.

In this and the following sections, we will use C to denote a generic nonnegative constant

depending on C∗, C
∗, ‖B‖B(H), and ‖Q‖L1(R,B(H)), and possibly on other quantities as noted.

We shall repeatedly use the following property of weak solutions:

Proposition 1. Suppose that u ∈ L2
loc(R, H) is a weak solution of (13). Then for any η ∈ C∞0 (R),

the mollification η ∗ u is a strong solution of (13) with right-hand side η ∗ f , and in fact

η ∗ u ∈ C∞(R, V ). (27)

Remark: In applications such as the acoustic and viscoelastic systems described earlier, H and

V are function spaces, and membership in V entails additional regularity beyond that required for

membership in H. In such contexts, the content of this theorem is that smoothing in time also

“smooths in space”, in the sense that the values of the smoothed weak solution are confined to the

subspace V .

Proof. Choose the test function φ in (14) to have the special form φ(s) = η(t− s)w, where t ∈ R,

w ∈ V , and η ∈ C∞0 (R). Then

〈η ∗ u(t), Pw〉 =

〈∫
η(t− s)u(s) ds, Pw

〉
=

∫
〈u(s), P (η(t− s)w)〉 ds

=

∫ [
〈u(s), Aη′(t− s)w +B∗η(t− s)w

+R∗[η(t− ·)w](s)〉
]
ds− 〈η ∗ f(t), w〉

= 〈A(η′ ∗ u)(t) +B(η ∗ u)(t) +R[η ∗ u](t)− (η ∗ f)(t), w〉, (28)

where the third equality is simply a rearrangement of (14) with the special choice of test function

φ(s) = η(t − s)w mentioned above, and the last holds amongst other reasons because R is also

convolutional. The right-hand side of (28) is bounded by a w-independent multiple of ‖w‖H ,

therefore so is the left. Therefore η ∗ u takes values in the domain D(P ∗) of the adjoint P ∗ for
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any η ∈ C∞0 (R). But P is skew-adjoint, so D(P ∗) = D(P ) = V . Therefore we can shift P to the

left-hand side of the inner product on left-hand side of (28), to obtain

〈−P (η ∗ u)(t), w〉 = 〈A(η′ ∗ u)(t) +B(η ∗ u)(t) +R[η ∗ u](t)− (η ∗ f)(t), w〉. (29)

As (29) holds for every w ∈ V and V ⊂ H is dense, it follows that

−P (η ∗ u)(t) = A(η′ ∗ u)(t) +B(η ∗ u)(t) +R[η ∗ u](t)− (η ∗ f)(t), (30)

that is, (13) is satisfied pointwise in t.

Since the right-hand side of (30) is of class C∞(R, H), so is the left-hand side. Denote by

Tδt ∈ B(L2
loc(R, H)) the translation operator by δt, defined by Tδtu(t) = u(t+ δt). For each k ∈ N,

let

∆k,δt = δt−k
mk∑

j=−mk

ak,jT
j
δt

be a finite difference operator for which u ∈ C0(R, H) has k derivatives if and only if ∆i,δtu

converges pointwise in t for each i = 1, ..., k to u(i) as δt → 0. From (30) it follows that for each

k ∈ N,

−∆k,δt(P (η ∗ u))(t) = −P (∆k,δt(η ∗ u)(t))

= ∆k,δt(A(η′ ∗ u) +B(η ∗ u) +R[η ∗ u]− η ∗ f)(t). (31)

Since the right-hand side of (31) converges for each t, so does the left-hand side, both versions, as

δt → 0. Thus ∆k,δt(η ∗ u)(t) converges in the graph norm of P , hence in the sense of ‖ · ‖V , as

δt→ 0 for each t ∈ R, k ∈ N. Thus η ∗ u ∈ C∞(R, V ).

Proposition 2. Let u ∈ L2
loc(R, H) be a weak solution of (13), E ∈ L1

loc(R) its energy as defined

in (25). Then

• after modification on a set of measure zero, E is continuous;

• if in addition f is causal, supp f ⊂ [T0,∞), then for any T ∈ R there exists CT0,T ≥ 0 so

that for t ∈ (−∞, T ],

E(t) ≤ CT0,T
∫ t

−∞
‖f‖2. (32)
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Proof. Let {ηn ∈ C∞c (R)} be a sequence of mollifiers approximating the Dirac delta distribution:

explicitly, ηn(t) = nη(nt), where

η ∈ C∞0 (R), η ≥ 0,

∫
η(t) dt = 1, supp η ⊂ [−1, 1]. (33)

Define

En(t) =
1

2
〈(ηn ∗ u)(t), A(ηn ∗ u)(t)〉. (34)

Since ηn ∗ u→ u in L2
loc(R, H), En → E in L1

loc(R). Thanks to Proposition 1, ηn ∗ u ∈ C∞(R, V )

is a strong solution of (13) for each n ∈ N, with f replaced by ηn ∗ f .

For each n, En is smooth; differentiating En, obtain for any s, t ∈ R

En(t)− En(s) =

∫ t

s

dEn
ds

(τ) dτ

=

∫ t

s
〈(ηn ∗ u)(τ), A(ηn ∗ u)′(τ)〉 dτ

=

∫ t

s
[−〈(ηn ∗ u)(τ), (P (ηn ∗ u)(τ) +B(ηn ∗ u)(τ) +R[ηn ∗ u])(τ)〉

+ 〈(ηn ∗ f)(τ), (ηn ∗ u)(τ)〉] dτ

=

∫ t

s
[−〈(ηn ∗ u)(τ), (B(ηn ∗ u)(τ) +R[ηn ∗ u])(τ)〉

+ 〈(ηn ∗ f)(τ), (ηn ∗ u)(τ)〉] dτ. (35)

thanks to the skew-symmetry of P .

Since convolution with η commutes with the convolution operator R, and with the actions of

the other operators appearing in (13), the identity (35) implies that

|En(t)− En(s)| =

∣∣∣∣∫ t

s

dEn
dτ

(τ) dτ

∣∣∣∣
≤

∫ t

s

[
|〈ηn ∗ (Bu(·))(τ), ηn ∗ u(τ)〉|

+|〈(ηn ∗R[u])(τ), ηn ∗ u(τ)〉|

+|〈ηn ∗ f(τ), ηn ∗ u(τ)〉|
]
dτ

≤ (‖B‖+ 1)

(∫ t

s
‖(ηn ∗ u)(τ)‖2 dτ

)
+

∫ t

s
(‖(ηn ∗R[u])(τ)‖2 + ‖(ηn ∗ f)(τ)‖2) dτ (36)

Since u, R[u], and f are locally square-integrable, for each t ∈ R and ε > 0, there exist ∆t(t, ε) > 0

and an N(t, ε) ∈ N so that for |s− t| < ∆t(t, ε) and n > N(t, ε),∫ t+1/n

s−1/n
‖u‖2 < ε,

∫ t+1/n

s−1/n
‖R[u]‖2 < ε, and

∫ t+1/n

s−1/n
‖f‖2 < ε,
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whence (36) implies that for n > N(t, ε), |s− t| < ∆t(t, ε),

|En(t)− En(s)| < Cε. (37)

Continuity of En implies existence of ∆t(t, ε) > 0 so that for |s− t| < ∆t(t, ε) and n ≤ N , |En(t)−

En(s)| < Cε. Thus the inequality (37) holds for all n ∈ N if s satisfies |s−t| < min(∆t(t, ε),∆t(t, ε)).

Since t ∈ R, ε > 0 are arbitrary, we have shown that the sequence {En} ⊂ C0(R) is equicontinuous.

Choose T0 ≤ T ∈ R: it follows from the definition (34) and Young’s inequality that∫ T

T0

En ≤ C
∫ T+1

T0−1
‖u‖2 (38)

is bounded independently of n. For t ∈ [T0, T ],

(T − T0)En(t) =

∫ T

T0

(En(t)− En(s)) ds+

∫ T

T0

En(s) ds (39)

Apply Young’s inequality to the convolutions with ηn appearing in the inequality (36) to conclude

that for T0 ≤ s, t ≤ T ,

|En(t)− En(s)| ≤ C
∫ T+1

T0−1
(‖u‖2 + ‖R[u]‖2 + ‖f‖2). (40)

Taken together, (38), (39) and (40) imply that {En} is a bounded subset of C0([T0, T ]). According

to Ascoli’s theorem, {En} is precompact in C0([T0, T ]), hence a subsequence converges uniformly to

a continuous limit. Since the subsequence is necessarily also L1-convergent, and T ∈ R is arbitrary,

the first assertion of the theorem is established.

In view of the continuity of E, we may take the limit n → ∞ on both sides of the inequality

(36) along the uniformly convergent subsequence whose existence we have just established. Since

ηn ∗ u→ u in L2([T0, T ], H), the right hand side converges, and we obtain

|E(t)− E(s)| ≤ C
∫ t

s
(‖u‖2 + ‖R[u]‖2 + ‖f‖2). (41)

We have assumed u to be causal, but this assumption has not appeared in the reasoning up to

now. It allows us to take s → −∞ in (41). In view of the equivalence of
√
E and the norm ‖ · ‖

(inequalities (26)), the inequality (41) implies that

E(t) ≤ C
∫ t

−∞
(E + ‖f‖2).

Gronwall’s inequality then yields the second conclusion.
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Corollary 2. The energy E of a weak solution u of (13), as defined above, satisfies for any s, t ∈ R

E(t)− E(s) =

∫ t

s
〈−Bu(τ)−R[u](τ) + f(τ), u(τ)〉 dτ. (42)

Proof. Continuity of E and convergence of ηn ∗ u to u in L2
loc(R, H) allows us to take limits on

both sides of (35).

Corollary 3. Suppose that u1, u2 ∈ L2
loc(R, H) are causal weak solutions of (13). Then u1 = u2.

Proof. The conclusion follows immediately from the energy inequality (32), applied to the difference

u = u1 − u2, which is a weak solution with f ≡ 0.

Corollary 4. Suppose that u ∈ L2
loc(R, H) is a causal weak solution of (13). Then u ∈ C0(R, H).

Proof. For δt ∈ R, denote by uδt the member of L2
loc(R, H) defined by uδt(t) = u(t + δt). Then

uδt is a causal weak solution (the only one, thanks to Corollary 3) of (13) with f replaced by

fδt ∈ L2(R, H), defined by fδt(t) = f(t+ δt). The translation group acts strongly continuously on

L2, i.e. ‖fδt − f‖L2(R,H) → 0 as δt → 0. Since the difference uδt − u is a causal solution of (13)

with right-hand side fδt − f , it follows immediately from (32) that ‖uδt(t)− u(t)‖H → 0 as δt→ 0

for any t ∈ R, that is, u ∈ C0(R).

Corollary 5. Suppose that

1. K ⊂ B(H) is a bounded set;

2. L ⊂ B(V,H) is a bounded set of skew-adjoint operators on H with (common) domain V ,

whose graph norms are all equivalent (to each other and to the norm in V );

3. M ⊂ B(H) is a bounded set of self-adjoint, uniformly positive definite operators: there exist

constants 0 < C∗ ≤ C∗ so that for all A ∈M,

C∗I ≤ A ≤ C∗I;

4. Q ⊂ L1(R,Bsymm(H))
⋂
C0(R+,B(H)) is a bounded set of causal operator-valued functions:

if Q ∈ Q, then Q(t) = 0 for t < 0.
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Let the set P ⊂ M × L × K × Q parametrize a family of formal evolution problems of for (13),

with coefficients A ∈ M, P ∈ L, B ∈ K, and Q ∈ Q, with common right-hand side f ∈ L2(R, H),

and let U ⊂ L2
loc(R, H) be a corresponding family of causal weak solutions. Then U ⊂ C0(R, H) is

equicontinuous.

Proof. That U ⊂ C0(R, H) is the content of the last Corollary. It follows from the proof of the basic

energy estimate (32) that the constant C appearing in its right-hand side may be chosen uniform

over P - indeed, the bounds defining the sets listed in conditions 1-4 above are precisely those on

which our constants, canonically notated C, depend. Therefore (32) implies that for u ∈ U ,

‖u(t+ δt)− u(t)‖2 ≤ 1

C∗
Euδt−u(t) ≤ C

∫ t

−∞
‖fδt − f‖2 = C

∫ t+δt

t
‖f‖2

from which a uniform modulus of continuity follows.

Additional regularity in time of the right-hand side f translates into additional regularity in

time of the solution.

Corollary 6. Suppose that f ∈ L2
T0

(R, H) ∩ Hk
loc(R, H), k ∈ N, and u ∈ L2

loc(R, H) is a weak

solution of (13). Then u ∈ Ck(R, H); moreover, for j = 1, ...k, u(j) is the weak solution of (14)

with right-hand side f (j).

Proof. Corollary 4 is the case k = 0.

The case k = 1 provides the induction step, so we discuss it first. Since f ∈ H1
loc(R, H), using

the notation of the proof of Corollary 4,

1

δt
(fδt − f)→ f ′ as δt→ 0

in mean square. The energy estimate (32) implies that for each t,

1

δt
(uδt(t)− u(t))

has a limit as δt → 0, whence u is differentiable and u′ satisfies (14) with right-hand-side f ′. The

previous Corollary shows that u′ is continuous.

This argument also serves as the induction step to establish the assertion of the Corollary for

k > 1.

Smoothing the solution in time leads to a different sort of “regularity”:
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Corollary 7. Suppose that T0 ∈ R, f ∈ L2
T0

(R, H), ∆T > 0, η ∈ C∞0 ((−∆T,∆T )), and let u

denote a causal weak solution of (14). Then for every T ≥ T0, there exists CT0,T,∆T ≥ 0 depending

on T0,T , ∆T , ‖η‖L1(R), ‖η′‖L1(R), C∗, C
∗, ‖B‖B(H), and ‖Q‖L1(R,B(H)), so that for any t ≤ T ,

‖(η ∗ u)(t)‖2V ≤ CT0,T,∆T
∫ T+∆T

−∞
ds ‖f(s)‖2. (43)

Remark: Note that this inequality is a pointwise bound on η ∗u in the norm of V . In applications,

V is compactly embedded in H, so this is potentially a much stronger statement than the obvious

H-norm bound which follows directly from (32).

Proof. The left hand side makes sense, thanks to Proposition 1. The identity (28) may be re-written

as

−〈P (η ∗ u)(t), w〉 =

∫ [
〈u(s),−Aη′(t− s)w +B∗η(t− s)w +R∗[η(t− ·)w](s)〉

]
ds− 〈η ∗ f(t), w〉

for any w ∈ H (not just V !). Since supp(η) ⊂ [−∆T,∆T ], for any t ≤ T ,,

|〈P (η ∗ u)(t), w〉| ≤ C‖w‖
∫ T+∆T

−∞
ds (‖u(s)‖+ ‖f(s)‖) (44)

≤ CT0,T,∆T ‖w‖
(∫ T+∆T

−∞
ds ‖f(s)‖2

) 1
2

(45)

thanks to the the energy estimate (32) and by-now familiar use of Young’s inequality and the

assumptions on the various operators and quantities in the problem formulation. Now choose

w = P (η∗u)(t) to obtain a bound on its H-norm. In combination with (32) and Young’s inequality,

this estimate implies a bound of the required form on (η ∗ u)(t) in the graph norm of P , that is, in

the norm of V .

EXISTENCE OF WEAK SOLUTIONS: PROOFS OF THEOREMS 5 AND 6

The proof of existence follows the pattern laid out by Lions (1971), which in turn echoes Cauchy’s

proof of the fundamental theorem of ordinary differential equations. We define a Galerkin method,

show that it converges, and finally that the limit is a weak solution. Note that no rate of convergence

follows from this argument; in fact it is easy to see that none can be expected. Of course, Proposition

2 has already assured that the solution so constructed is the only solution.
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Proof. of Theorem 5:

In view of the energy estimate (Proposition 2), at most one such solution exists, and any

sequence of weak solutions, corresponding to an L2(R, H)-convergent sequence of right hand sides

f , must itself be L2(R, H)-convergent. Therefore it suffices to establish existence of solutions for a

L2(R, H)-dense set of right hand sides. In particular, we may assume that f ∈ C0(R, H), without

loss of generality.

Since V is separable (with respect to the graph norm of P ) and V ⊂ H is dense, countable

linearly independent subsets {wk}∞k=1 ⊂ V exist for which finite linear combinations are dense in

V , hence in H. Without loss of generality, assume that {wk}∞k=1 is (H-) orthonormal: 〈wk, wl〉 =

δkl, k, l ∈ N.

Define m×m matrices Am (symmetric positive definite), Pm and Bm by

Amkl = 〈Awk, wl〉, (46)

Pmkl = 〈Pwk, wl〉, (47)

Bm
kl = 〈Bwk, wl〉, (48)

for 1 ≤ k, l ≤ m, and the operator Rm on L2
loc(R)m defined analogously to (12) by

RmUm(t) =

∫ t

−∞
〈Qm(t− s)Um(s) ds, Qmkl(t)〉 ds = 〈Q(t)wk, wl〉, 1 ≤ k, l ≤ m.

Note that Qm ∈ L1(R,Bsymm(Rm))
⋂
C0(R+,B(Rm)) is causal (Qm(t) = 0, t < 0).

Define Fm ∈ C0(R)m by

Fmk (t) = 〈f(t), wk〉, 1 ≤ k ≤ m.

A minor modification of a standard contraction mapping argument (see for example Coddington

and Levinson (1955)) shows that for each m ∈ N, the initial value problem

Am
dUm

dt
+ PmUm +BmUm +RmUm = Fm,

Um(t) = 0, t < T0. (49)

has a unique solution Um ∈ C1(R,Rm).

For each m ∈ N, define um ∈ C1(R, V ), fm ∈ C0(R, H) by

um(t) =
m∑
k=1

Umk (t)wk, fm(t) =
m∑
k=1

Fmk (t)wk.
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Then the system (49) satisfied by Um, together with the H-orthonormality of {wk}, implies that

um is the weak solution of the evolution equation (13) with right-hand side fm. The energy

estimate (32) shows that the sequence {um} is bounded in L2
loc(R, H), hence weakly precompact

in L2
loc(R, H) thanks to the Tychonoff-Alaoglu theorem and a diagonal process argument. Denote

by {um(l)} a weakly convergent subsequence, and by u its weak limit. Since um(t) = 0 for t < T0

and all m ∈ N, the same is true for u.

To see that the limit u is a weak solution of (13), introduce for each m0 ∈ N test functions ψ

of the form

ψ =

m0∑
k=1

φk ⊗ wk, φk ∈ C∞0 (R). (50)

For l sufficiently large that m(l) > m0, 〈fm(t), ψ(t)〉 = 〈f(t), ψ(t)〉, 〈Pum(l), ψ〉 = −〈um(l), Pψ〉,

etc. So ∫
〈um(l), Aψ

′ + Pψ −B∗ψ −R∗[ψ]〉 dt = −
∫
〈f, ψ〉 dt.

Letting l→∞, it follows that u satisfies (14) for all test functions ψ of the form given in equation

(50). Since linear combinations of wm’s are dense in V , the set of functions of the form (50) is

dense in C1
0 (R, V ), whence u is a weak solution of (13).

Proof. of Theorem 6:

We give the proof for k = 1; the general case follows by a straightforward induction argument.

Choose a Dirac sequence {ηn : n ∈ N} ⊂ C∞0 (R) as in the proof of Proposition 2. According

to Corollary 7, ηn ∗ u ∈ Ck(R, V ) for each n ∈ N. According to Corollary 6, u ∈ C1(R, H), so the

first term on the right-hand side of (28) may be integrated by parts to yield

〈(ηn ∗ u), Pw〉 = η ∗ 〈u, Pw〉 (51)

= ηn ∗ 〈Au′ +Bu+R[u]− f, w〉 (52)

for any w ∈ V . Both sides are continuous in t, so the limit as n→∞ is valid pointwise. Thus

〈u(t), Pw〉 = 〈Au′(t) +Bu(t) +R[u](t)− f(t), w〉 (53)

for any w ∈ V , t ∈ R. Pointwise bounds on ‖u(t)‖ (Proposition 2), ‖u′(t)‖ (Corollary 6) and the

standing assumptions on the various operators imply that

〈u(t), Pw〉 ≤ CT0,T ‖w‖
(∫ T

−∞
[‖f‖2 + ‖f ′‖]2

) 1
2
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for all w ∈ V , t ∈ (−∞, T ] (and any T , but the constant CT0,T depends on T0 and T ), which shows

that u(t) ∈ D(P ∗) = D(P ) = V for each t ∈ R. Thus

〈Pu(t), w〉 ≤ CT0,T ‖w‖
(∫ T

−∞
[‖f‖2 + ‖f ′‖]2

) 1
2

for all w ∈ H, t ∈ (−∞, T ]; taking w = Pu(t), obtain the pointwise bound (16) for k = 1.

That u ∈ C0(R, V ) follows exactly as in the proof of Corollary 4, via the strong continuity of the

translation group on H1(R, H).

CONTINUOUS DEPENDENCE ON PARAMETERS: PROOFS OF

THEOREMS 7, 8, AND 9

The proof of Theorem 7 divides into three steps. In the first step (Lemma 1), we show that the

assumptions of the theorem imply L2
loc(R, H)-weak convergence of the sequence of solutions. The

second step leverages this result to show that the sequence converges H-weakly, pointwise (Lemma

2). The last step combines these two observation with strong convergence of the coefficients to

obtain convergence in norm of the solution sequence.

Lemma 1. Under the conditions of Theroem 7, um converges weakly to u in L2
loc(R, H).

Remark. In order that Rm converge to R pointwise, as assumed in the statement of the preceding

theorem, it is sufficient that Qm → Q uniformly in R+.

Proof. The bounds implied by the energy estimate (Proposition 2) are uniform over bounded sets of

coefficients as described in the statement of the theorem. Therefore {um} is bounded in L2
loc(R, H),

hence has an L2
loc(R, H)-weakly convergent subsequence um(l), with limit ū ∈ L2

loc(R, H). Note

that L2
loc(R, H)-weak convergence implies convergence in the sense of H-valued distributions on R.

Choose a test function φ ∈ C∞0 (R, V ): then

−
∫
〈f(s), φ(s)〉 ds =

∫
〈um(l)(s), (Am(l)φ

′ + Pm(l)φ−B∗m(l)φ−R
∗
m(l)[φ])(s)〉 ds (54)

=

∫
〈ū(s), (Aφ′ + Pφ−B∗φ−R∗[φ])(s)〉 ds (55)

+

∫
〈(um(l)(s)− ū(s)), (Aφ′ + Pφ−B∗φ−R∗[φ])(s)〉 ds (56)

+

∫ 〈
um(l)(s), ((Am(l) −A)φ′ + (Pm(l) − P )φ (57)

−(Bm(l) −B)∗φ− (Rm(l) −R)∗[φ])(s)
〉
ds (58)
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The second term vanishes in the limit l → ∞ because of the weak convergence of um(l) to ū. The

coefficients Am, ... range over bounded sets of operators, so we may replace φ and φ′ in the third

term with simple V -valued functions, taking finitely many values, at the price of an arbitrarily

small perturbation in this term, uniformly in l. However the strong convergence of the coefficient

operators assumed in the statement of the theorem then implies that the resulting integrals become

arbitrarily small as l → ∞. Thus ū is a weak solution of the problem (13), and must therefore

be the same as the (unique) weak solution u constructed in the preceding section. Thus no other

weak accumulation point of the bounded sequence {um} may exist, hence um ⇀ u in L2
loc(R, H)

as claimed.

Lemma 2. Under the conditions of Theorem 7, um converges to u weakly, pointwise in t ∈ R and

uniformly on compact sets. That is, um(t) ⇀ u(t) for all t ∈ R, and for any w ∈ H, T0 ≤ T ∈ R,

lim
m→∞

|〈um − u,w〉|L∞([T0,T ]) = 0.

Proof. According to Corollary 5, the conditions described in the statement of Theorem 7 imply

that {um : m ∈ N} is equicontinuous, hence uniformly equicontinuous on compact sets. Choose

T0 ≤ T ∈ R. Given ε > 0, choose ∆t > 0 so that if |δt| < ∆t, t ∈ [T0, T ], then

‖um(t+ δt)− um(t)‖ < ε, m ∈ N; ‖u(t+ δt)− u(t)‖ < ε,

which implies that∥∥∥∥um(t)− 1

2∆t

∫ t+∆t

t−∆t
um

∥∥∥∥ < ε, m ∈ N;

∥∥∥∥u(t)− 1

2∆t

∫ t+∆t

t−∆t
u

∥∥∥∥ < ε.

However, according to Lemma 1, for any w ∈ H,

1

2∆t

∫ t+∆t

t−∆t
〈um − u,w〉 =

∫ 〈
um − u,w

1

2∆t
1[t−∆t,t+∆t]

〉
→ 0, m→∞.

Therefore, assuming without loss of generality that ‖w‖ = 1,

|〈um(t)− u(t), w〉| ≤ 3ε

for m sufficiently large, t ∈ [T0, T ]. Since T0, T, and ε > 0 are arbitrary, the proof is complete.

We require one more fact about the memory operators R:
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Lemma 3. Suppose that {Qm : m ∈ N} ⊂ L1(R,Bsymm(H))∩C0(R+,B(H)) defines a sequence of

operators Rm : L2
+(R, H)→ L2

+(R, H) converging strongly to zero. Let K ⊂ L2
+(R, H) be bounded,

and assume that all u ∈ K are causal, with common support suppu ⊂ [T0,∞). Then for any

sequence {um : m ∈ N} ⊂ K, and any v ∈ L2
loc(R, H), any T ∈ R,∫ T

−∞
dt 〈v(t), Rm[um](t)〉 → 0, m→∞

Proof. ∫ T

−∞
dt

∫ t

−∞
ds 〈v(t), Rm[um](t)〉 =

∫ T

−∞

∫ t

T0

ds 〈v(t), Qm(t− s)um(s)〉

=

∫ −T0
−T

dσ

∫ σ

−T
dτ 〈um(−σ), Qm(σ − τ)v(−τ)〉

=

∫
dt 〈1[−T,−T0](t)ǔm(t), Rm[1[−T,−T0]v̌](t)〉.

Note that we have used the symmetry of Qm, and it is for this reason that the assumption was intro-

duced. According to the hypothesis, ‖Rm[w]‖L2((−∞,t]) → 0 as m→∞ for any w ∈ L2
+(R, H), t ∈

R. Setting t = −T0, w = 1[−T,−T0]v̌. Since K ∈ L2
caus(R, H) is bounded, the sequence

{‖1[−T,−T0](t)ǔm‖L2(R,H)} ⊂ R

is bounded, whence the conclusion follows via the Cauchy-Schwarz inequality.

Proof. (of Theorem 7) We will use repeatedly the algebraic identity: for K,L ∈ B(H), v, w ∈ H,

〈v,Kv〉 − 〈w,Lw〉 = 〈v − w,K(v − w)〉+ 〈v − w,Lw〉

+〈w,L(v − w) + 〈v, (K − L)w〉+ 〈w, (K − L)(v − w)〉.

If K and L are symmetric, this identity simplifies to

〈v,Kv〉 − 〈w,Lw〉 = 〈v − w,K(v − w)〉+ 2〈v − w,Lw〉+ 〈2v − w, (K − L)w〉

Application of the second version of this identity with v = um, w = u,K = Am, L = A yields

〈um, Amum〉 − 〈u,Au〉 = 〈um − u,Am(um − u)〉

+〈2um − u, (Am −A)u〉+ 2〈um − u,Au〉. (59)
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The right-hand side f in the formal evolution equation (13) for both um and u vanishes for suffi-

ciently large negative t, else u could not be causal, but then um and u must vanish on a common

(negative) half-axis, thanks to Corollary 3. The energy identity (42) implies that

〈um, Amum〉 − 〈u,Au〉(t)

= −
∫ t

−∞
[〈Bmum, um〉 − 〈Bu, u〉+ 〈Rm[um], um〉 − 〈R[u], u〉 − 〈f, um − u〉].

Application of the algebraic identities stated above shows that the right-hand side is

= −
∫ t

−∞
[〈um − u,Bm(um − u)〉+ 〈2um − u, (Bm −B)u〉+ 2〈um − u,Bu〉

〈um − u,Rm[um − u]〉+ 〈um, Rm[u]−R[u]〉+ 〈u,Rm[um − u]−R[um − u]〉

+〈um − u,R[u]〉+ 〈u,R[um − u]〉+ 〈f, um − u〉]. (60)

Identities (59) and (60) combine to yield

〈um − u,Am(um − u)〉(t) = −
∫ t

−∞
〈Bm(um − u) +Rm[um − u], um − u〉+ gm(t), (61)

in which gm ∈ C0(R) is defined by

gm(t) = −〈2um(t)− u(t), (Am −A)u(t)〉 − 2〈(um − u)(t), Au(t)〉

−
∫ t

−∞
[〈2um − u, (Bm −B)u〉+ 2〈um − u,Bu〉

+〈um, Rm[u]−R[u]〉+ 〈u,Rm[um − u]−R[um − u]〉

+〈um − u,R[u]〉+ 〈u,R[um − u]〉+ 〈f, um − u〉]. (62)

Since the Bm’s are uniformly bounded operators on H and the Rm’s are uniformly bounded oper-

ators on L2((−∞, t], H) for every t ∈ R (with norm independent of t), (61) implies that

‖um − u‖2(t) ≤ C〈um − u,Am(um − u)〉(t) ≤ C
∫ t

−∞
‖um − u‖2 + |gm(t)|. (63)

in which C means something different each time it occurs, as before, but depends on the quantities

indicated the second section.

Select T0 for which u(t) = um(t) = 0 for all t < T0,m ∈ N. Choose T ∈ R. Application of

Gronwall’s inequality to (63) yields, for T0 ≤ t ≤ T and C depending on T along with everything

else,

‖um − u‖2(t) ≤ CT−T0 |gm|(t). (64)

in which CT−T0 depends on T − T0 in addition to the standard dependencies.
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It remains to see that gm(t) → 0 uniformly in t ∈ [T0, T ], as m → ∞. The first term in

(62) tends to zero pointwise (in t) thanks to the assumption that Am → A strongly, and to the

energy estimate (Theorem 5) which assures that ‖um − u‖ is bounded uniformly in m ∈ N and

t ∈ [T0, T ]. On the other hand, Corollary 5 and the uniform bounds on {Am : m ∈ N} implied by

the assumption that {Am, Bm, Qm) : m ∈ N} ⊂ P(C∗, C
∗, CB, CQ) in turn imply that the first term

in (62) defines an equicontinuous sequence of continuous functions on [T0, T ]. Since any convergent

subsequence converges pointwise to the zero function, so does the entire sequence, and uniformly.

The second term in (62) tends to zero, uniformly on [T0, T ], thanks to Lemma 2, the third because

Bm → B strongly, the fourth, seventh, eighth and ninth because of Lemma 1 and Theorem 5, the

fifth because Rm → R strongly in L2
+(R, H), the sixth because of Lemma 3.

Remark. This result is sharp, in the sense that nothing stronger than continuity can be expected

without additional constraints on the various components of the formal evolution problem (13). In

particular, the modulus of continuity cannot be uniform in the right-hand side (f ∈ L2(R, H)),

even locally.

For example, the 1D linear advection problem(
1

c

∂u

∂t
− ∂u

∂x

)
(t, x) = f(t, x)

conforms to the setting described above, with H = L2(R). The operator coefficients are: A =

multiplication by the positive constant 1/c, P = ∂/∂x, skew-adjoint with domain V = H1(R), and

B ≡ 0, Q ≡ 0. For any f ∈ L2(R2) (≡ L2(R, H) by Fubini’s Theorem), the causal weak solution is

u[c, f ](t, x) = c

∫ t

−∞
f(τ, x+ c(t− τ))dτ, (65)

in which we have explicitly indicated the dependence of the weak solution on the coefficient 1/c

and the right-hand side f .

Suppose χ ∈ C∞0 (R), suppχ ⊂ [−1, 1], and∫
χ = 1.

For ε > 0, set fε(t, x) = cos((x+ t)/ε)χ(x+ t)χ(x). Then u[1, fε](t, x) = cos((x+ t)/ε)χ(x+ t) for

t > 1, whereas integration by parts shows that

u[c, fε](t, x) = O

(
ε

|c− 1|

)
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for c 6= 1. Thus the modulus of continuity of (c, fε) 7→ u[c, fε](t, ·) ∈ H (for t > 1) cannot be

uniform over the bounded set [a, b] × {fε : ε > 0} ⊂ R × L2(R, H), if 1 ∈ (a, b), and in particular

this map is not locally uniformly continuous. The heuristic reason is that c is the wave speed, so

changing c changes the position of arriving waves. This position shift has unboundedly large impact

if the frequency of oscillation in the solution is allowed to become arbitrarily large. Oscillations in

the data in time translate into oscillations in the solution in space, of similar frequency, because

the problem is hyperbolic.

On the other hand, additional regularity in time of the right-hand side entails more regular

behaviour of the solution, as one might expect since such regularity damps temporal frequencies.

Corollary 8. In addition to the hypotheses of Theorem 7, assume that f ∈ Hk
loc(R, H), k ≥ 1.

Then for any choice of T0 ≤ T ∈ R,

lim
m→∞

‖um − u‖Ck−1([T0,T ],H) = 0.

Proof. Follows directly from Theorems 6 and 7.

Proof. of Theorem 8: The meaning of (18) is that for any φ ∈ C∞0 (R, V ),∫
〈δu,Aφ′ + Pφ−B∗φ−R∗[φ]〉 =

∫
〈δAu′ + δBu+ δR[u], φ〉

= −
∫
〈u, δAφ′ − δB∗φ− δR∗[φ]〉. (66)

On the other hand, both u and uh, h > 0, satisfy (14) with the same right-hand side, so

0 =
1

h

(∫
〈uh, Ahφ′ + Pφ−B∗hφ−R∗h[φ]〉

−
∫
〈u,Aφ′ + Pφ−B∗φ−R∗[φ]〉

)
=

∫
〈uh, δAφ′ − δB∗φ− δR∗[φ]〉

+

∫ 〈
uh − u
h

,Aφ′ + Pφ−B∗φ−R∗[φ]

〉
. (67)

Subtracting (66) from (67) and rearranging, obtain∫ 〈(
uh − u
h

− δu
)
, Aφ′ + Pφ−B∗φ−R∗[φ]

〉
=

∫
〈uh − u, δAφ′ − δB∗φ− δR∗[φ]〉

= −
∫
〈δA(uh − u)′ + δB(uh − u) + δR[uh − u], φ〉. (68)
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In view of equation (68), the Newton quotient remainder

uh − u
h

− δu

is the weak solution of (13) with right-hand side

δA(uh − u)′ + δB(uh − u) + δR[uh − u] ∈ L2
loc(R, H).

In view of Corollary 8 and the energy estimate (Theorem 5) imply that

‖δA(uh − u)′ + δB(uh − u) + δR[uh − u]‖L2((−∞,T ],H) → 0

as h→ 0 for any T ∈ R. The conclusion then follows from anther use of Theorem 5.

Proof. of Theorem 9: we present the case k = 2. The general case follows by an induction argument,

which we omit.

As usual, denote by T0 ∈ R a lower bound for supp f . In the notation of the proof of Theorem

8, u ∈ C2(R, H) ∩ C1(R, V ), thanks to Theorem 6. Therefore the right-hand side of of (18) has

a locally square-integrable derivative, whence the causal weak solution δu actually belongs to the

class C1(R, H) ∩ C0(R, V ). Applying Theorems 5 and 6 repeatedly, one sees that δu satisfies for

any T1 ∈ R

‖δu‖L∞([T0,T1],V ) ≤ CT1−T0‖(δA, δB, δQ)‖P‖f‖H2([T0,T1]).

It follows that the linear map DF [(A,B,Q)] :M→ C0([T0, T1],W ) defined by

DF [(A,B,Q)](δA, δB, δQ) = Sδu

is continuous.

Suppose that (Am, Bm, Qm) → (A,B,Q) in norm (of M). Denote by δum the solution of

(18) with (A,B,Q) replaced by (Am, Bm, Qm). It follows from the definition (equation (18)) that

δum − δu is the (strong) solution of

A(δum − δu)′ + P (δum − δu) +B(δum − δu) +R[δum − δu]

= −[(Am−A)δum+(Bm−B)δum+Rm[δum]−Rm[δu]+δA(um−u)′+δB(um−u)+δR[um−u]]. (69)

Theorem 6 implies that {δum : m ∈ N} is a bounded set in C1((−∞, T1], H) ∩ C0((−∞, T1], V ),

whence in H1
loc((−∞, T1], H) also; moreover supp δum ⊂ [T0,∞) for all m ∈ N. It follows that the
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first three terms on the right-hand side of (69) tend to zero in H1([T0, T1], H). Applying Theorem 7

to u′m−u′, the difference of solutions of equations of the form (13) with the same causal right-hand

side f ′ ∈ H1
loc(R, H), one sees that um − u → 0 in H1([T0, T1], H) also, whence the second three

terms also tend to zero in this sense. Thus the entire right-hand side of (69) tends to zero as

m→∞ in the sense of H1([T0, T1], H). Now it follows from Theorem 6 that

(DF [(Am, Bm, Qm)]−DF [(A,B,Q)])(δA, δB, δQ) = S(δum − δu)→ 0

(in the sense of C0([T0, T1],W ). That is, DF : P ×M → C0[T0, T1],W ) is continuous, and the

theorem is proved in the case k = 2.

SYMMETRIC HYPERBOLIC SYSTEMS: CONTINUOUS DEPENDENCE,

PROOFS OF THEOREMS 1 - 4

For convenience, we repeat the key definitions from the second section.

Recall that k × k symmetric hyperbolic systems take the form

a
∂u

∂t
+ p(∇)u+ bu+ q ∗ u = f in Ω×R; u = 0 for t < 0, (70)

in which the coefficient matrices a, b, and q are k× k, and the k× k matrix differential operator in

the “space” variables x ∈ Ω has symmetric and constant coefficient matrices.

The set of admissible coefficients M ⊂ L∞(Ω,Rk×k
symm)×L∞(Ω,Rk×k)×L1(R+, L

∞(Ω,Rk×k
symm))

is defined by

M(C∗, C
∗, CB, CQ) = {(a, b, q) : C∗I < a(x) < C∗I for all x ∈ Ω, ‖b‖L∞(Ω,Rk×k) < CB,

‖q‖L1(R+,L∞(Ω,Rk×k
symm)) < CQ, q(t) = 0 for t < 0},

M =
⋃
{M(C∗, C

∗, CB, CQ) : 0 < C∗ ≤ C∗, CB, CQ ∈ R+}. (71)

M corresponds to a collection of problems of the form (70), with common p(∇).

The Hibert space of states is H = L2(Ω)k. Provide p(∇) with a dense domain V ⊂ H, and

assume the p(∇) : V → H is skew-adjoint, and that the norm in V is equivalent to the graph norm

of p(∇).

The hypotheses of Theorem 5 are all satisfied, so
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Corollary 9. Suppose that (a, b, q) ∈M , and f ∈ L2
loc(R, H) is causal. Then there exists a unique

weak solution of (70), satisfying for every φ ∈ H1(R, L2(Ω)k)∫ ∞
−∞

dt

∫
Ω
dx [u(−Aφ′ − p(∇)φ+ bφ+ q ∗ φ)− fφ] = 0.

There exists an increasing function C : R+ → R+, depending on C∗, C
∗, and bounds for b, q, so

that for every t ∈ R,

‖u(·, t)‖2L2(Ω)k ≤ C(t)

∫ t

0
dτ‖f(·, τ)‖2L2(Ω)k . (72)

Theorems 1 and 2 now follow directly from Theorems 8 and 9 respectively.

Multiplication by a member of L∞(Ω) defines a continuous map from L∞(Ω) to B(L2(Ω)),

so convergence of the coefficients a, b, q in L∞(Ω) is sufficient to induce uniform, hence strong,

convergence of the corresponding operators, hence convergence of the solutions per Theorem 7.

However, convergence in a weaker sense is also sufficient to induce strong operator convergence.

The key observation is the following result, identical to Lemma 2.8.5 in (Stolk, 2000):

Lemma 4. Let (Ω,A, µ) be a measure space, {rm} ⊂ L∞(Ω, µ) with ‖rm‖L∞(Ω,µ) ≤ R ∈ R+,

{fm} ⊂ L2(Ω, µ) with ‖fm‖L2(Ω,µ) ≤ F ∈ R+ for all m ∈ N. Suppose that rm → 0 in µ-measure.

Then for any g ∈ L2(Ω, µ),

limm→∞

∫
Ω
rmfmgdµ = 0. (73)

Proof. Suppose on the contrary that such sequences {rm}, {fm} and square-integrable g exist, also

an η > 0, for which the left-hand side of (73) remains ≥ η along a common subsequence. Without

loss of generality, renumber the subsequence so that∣∣∣∣∫
Ω
rmfmgdµ

∣∣∣∣ ≥ η, m ∈ N. (74)

Convergence in measure of {rm} means that for any ε > 0,

µ[Ωε(rm)]→ 0 as m→∞, where Ωε(rm) = {x ∈ Ω : |rm(x)| ≥ ε}.

Choose ε so that εF‖g‖L2(Ω,µ) < η/2.

From this definition and the Cauchy-Schwarz inequality, one sees that∣∣∣∣∫
Ω
rmfmgdµ

∣∣∣∣ ≤ ε∫
Ω\Ωε(rm)

|fmg|dµ+R

∫
Ωε(rm)

|fmg|dµ
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≤ εF‖g‖L2(Ω,B,µ) +RF

(∫
Ωε(rm)

g2dµ

) 1
2

<
η

2
+RF

(∫
Ωε(rm)

g2dµ

) 1
2

By passing if necessary to a further subsequence, we may assume that

µ[Ωε(rm)] ≤ 2−m ⇒
∑
m

µ[Ωε(rm)] <∞.

Thus the characteristic functions of the sets Ωε(rm) are almost everywhere convergent to zero as

m→∞. Since |g|2 ∈ L1(Ω, µ), it follows from the Lebesgue Dominated Convergence Theorem that

for large enough m, (∫
Ωε(rm)

g2dµ

) 1
2

<
η

2RF

Thus the left-hand side of (74) can be made smaller than η, a contradiction.

Lemma 5. Suppose that {am}∞m=1 ⊂ L∞(Rn) converges in measure to a ∈ L∞(Rn), and that

Am,m ∈ N and A ∈ B(L2(Rn)) are defined by

(Amu)(x) = am(x)u(x), (Au)(x) = a(x)u(x), u ∈ L2(Rn).

Then Am → A strongly. The same is true for similar sequences of operators on L2(Rn)p defined

by sequences of p× p matrix-valued functions whose components converge in measure.

Proof. In fact, the operators so defined are self-adjoint, and

‖Amu−Au‖2 =

∫
(am − a)[(am − a)u]u→ 0,

as follows from Lemma 4, taking am − a for rm, (am − a)u for fm, and u for g in the notation of

that lemma.

Proof. of Theorem 3: follows immediately from Lemma 5 and Theorem 7.

One way to obtain convergence in measure is via mollification. Let {ηm : m ∈ N} be a Dirac

sequence of mollifiers, as in the proof of Proposition 2. Since a ∈ Lploc(R
d) for any p, ηm ∗ a → a

pointwise almost everywhere, hence in measure. An application of this observation is the finite

speed of propagation property: for solutions of (70), support expands at finite speed. This property

is well-understood for hyperbolic systems with smooth coefficients: for example, Lax (2006), Ch.

4, presents a proof of:
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Proposition 3. In addition to the hypotheses of Theorem 1, suppose that the coefficients in (70)

are smooth (of class C∞(Ω̄)). Then

1. the causal weak solution u ∈ L2
loc(R, H) is smooth: u ∈ C∞(Rn+1)p, and

2. if φ ∈ C∞(Rn) satisfies

a+
∑

pi
∂φ

∂xi
> 0

and supp(f)
⋂
{(x, t) : φ(x) > t} = ∅, then u(x, t) = 0 if φ(x) ≥ t.

Corollary 10. In the setting of Proposition 3, suppose that τ ∈ R satisfies

τa(x) +

n∑
i=1

piξi ≥ 0, x ∈ Rn, |ξ| = 1, a. e. x ∈ Ω. (75)

If x0 ∈ Rn, t0 ∈ R satisfy

f(x, t) = 0 if |x− x0| ≤ τ(t0 − t),

then u(x0, t0) = 0.

Proof. in Proposition 3, take φ(x) = t0 − |x− x0|/τ .

Note that the argument given in (Lax, 2006) does not quite encompass Proposition 3 and

Corollary 10: it does not apply to systems like (70) with memory terms. However the extension is

straightforward.

Proof. of Theorem 4: Using a sequence of mollifiers as before, obtain a sequence {(am, bm, qm) :

m ∈ N} of smooth coefficients converging in measure to (a, b, q). Then the corresponding operators

converge strongly to those induced by (a, b, q). Since (5) holds almost everywhere, it follows that

am satisfies the spectral inequality (75) in Rn for sufficiently large m, whence Corollary 10 implies

that um vanishes in ω. Since, um → u in L2(Ω)k the conclusion follows.
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APPENDIX A

THE SKEW-ADJOINT PROPERTY OF THE ACOUSTIC GRAD-DIV

OPERATOR

We establish skew-adjointness of the operator D, defined formally in (8), by appealing to an auxiliary

result, similar to necessary and sufficient conditions for self-adjointness found in many texts on

functional analysis (for example, Conway (1990)).

Lemma 6. Suppose that H is a Hilbert space, V ⊂ H a dense subspace, and L : V → H a skew-

symmetric linear operator. Then L is skew-adjoint if and only if for any c ∈ R \ {0}, L + cI is

surjective.

Proof. Suppose first that L is skew-symmetric and L+ cI is surjective for every c ∈ R \ {0}. Since

the domain of L is dense, for any such c,

ker(L∗ + cI) = rng(L+ cI)⊥ = {0}.

Choose x ∈ D(L∗), and c ∈ R, c 6= 0. Then there must be y ∈ V so that (L − cI)y = (L∗ + cI)x.

However, since L is skew-symmetric, V ⊂ D(L∗) so (L−cI)y = −(L∗+cI)y = (L∗+cI)x. However,

we just saw that L∗ + cI is injective, so x = −y ∈ V . Thus V = D(L∗) whence L is skew-adjoint.

Conversely, if L is skew-adjoint, there can be no nonzero solutions to (L+cI)x = 0 with nonzero

c, as follows from skew-symmetry. Hence there are no nonzero solutions to (L∗ + cI)x = 0 with

nonzero c, since L = L∗. That is, the kernel of L∗+ cI is trivial for nonzero c, whence the range of

L+cI is dense for any nonzero c. However L is closed (see for instance Conway (1990), Proposition

X.1.6, p. 305), so its range is closed (this is proved just as is a similar fact for closed symmetric

operators, see Conway (1990), Proposition X.2.5, p. 310) thus rng(L+ cI) = H.

Proposition 4. The differential operator p(∇) with domain C∞0 (Ω)4, defined formally by (8),

extends to a skew-adjoint operator P on H with dense domain

V = H1
0 (Ω)×H1

div(Ω).
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Remark: The Hilbert space H1
div(Ω) is the dense subspace of L2(Ω)3 obtained by completing

C1(Ω)3 in the graph norm of the divergence operator. Equivalently, v ∈ L2(Ω)3 belongs to H1
div(Ω)

if and only if there exists C ≥ 0 so that for every φ ∈ H1
0 (Ω),

|〈∇φ,v〉L2(Ω)3 | ≤ C‖φ‖L2(Ω).

Proof. From the definitions, p(∇) extends to P : V → L2(Ω)4. According to Lemma 6, it suffices

to show that for (q,w)T ∈ H, c ∈ R \ {0}, there exists (p,v)T ∈ V for which P (p,v)T = (q,w)T ,

that is,

−∇p+ cv = w,

−∇ · v + cp = q. (A-1)

The first equation is equivalent to the requirement that for φ ∈ H1
0 (Ω),

−〈∇φ,∇p〉+ c〈∇φ,v〉 = 〈∇φ,w〉.

To satisfy the second equation in (A-1), v ∈ H1
div(Ω) necessarily, and

〈∇φ,v〉 = −〈φ,∇ · v〉 = 〈φ, q − cp〉.

Thus (A-1) implies that

−〈∇φ,∇p〉 − c2〈φ, p〉 = 〈∇φ,w〉 − c〈φ, q〉. (A-2)

The left-hand side of (A-2) defines a bounded and coercive (negative-definite) form on H1
0 (Ω) for

any nonzero c, and the right hand side defines a continuous linear form on the same Hilbert space.

The Lax-Milgram Theorem (Yosida (1996), III.7) implies the existence of a unique p ∈ H1
0 (Ω) for

which (A-2) holds for every φ ∈ H1
0 (Ω).

With this choice of p, we are required to solve the second of the two conditions (A-1). In fact,

a solution v0 ∈ H1(Ω)3 ⊂ H1
div(Ω) exists satisfying

‖v0‖H1(Ω)3 ≤ C‖q − cp‖L2(Ω)

with a constant C depending only on Ω. For a proof, see Brenner and Scott (2007), Lemma 11.2.3,

who also give references to other results for domains for polygonal, rather than smooth, boundaries.
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Set v1 = c−1∇p− v0 + c−1w ∈ L2(Ω)3. Then for any φ ∈ H1
0 (Ω),

−c〈∇φ,v1〉 = 〈∇φ,−∇p+ cv0 −w〉

= 〈∇φ,−∇p−w〉 − c〈φ,∇ · v0〉

= 〈∇φ,−∇p−w〉+ c〈φ, q − cp〉

= 0, (A-3)

thanks to (A-2). That is, v1 is divergence-free, in the sense of distributions, and in particular

v1 ∈ H1
div(Ω). Now set v = v0 + v1. Then the first of the two conditions in (A-1) is satisfied by

(p,v) thanks to the definiton of v1, whereas the construction of v0 and the divergence-free property

of v1 imply that the second condition is also satisfied.

Thus we have constructed a solution of (A-1) in V = H1
0 (Ω) × H1

div(Ω) for any c ∈ R \ {0},

whence we conclude that P is skew-adjoint.

APPENDIX B

THE DIFFERENTIAL CASE

If the memory term (convolution operator R) is absent, then initial data determine solutions

uniquely. In this section, we sketch the theory, parallel to that for causal solutions, which holds in

this differential case. We assume throughout this section that Q ≡ 0.

Corollary 11. Suppose that u ∈ L2
loc(R, H) is a weak solution of (13). Then u ∈ C0(R, H).

Proof. Choose φ ∈ C∞(R) so that φ(t) = 1 for t > 1 (say), and φ(t) = 0 for t < −1. Set u+ = φu,

u− = (1−φ)u. It is straightforward to verify that u+ is a causal solution of (13) with f replaced by

f + φ′u ∈ L2(R, H), whence u+ ∈ C0(R, H) according to Corollary4. Likewise t 7→ u−(−t) is also

a causal solution of (13) with D, B replaced by −P , −B, and f replaced by t 7→ −f(−t)+φ′u(−t),

which also belongs to L2(R, H). Thus u− is also continuous, but u = u+ + u−.

Corollary 12. Suppose that u is a weak solution of (13). Then for any s ≤ t ∈ R,

E(t) ≤ E(s) + C

∫ t

s
‖f‖2.
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Proof. The energy identity (42) applies to weak solutions, causal or not. Take into account R = 0,

and use Gronwall’s inequality, the boundedness of B, and the equivalence (26) of the energy with

the norm in H.

Corollary 13. If u1 and u2 are weak solutions of (13) (with the same right-hand side f ∈

L2(R, H)), and u1(s) = u2(s) for some s ∈ R, then u1 ≡ u2.

Proof. Set u = u1 − u2: u is a weak solution with right-hand side f = 0, and u(s) = 0. The result

follows immediately from Corollary 12.

Theorem 10. Suppose that T0 ∈ R and u0 ∈ H. Then there exists a unique weak solution of (13)

for which u(T0) = u0.

Proof. A proof of this result is precisely analogous to the proof of Theorem 5: the solution is

approximated by a Galerkin procedure and the solution of systems of ordinary differential equations,

and the energy in the error estimated (in this instance, via Corollary 12).

Results precisely analogous to those established in the last section hold concerning regular

dependence on the coefficient operators for weak solutions with specified initial data and right-

hand side. We leave the reader to formulate these results, whose proofs are minor variants of those

given above.
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