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SUMMARY

A kinematically correct choice of velocity focuses subsurface
offset image gathers at zero offset. Infinitesimal warping from
the current image towards its focus can be approximated by a
horizontal contraction. The image residual can be then taken
as the difference between the warped and the original image
to account for the velocity error. Least squares fitting of the
effect of a velocity perturbation to this image warping pertur-
bation produces a tomographic velocity update. This paper de-
scribes the warping scheme based on the radial image deriva-
tive in subsurface offset. We show the corresponding gradient
is free of the diffraction edge effect. We further enhance the ef-
ficiency of the velocity update procedure via use of a diagonal
Hessian approximation.

INTRODUCTION

For classical full waveform inversion, the observed data is nat-
urally treated as a reference. The difference between the syn-
thetic and the observed data (data residual) drives velocity up-
dating through minimization of its mean square (Tarantola and
Vallette, 1982; Pratt et al., 1998). Wave-equation reflection
tomography is often posed in the image domain, where there
is no natural reference image that can be used for comparison.
Sava (2000) proposed a method to obtain a reference image via
Stolt residual migration based on the information generated in
the current migration. Differential semblance (DS) reflection
tomography defines the residual by scaling the image by offset
(Shen and Symes, 2008). Fei and Williamson (2010) reported
a DS type image residual using an infinitesimal offset contrac-
tion, while Albertin (2011) explicitly used two infinitesimally
separated images to produce image residual aided with a local
re- and de-migration using one-way propagators. It is not clear
how to extend Albertin’s algorithm into general propagators.

Waveform tomography maps the image residual to a search
direction in velocity model space. For DS and similar algo-
rithms, the search direction is (or is closely related to) the gra-
dient of an objective function. The various choices of residual
definition are not equivalent: in particular, reflector truncations
and other singularities lead to oscillations in DS gradient (so-
called gradient artifacts) which lead in turn to slow conver-
gence and to the need for significant update smoothing. Image
residuals obtained as differences between infinitesimally sep-
arated images appear to lead to velocity updates which avoid
these artifacts. These updates are on the other hand not gradi-
ents of objective functions.

All waveform-tomographic updates, including DS, may be viewed
as least-squares projections of image updates into velocity model
space. The rule for forming image updates may be viewed as a
vector field (differential equation) on image space, limit points
of which are focused (physical) images. Velocity estimation

amounts to solving the projected differential equation in model
space by a marching method.

This paper describes a warping method, based on the radial
offset derivative, that generates infinitesimally improved im-
ages from current images. We demonstrate that the velocity
update from the corresponding image residual is artifact-free.
We note that this velocity update is not the gradient of an ob-
jective function. The key to efficiency is fast computation of
the projection into model space; we introduce an approximate
Hessian inverse which renders this projection practical at in-
dustry scale.

METHOD
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Figure 1: Schematic illustration of image in subsurface off-
set. (a) Events obtained with a faster or slower velocity curve
up(left) or down(right), respectively. Black arrows indicate
warping direction. The solid and the dashed curve represent
the current and the infinitesimally warped image, respectively.
(b)Total warping approximated by the horizontal contraction.

A 2D subsurface offset image gather for layered reflections
(horizontal or tilted - makes no difference) shows a shape sim-
ilar to that depicted in Fig.1(a). Depending on whether the
migration velocity pertaining to the event is greater or smaller
than the true velocity, the image in subsurface offset curves
upward or downward, respectively. In both cases, the events
have a curvature direction along which a infinitesimal shift
from the original image makes the final image slightly more
focused. The image corresponding to the correct velocity is
always on the h = 0 axis, near the envelope of the normal line
to the initial image. Motion or warping by inward curvature is
difficult to implement. However, a good approximation can be
obtained by ignoring the vertical shift. As shown in Fig.1(b),
a horizontal contraction represented by the dashed curves well
approximates the inward warping except points at zero offset.
Let Ĩ denote the infinitesimally warped image from the current
image I by a small amount ∆h. Let x be the image point and h
be the horizontal subsurface offset: then for h ∈ R

Ĩ(x,h) = I(x,h+∆h) h > 0
Ĩ(x,h) = I(x,h−∆h) h < 0.

(1)

We regard Ĩ as an infinitesimally improved image, moved slightly



towards the true (focused) image. The difference between Ĩ
and I can be expressed via the radial derivative ∂|h|

δ I = Ĩ− I ' ∂|h|I∆h (2)

where
∂|h| = ĥ ·∇h, (3)

ĥ is the unit horizontal subsurface offset vector, |h| is the radius
or length of the vector h, ∇h is the gradient operator in h, and
∆h is a uniform increment of horizontal offset along the radial
direction. Equations (2) and (3) are also correct as written in
3D (for 2D offset vector h).

While the warping formula (2) drives the image towards focus,
it is not the result of migrating the same data with a different
velocity. Therefore, we project the image difference expressed
in equation (2) into velocity space by solving the equation„
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«
δc = δ I (4)

for a velocity update δc. Since equation (4) is very unlikely
to have a literal solution, we solve it in the least squares sense,
that is,

δc = H−1g, (5)
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is its gradient. K = L∗L and L is a suitable preconditioning
operator in image space.

The rule (5) produces a velocity update for any choice of im-
age residual δ I. For example, Fei and Williamson (2010) sug-
gested

δ IFW = h ·∇hI. (7)

which differs from δ I specified in equation (2) by an additional
factor of |h|. Alternatively, “classical” differential semblance,
as for example in (Shen and Symes, 2008), uses

δ IDS = A∗AI, (8)

in which A is any operator on image space which vanishes
on focused images - multiplication by |h| is the conventional
choice. The residual defined in equation (8) is the image gra-
dient of the objective function J = 1

2 ||AI||2L2
. Neither δ I given

by equation (2) nor δ IFW given by equation (7) is the gradient
of an objective function, and indeed the operators involved in
these latter two residual formulae are non-symmetric.

For industry scale problems, iterative schemes for inverting
the Hessian H often become prohibitively expensive. Fei and

Williamson (2010) use the approximation H = identity oper-
ator. An economic and much more accurate approximation to
equation (5) stems from the observation that

fHd =
„

∂ I
∂c

«∗
K

„
∂ I
∂c

«
1c

approximates the diagonal of the Hessian, where 1c is a con-
stant velocity perturbation field that has unit value everywhere.
Jointly influenced by the data and the current velocity, the di-
agonal of the Hessian Hd has a physical meaning of ray cov-
erage. We then write the approximate solution to equation (4)
as fδc(x) =−∆h

g(x)fHd(x)
(9)

in which the inverse Hessian is replaced by a pointwise di-
vision of the gradient g by the approximate diagonal of the
Hessian at every x. All operations are straightforward wave-
equation computations as described in Shen (2012).

2D SYNTHETIC EXAMPLES
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Figure 2: (a) Image with correct velocity. (b)-(e) are gradients
obtained according to equation (6) at different velocities and
with different image residuals: (b) Slower velocity, R = h2I.
(c) Faster velocity, R = h2I. (d) Slower velocity, R = −∂|h|I.
(e) Faster velocity, R =−∂|h|I.

We first demonstrate by examples that the image residual in-
duced by horizontal infinitesimal contraction does not produce
gradient artifacts. Figure (2(a)) shows the image of reflec-
tors designed to have clear edges. Using conventional DS im-
age residuals, such as δ I = h2I, we obtain gradient according
to equation (6) (with K set equal to the identity operator) as
shown in fig.2(b) and fig.2(c) for slower and faster velocities,
respectively. The white color is negative and black is positive.
Compared with one-way propagators, the reverse-time propa-
gation kernel actually produces stronger and more complicated
diffraction edge effects in gradients. Shown in fig.2(d) and
fig.2(e) are gradients obtained with slower and faster veloci-
ties, respectively, using image residuals δ I = −∂|h|I. Clearly,

with the same gradient operator
“

∂ I
∂c

”∗
, the image residual in-

duced by radial derivative produces gradients not only correct
in sign but also free of oscillatory artifacts.

We further test the Gauss-Newton scheme for velocity update
using equation (9). Again, we use the word ”gradient” to re-
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Figure 3: (a) Correct velocity. (b) Initial image. (c) Initial
offset gather. (d) Velocity at iter. 20. (e) Image at iter. 20.
(f) Offset gather at iter. 20. (g) Raw gradient at iter. 10. (h)
Approximated diagonal of Hessian at iter. 10. (i) Hessian cor-
rected search direction.

fer to the numerator of equation (9) and the search direction
is referred to eδc which is the negative of the gradient cor-
rected by the approximated diagonal of Hessian. In this ex-
ample, the data is generated against a layered model as shown
in fig.3(a). The starting velocity is homogeneous taking the
value of top layer of the true velocity. Fig.3(b) shows the ini-
tial image. Three subsurface offset gathers are extracted from
the left, middle and right of the model and is shown in fig.3(c)
in left, middle and right, respectively. The corresponding in-
version results at iteration 20 are shown in fig.3(d), fig.3(b)
and fig.3(f) for velocity, image and subsurface gathers, respec-
tively. It is interesting to note that as inversion proceeds the
Hessian corrected search direction eδc gradually moves to the
deep. At iteration 10, the shallow velocity structures are fairly
well reconstructed. Although the raw gradient (fig.3(g)) has
energy concentrated at the shallow, the update eδc is actually at
the deep(fig.3(i)) after the correction from equation (9) by the
approximated diagonal of Hessian(fig.3(h)).

The horizontal contraction in offset has a dual operation in an-
gle, namely the horizontal dilation. When the image resid-
ual in offset is constructed with −∂|h|I(x,h), the correspond-
ing image residual in angle θ becomes ∂|θ |I(x,θ). Let Γ be
the Radon transform from offset to angle, a residual in off-
set induced by angle dilation can be written as R = Γ∗∂|θ |ΓI,
where Γ∗ (the transpose of Γ) approximates the inverse Radon
transform Γ−1. We report that the gradient that uses such R
is also artifact-free in the presence of broken sub-horizontal
reflectors.

3D FIELD DATA EXAMPLE

The 3d data consists of a few hundreds shots in three shot-lines
with an end-on receiver geometry. Since the data contains too

few crosslines, we chose to construct only in-line sub-surface
offsets. The initial velocity is taken as the vertical velocity
from a joint VTI inversion of travel time tomography and FWI.
For the isotropic migration this velocity is considered slower
in total effect than that induced by the correct VTI velocity in
VTI migration. The gradient using isotropic propagators from
a hybrid image residual R = (h2 −β )I correctly captured this
error. Shown in fig.4(a), the bulk color of the gradient is blue
indicating the current velocity needs to be increased. Tracing
vertically from the upper salt flank the gradient becomes oscil-
latory laterally. This is the typical gradient artifact introduced
from many diffraction edges on the top salt. When the velocity
model contains sharp edges usually introduced by truncations
of faults, salts or complex geological structures, these gradi-
ent artifacts become dominant, particularly in the weak sig-
nal area. The velocity inversion therefore requires significant
smoothing on gradients. Keeping everything else the same in
equation (6) except changing the image residual to −∂|h|I, we
obtain a gradient without edge effect which makes much more
sense geologically even in the weak signal area.

(a) (b)

Figure 4: (a) Real data gradients from hybrid image residual
R = (h2 −β )I. (b) Real data gradient from image residual by
radial derivative R =−∂|h|I.

LENS EXAMPLE
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Figure 5: (a) The true lens velocity and horizontal reflectors.
(b) Shot gather directly above the lens. (c) The gradient ob-
tained with constant velocity. (d) The offset gather in the mid-
dle of the model. (e) Schematic plot of image in offset for
layered media (left) and for strong low velocity lens (right).

We report a lens example in which horizontal contraction pro-
duces a gradient that has sign errors. We generate Born data
against 9 horizontal singular reflectors embedded in a 2D ve-
locity model consists of a background velocity at 2000m/s and



a low lens centered with 1600m/s (fig.5(a)). The shot gather
directly above the lens shows clear triplication (fig.5(b)). The
gradient obtained with constant velocity at 2000m/s presents
a sign flip on the bottom half in the model space. The Hes-
sian correction only modifies the amplitude but keeps the sign
unchanged. Lens data with different refracting strength re-
peat the same gradient pattern as shown in fig.5(c). We ex-
tract the very offset gather through the middle of the model.
In fig.5(d) the offset runs from -150m to +150m horizontally.
Shown in fig.5(e)(right) is a plot schematically represent the
offset gather in fig.5(d). The data records the multivaluedness
of traveltimes that manifests itself as a set of crossing events
near zero subsurface offset. This is a phenomenon quite differ-
ent from the layered case as demonstrated in fig.5(e)(left). We
hypothesize that the correct total warping in order to produce
an infinitesimally improved image is a perturbation towards
the direction that increases the image curvature while keeping
the image gather centered at zero offset. We see in the lay-
ered case, the direction of warping by horizontal contraction
(blue arrow) form a less-than-90◦ angle with the direction of
total warping (black arrow). For the case of low lens veloci-
ties, this angle is bigger than 90◦ for deeper images where the
multivaluedness break the horizontal smoothness of image at
zero offset. In other words, the horizontal contraction is not a
good approximation of the total warping if it cannot increase
the resulting image curvature.

DISCUSSION

The essential contention of this paper is expressed in equation
(5): a rule for constructing an image residual δ I gives rise to a
rule for a velocity update δc via least squares projection from
image space to velocity space. An image residual is really a
direction vector in image space: that is, for each image, an
increment moving it closer to focus. Such an assignment of
a direction to each point in a space amounts to a differential
equation in the space, which in turn gives rise to an evolution
flow. Table 1 describes the image evolution flow induced by
several image residual constructions. The first two columns
describe gradient flows induced by two versions of differen-
tial semblance, as described by Symes (2008). That is, the
differential semblance image residual is itself the gradient of
an objective function. The last column describes the horizon-
tal contraction residual: it is not the gradient of an objective
function.

All three flows have the same asymptotic limit sets, that is, fo-
cused images, and that is why all three generate constructive
velocity updates via least squares projection (equation (5)), in
some circumstances. The surface offset (or other acquisition
parameter) differential semblance image residual results in the
heat equation in offset, whose trajectories limit to images con-
stant in offset, which is the focusing criterion for this type of
image space. The related velocity update fails in the presence
of multi-pathing, whereas the velocity updates generated by
the differential semblance image residual in horizontal subsur-
face offset (column 2) remain constructive in strongly refrac-
tive velocity models so long the relevant rays do not turn hori-
zontal (Symes, 2008). The flows for both the differential sem-

blance and |h| scaled horizontal contraction (column 3) image
residuals limit to images focused at zero offset, but in differ-
ent ways: the differential semblance flow (column 2) simply
“forgets” the initial image energy at nonzero offset, whereas
the horizontal contraction flow incorporates it into the zero
offset limit. This difference may be related to the presence,
vs. absence, of artifacts described earlier in the velocity up-
dates derived from differential semblance, respectively hori-
zontal contraction, for sub-horizontal broken reflectors. On
the other hand, differential semblance has performed well for
velocity lens examples (Shen and Symes, 2008), whereas our
examples above reveal that horizontal contraction apparently
leads to velocity updates of the wrong sign.

Table 1: Evolution Induced by Residuals
surface subsurface subsurface

offset DS offset DS horizontal
algorithm algorithm contraction

image -∂ 2
h I p2(h)I −|h|∂|h|I

residual

image ∂ I
∂ t = ∂ 2

h I ∂ I
∂ t =−p2(h)I ∂ I

∂ t = |h|∂|h|I
evolution

solution constant I = e−p2(h)t I0 I = I0(eth)
at t → ∞

CONCLUSION

We have shown that several recently suggested velocity update
formulae, including variants of differential semblance, may be
cast in the form of the least-squares projection into velocity
space of an image residual (equation (5)). We have also shown
how to implement the unit horizontal contraction velocity up-
date efficiently, and given a first 3D example. Our work gives
a dynamical systems interpretation to the update suggested by
Fei and Williamson (2010), and verifies that horizontal con-
traction image residuals lead to smoother velocity updates and
faster convergence, in comparison to “classical” differential
semblance. Many image residuals besides differential sem-
blance and horizontal contraction define flows that limit to fo-
cused images, hence potentially generate useful velocity up-
dates. Most of these possibilities remain to be explored.
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