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Introduction

Seismic reflection inversion

I Over-determined: highly redundant in the observed data;
(Gauthier et al., 1986; Santosa & Symes, 1989; Virieux & Operto, 2009)

Extended model fitting

I Under-determined: model has more degree of freedom than
data.

Data misfit + extended modeling + differential semblance
⇒ smooth objective function of model parameter.
(Symes & Kern 1994, Symes, 1999, Stolk & Symes 2003)
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Waveform Inversion and Extended Modeling

Extended Waveform Inversion: Given data d ∈ D, find m̄ ∈ M̄ so
that (Symes, 1986, 1991; Biondi and Almomin, 2012)

F̄ [m̄] ' d .

I M = {m(x)} physical model space: velocity, density, bulk modulus, ...

I M̄ = {m(x, h)} extended model space, M ⊂ M̄.

I D data space.

I F : M 7→ D forward map: acoustic, elastic ...

I F̄ : M̄ 7→ D extended forward map.

Extended model separation: m̄ ' ml + δm̄.

I Background model is physical.

I Reflectivity is extended.
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Linearized Inversion

Given data d ∈ D, find ml , δm̄ so that

DF̄ [ml ]δm̄ ' d − F [ml ].

DF̄ is the derivative, or Born approximation.
(Symes and Carazzone, 1991; Chauris and Noble, 2001; Mulder and ten

Kroode, 2002; Shen and Symes, 2008; Symes 2008.)

Objective function:

J[ml , δm̄] =
1

2
‖DF̄ [ml ]δm̄ − (d − F [ml ])‖2 +

α2

2
‖Aδm̄‖2

I A annihilator, Aδm = 0 for all δm ∈ M.
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Reduced Objective Function

The value of the reduced objective function is the minimum value
of J for fixed ml

J̃[ml ] = min
δm̄

J[ml , δm̄].

Let
N[ml ] = DF̄ [ml ]

TDF̄ [ml ] + α2ATA

Minimizer of J

δm̄[ml ] = N[ml ]
−1DF̄ [ml ]

T (d − F [ml ]).
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Gradient of J̃[ml ]

Directional derivative

DJ̃[ml ]dml = Dml
J[ml , δm̄]dml + Dδm̄J[ml , δm̄]Dml

δm̄dml .

Second term is 0, if δm̄ is solved exactly.

Direct computation gives gradient

∇J̃[ml ] = D2F̄ [ml ]
T [δm̄,DF̄ [ml ]δm̄ − (d − F [ml ])]

+DF [ml ]
T (DF̄ [ml ]δm̄ − (d − F [ml ])).

I Second term is zero if apply an appropriate cutoff function to
the data.

I D2F̄ [ml ]
T : M̄ × D such that for dml ∈ M, q ∈ M̄ and φ ∈ D

〈D2F̄ [ml ][dml , q], φ〉 = 〈dml ,D
2F̄ [ml ]

T [q, φ]〉.
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Example: Computation of D2F̄ [ml ]
T

For acoustic constant density wave equation: q ∈ M̄, φ ∈ D.
Let ω solve the zero final value problem(

1

m2
l

∂2

∂t2
−∆

)
ω =

∫
dxrφδ(x − xr ).

DF̄ [ml ]
Tφ =

2

ml

∫
dtω∆u.

Let ω0 solve the zero final value problem(
1

m2
l

∂2

∂t2
−∆

)
ω0 = 2∆

(
q

ml
ω

)
.

D2F̄T [ml ][q, φ] = 2
dml

ml

∫
dh

∫
dt

((
∆ū +

q

ml
∆u

)
ω + ω0∆u

)
.

with ū the Born approximation wave field.
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Gradient needs a correction term

Why need correction term?

I ∇δm̄J[ml , δm̄] is not zero numerically.

I Dml
δm̄ could be large.

I Neglect of the second term leads to large errors (Symes and

Kern, 1994).

Iteration method is used to solve for δm̄, Pk polynomial with
degree k.

δm̄k [ml ] = Pk(N[ml ])DF̄ [ml ]
T (d − F [ml ]).

⇒ Dml
δm̄k [ml ]dml = D(Pk(N[ml ]))dmlDF̄ [ml ]

T (d − F [ml ])

+Pk(N[ml ])D
2F̄ [ml ]

T [dml , d − F [ml ]]

−Pk(N[ml ])DF̄ [ml ]
TDF [ml ]dml .
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Chebyshev iteration

Chebyshev is preferred.

I Coefficients of Pk does not depend on N[ml ], once spectrum
bound of N[ml ] is known in advance. Easy to analyze
Dml

δm̄k [ml ].

I Coefficients in conjugate gradient depends on N[ml ]. Bound
on derivative is not obvious to calculate.

For operator A, want Pk(A) ≈ A−1 ⇒ I − APk(A) ≈ 0

Fix k , find Pk with leading coefficient 1, such that

Pk = arg min
pk

max
λ
|1− λpk(λ)|

with λ ∈ [λmin, λmax], i.e. spectrum bound of operator A.

NOTE: Chebyshev polynomial is the unique optimal solution.
(Varga 1962)
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Gradient with a correction term

⇒ P ′k(N[ml ]) is of order k2.
⇒ D(Pk(N[ml ])) ≈ Dml

N[ml ]P
′
k(N[ml ]) is of order k2.

⇒ ‖D(Pk(N[ml ]))rk‖ = O(k2‖rk‖).

Normal residual rk = N[ml ]δm̄k − DF̄ [ml ]
T (d − F [ml ]) decrease

exponentially in k.

Dδm̄J[ml , δm̄]Dml
δm̄dml = 〈Dml

(Pk(N[ml ]))dmlDF̄ [ml ]
T (d−F [ml ]), rk〉

+〈Pk(N[ml ])D
2F̄ [ml ]

T [dml , d − F [ml ]], rk〉
' 〈dml ,D

2F̄ [ml ]
T [Pk(N[ml ])rk , d − F [ml ]]〉.

Gradient with correction term

∇J̃[ml ] ' D2F̄ [ml ]
T [δm̄,DF̄ [ml ]δm̄ − (d − F [ml ])]

+D2F̄ [ml ]
T [Pk(N[ml ])rk , d − F [ml ]].
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Restarting Chebyshev iteration

Simple scheme:

I Compute no. of iterations k and Chebyshev coefficients
I Initialize the iteration, compute Rayleigh Quotient (RQ) to

get spectrum bound λ
I Run Chebyshev iteration until

I Get bigger λ, restart Chebyshev
I Or run k steps and return.

NOTE: Performance depends on condition number. Good
preconditioner is needed.

Implementation is available in
RVL.

Restarting curve for
depth-oriented extended
waveform inversion (Liu et al.

2013).



13

Summary

Reduced objective function

I Smooth in long scale model

I D2F̄ [ml ]
T of extended acoustic constant density forward

operator

I Gradient

I Correction term to the gradient

Chebyshev iteration

I Better than CG for operator with moderate condition number
and uniformly distributed spectrum

I Restarting scheme for operators without prior information of
spectrum

I Available in RVL
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Future work

Short term

I Fill in detailed mathematical analysis

I Find good preconditioner for shot-coordinate extension

Long term

I Extend to nonlinear waveform inversion (D. Sun’s PhD thesis)
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