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Finite Difference Formulation for ACD Wave Equation

Acoustic Constant Density(ACD) Wave Equation:

1
C 2Utt(t, ~X )−52

~X
U(t, ~X ) = 0

Assumption: velocity C is a constant, but in real world it is not!

t ∈ [0,T ], ~X ∈ [0,X ]× [0,Y ]× [0,Z ]

Initial Condition ∂U
∂t (0, ~X ) and U(0, ~X ).

Boundary Condition

U(0, ~X ) = 0 if x ∈ {0,X} or y ∈ {0,Y } or z ∈ {0,Z}
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Finite Difference Formulation for ACD Wave Equation

Dn
i : centered difference approximation for second order derivative

i: direction, n: error order
e.g. D2

t U = U(t−δt, ~X )−2U(t, ~X )+U(t+δt, ~X )
δt2

2-4 Finite difference formulation for ACD wave equation is:

1
C 2D

2
t U = D4

xU + D4
yU + D4

zU

U(t+δt, ~X ) = −U(t−δt, ~x)+2∗U(t, ~x)+C 2∗δt2(D4
xU+D4

yU+D4
zU)

Data values at three different time steps are involved, and need two
data arrays to store these temporary data values
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Naive Stencil Implementation and Problem Description

Grid: δx , δy , δz are unit distances on each direction

Up[i][j][k] represents U(t − δt, i ∗ δx , j ∗ δy , k ∗ δz)
Uc[i][j][k] represents U(t, i ∗ δx , j ∗ δy , k ∗ δz)

Using Up and Uc to get U(t + δt, ~X ) and store it into Up

Up[i][j][k] = - Up[i][j][k]
+ c[0] * Uc[i][j][k]
+ c[1] * (Uc[i+1][j][k] + Uc[i-1][j][k])
+ c[2] * (Uc[i+2][j][k] + Uc[i-2][j][k])
...

Up[i][j][k] = Stencil(Up[i][j][k], Uc)
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Naive Stencil Implementation and Problem Description

Update rule for NAIVE stencil codes:
for(i = 0; i < nx; i++)

for(j = 0; j < ny; j++)
for(k = 0; k < nz; k++)

Up[i][j][k] = Stencil(Up[i][j][k], Uc);

k

j

i

(a) Stencil (b) Up plane (c) Uc planes

Figure: Corresponding stencil of order 2, Up[i][][] and Uc[i-2:i+2][][] planes
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Naive Stencil Implementation and Problem Description

Figure: Westmere Chip1 memory size and latency2: L3∼12MB(shared)/17cycles,
RAM∼4GB/198cycles.

Drawback of naive implementation
Grid size: 260*260*260 (small problem size)
Total memory required for storing two arrays: 134.09MB

1http://sc.tamu.edu/systems/eos/Westmere-iDP.php
2Performance Tuning for CPU, Marat Dukhan
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Naive Stencil Implementation and Problem Description

(a) (b)

Figure: Cached data points at the start(a) of the iteration and at the end(b) of the iteration.
Each array data gets evicted out of cache at each iteration.

All data array elements get loaded into the cache for at least once per
iteration.
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Time-Skewing Approach and Computational Analysis

To increase data utilization in cache - cache blocking?

(a) (b)

Figure: (a) Naive stencil implementation; (b) Stencil implementation by blocking in
three dimensions

But this technique is no longer effective for "practical" data sets3

Because: 1. prefetching mechanism, 2. growing on-chip cache size

3Optimization and Performance Modeling of Stencil Computations on Modern Microprocessors. K. Datta, K.

Yellick etc. SIAM Review, Dec. 2008
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Time-Skewing Approach and Computational Analysis

Time-Skewing Approach4: by blocking in time dimension, each array
element gets loaded into the cache at least once every TS time steps

Up[k][][] Uc[k][][]

t

t-∆t

-1 1 2 3 4 5 6 7 80

4David G. Wonnacott http://www.haverford.edu/computerscience/faculty//davew/
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Time-Skewing Approach and Computational Analysis
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Time-Skewing Approach and Computational Analysis

Time-Skewing Approach: by blocking in time dimension, each array
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Results

Figure: Run time results of different approaches5.

Run Time

TS

5Platform: DAVinCI Westmere processor at Rice University, Compiler: icc with -O2 turned on
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Results

Figure: Total number of L3 cache misses counted by PAPI via HPCTookkit6.

TS

L3 Cache Miss

6Platform: DAVinCI Westmere processor at Rice University, Compiler: icc with -O2 turned on, Sample period:

10000000 cycles, Overhead: <1%
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Conclusion

Apply Time-Skewing approach on ACD wave equation.
Parameter tuning and measure the codes’ performances.

Current:
Integrated into IWAVE
Develop function to transform naive stencil codes to time-skewing code
Extend to higher order stencil
Modify the domain decomposition scheme in IWAVE

Application: Accelerate IWAVE computation kernel
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End

Thanks! Questions?
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