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SUMMARY

Least-squares reverse-time migration (LSRTM) provides im-
age of reflectivity with high resolution and compensated am-
plitude, but the computational cost is extremely high. One way
to improve efficiency is to encode all of shot gathers into one
or several super-shot gathers with designed encoding functions
so as to solve a smaller number of wave-equations at each iter-
ation. Another way is to use different kinds of preconditioners
to accelerate the convergent rate of iterations. In this abstract,
we combine these two methods together and extend them into
prestack imaging, which we call extended reverse-time migra-
tion (ERTM). The sparsity of reflectivity is used as prior infor-
mation and preconditioning guided gradient (PGG) method is
developed to suppress crosstalk introduced by phase encoding
and improve resolution of the extended image in the subsur-
face offset domain. Numerical tests on SEG/EAGE salt model
show that our proposed method can provide a more reliable
extended image with almost the same cost of ERTM, which
makes the method valuable in migration velocity analysis and
AVO/AVA analysis.

INTRODUCTION

The general procedure of wave-equation migrations can be di-
vided into two steps, the first one is wavefield reconstruction,
i.e., forward-propagate source wavefield and back-propagate
receiver wavefield, the second one is to apply imaging condi-
tion to these two wavefields at each depth to get the image of
subsurface image (Claerbout, 1971). Compared with propa-
gators derived from ray theory or one-way wave equation, the
propagator of reverse-time migration is derived directly from
two-way wave equation, so it’s the most accurate one. How-
ever, as cross-correlation imaging condition is only the adjoint
of forward modeling operator (Lailly, 1983), it will generate
low-frequency noise, imbalanced amplitude and decreased res-
olution.

One way to solve above problems is to cast reflectivity imaging
as a least-squares inverse problem and solve it iteratively using
gradient category methods, which is often called least-squares
migration (LSM) (Tarantola, 1984; Nemeth et al., 1999; Kühl
and Sacchi, 2003; Clapp, 2005; Valenciano et al., 2006). As
two times of full RTM approximately needs to perform at each
iteration of LSM, the computational cost of LSM is extremely
high. There are several ways to decrease computational cost.
One way is to compress seismic data using phase encoding
method (Morton and Ober, 1998; Romero et al., 2000; Zhang
et al., 2005; Liu et al., 2006; Tang, 2009; Godwin and Sava,
2010; Gao et al., 2010; Schuster et al., 2011; Herrmann and
Li, 2011), such as random phase encoding, plane-wave phase
encoding, amplitude encoding, deterministic source encoding.
Another way is using preconditioner to accelerate the conver-

gent rate of iteration, such as approximated diagonal of Hes-
sian (Pratt, 1999; Shin et al., 2001; Tang and Lee, 2010), de-
blurring filter (Aoki and Schuster, 2009), image-guided fil-
ter(Ma et al., 2010) and so on.

In this abstract, We implement multisource LSERTM and use
an approximation of diagonal Hessian in the subsurface offset
domain as a preconditioner to reduce the inversion cost. A
modified gradient method, namely preconditioned conjugate
guided gradient (PGG), is also developed to test the effect of
crosstalk introduced by phase encoding on different norms of
model residual. Numerical tests on SEG/EAGE demonstrate
that a more robust inversion result of extended reflectivity can
be obtained efficiently by our proposed method.

THEORY

In this section, we will give the formulas of extended linearized
Born modeling (ELBM), extended reverse-time migration (ERTM),
approximation of diagonal of Hessian, least-squares extended
reverse-time migration (LSERTM) and implementation of pre-
conditioning guided gradient (PGG) algorithm.

Extended reverse-time migration with phase encoding

In acoustic constant density medium, seismic wave propaga-
tion can be expressed in frequency domain as follows:

(∇2 +ω
2m(x,z))u(x,z,ω) = f (ω)δ (x−xs) (1)

where x is the horizontal vector, z is the depth axis, xs is the
source position, m(x,z) is squared slowness, u(x,z,ω) is the
seismic wavefiled at freqency ω , f (ω) is the spectrum of source
function. We should note that m(x,z) is a scaler here.

Based on the idea of model extension and extended modeling
(Symes, 2008), equation 1 changes to:

∇
2u(x,z,ω)+ω

2
∫

dym(x,y,z)u(y,z,ω) = f (ω)δ (x−xs)

(2)
where m(x,y,z) becames an operator. When m(x,z)=m(x,y,z)δ (x−
y), equation 2 is degraded into equation 1.

Split the extended model into two parts as follows:

m(x,y,z) = b(x,z)δ (x−y)+ r(x,y,z) (3)

where b(x,z) is background velocity and r(x,y,z) is extended
reflectivity. Correspondingly, u(x,y,z,ω)= u0(x,y,z,ω)+δu(x,y,z,ω),
then after linearized approximation, equation 2 changes to the
following two equations:

(∇2 +ω
2b(x,z))u0(x,z,ω) = f (ω)δ (x−xs) (4)

(∇2 +ω
2b(x,z))δu(x,z,ω) =−ω

2
∫

dyr(x,y,z)u0(y,z,ω)

(5)
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The solution of equation 4 can be written as:

u0(x,z,ω) = f (ω)G(x,xs,ω) (6)

Where G(x,xs,ω) is the Green function with the source at xs.
Seismic data d(xr,xs,ω) can be approximated modeled by the
solution δu(x,z,ω) of equation 5 at the predefined source lo-
cations xs and receiver locations xr. Define y = x+2h, replace
x with x−h and assuming zs = zr = 0, The modeling formula
can be expressed as:

d(xr,xs,ω) =

−ω
2 f (ω)

∫
dxdhG(xr,x+h,ω)r(x,h)G(x−h,xs,ω) (7)

which we call extended linearized Born modeling (ELBM) fo-
mula. Correspondingly, we can write the adjoint of ELBM as
follows:

r(x,h) =

−
∫

dxsdxrdω ω
2 f ∗(ω)G∗(xs,x−h,ω)G∗(x+h,xr,ω)d(xr,xs,ω)

(8)

We can see that equation 8 is actually the space shift imaging
condition (Rickett and Sava, 2002; Biondi and Symes, 2004).
For the fake of simplicity, we call it extended reverse time mi-
gration (ERTM) formula in the following derivations.

From the equation 8, we can also see that the computational
cost of ERTM is very high and is proportional to the number
of sources. In order to decrease the computation cost of mi-
gration, multisource migration was proposed to compress the
seismic data. There are several kind of schemes commonly
used in seismology, such as random phase encoding (Romero
et al., 2000), plane-wave phase encoding (Liu et al., 2006) and
amplitude encoding (Godwin and Sava, 2010). It has been
shown that the single-sample random time phase shift encod-
ing function seems to give the best convergent result (Krebs
et al., 2009), so we adapt this scheme in our abstract. The
encoding function is defined as follows:

α(xs, ps) =
1√
N

γ(xs, ps) (9)

where ps is the realization index, N is the number of realization
and γ is a random sequence of signs, i.e. +1 and −1. Seismic
data after encoding is:

d̃obs(xr, ps,ω) =

∫
dxs α(xs, ps)dobs(xr,xs,ω) (10)

Correspondingly, the same encoding function is used to encode
the sources. As the wave-propagator is linear with the input
source, so the source wavefield can be calculated from original
formula but with the encoded source, that is:

S(x, ps,ω) =

∫
dxsα(xs, ps) f (ω)G(x,xs,ω) (11)

As the wave-propagator is linear with the input source, so we
just need to change the source in order to simulate seismic data

corresponding the encoded one. The formula of ELBM with
encoded source is:

d̃(xr, ps,ω) =

−ω
2
∫

dxdhG(xr,x+h,ω)r(x,h)S(x−h, ps,ω) (12)

The formula of ERTM with phase encoding can be written as
follows:

r(x,h) =

−
∫

dpsdxrdω ω
2S∗(ps,x−h,ω)G∗(x+h,xr,ω)d̃(xr, ps,ω)

(13)

The number of encoding realization N is often much smaller
than the number of sources, so the computational cost of ERTM
is greatly reduced.

Preconditioner: approximation of diagonal of Hessian

Diagonal of Hessian in the subsurface offset domain can be
written as (Valenciano et al., 2006):

D(x,h)=
∫

dxsdxrdω ω
4| f (ω)|2 |G(x−h,xs,ω)|2|G(x+h,xr,ω)|2.

(14)

Similarly, we can encode receiver wavefield after define phase
encoding function β (xr, pr) =

1
N γ(xr, pr),

R(x, pr,ω) =

∫
dxr β (xr, pr)G(x,xr,ω). (15)

then we can approximate equation 14 as,

D̃(x,h, pr)=

∫
dxsdωω

4| f (ω)|2|G(x−h,xs,ω)R(x+h, pr,ω)|2.
(16)

With the encoded source wavefield defined in equation 11,
equation 16 can be simplified as:

˜̃D(x,h, ps, pr) =

∫
dω ω

4|S(x−h, ps,ω)R(x+h, pr,ω)|2.
(17)

Commonly, the receiver-side term is often discarded in order
to decrease the computational cost, the result is often called
source wavefield intensity (SWI). The justification of SWI is
based on the assumption that receivers spread all over the model,
which is not the fact. Another more accurate approximation is
replacing the receiver-side term with source-side term based on
the assumption that all the position of receivers was replaced
by sources, that is:

D̃SS(x,h, ps) =

∫
ω ω

4|S(x−h, ps,ω)|2|S(x+h, ps,ω)|2.
(18)

It has shown that this approximation is more accurate than
SWI and seems to be accurate enough as a preconditioner in
least-squares inversion (Tang and Lee, 2010). Here we extend
it to subsurface offset domain in order to accelerate the con-
vergent rate of least-squares extended reverse-time migration
(LSERTM).

Multisource least-squares extended reverse-time migration
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Equation 12 can be written in a compact form as:

d̃ = L̃m (19)

with regularization term, the objective function of LSM can be
written as:

minmJLSM [m] =
1
2
‖ L̃m− d̃obs ‖p +

σ

2
‖ Am ‖p (20)

where ‖ · ‖p denotes `p norm with 1 ≤ p ≤ 2, A is regular-
ization operator. The least-squares solution is only a member
of a family of generalized `p-norm solutions that are deduced
from a maximum-likelihood formulation. Among the various
`p-norm solutions, the `1-norm solution is more robust than
the `2-norm solution, because it is less sensitive to spiky, high-
amplitude noise (Gersztenkorn et al., 1985; Scales et al., 1988;
Claerbout and Muir, 1973; Taylor et al., 1979). In order to take
advantages of both `2 and `1 norm solutions, hybrid `1/`2 -
norm solutions are also tried (Huber, 1973; Bube and Langan,
1997; Guitton and Symes, 2003).

Iteratively reweighted least-squares (IRLS) method is a good
choice to solve equation 20, but it require to compute weight-
ing function at the outer loop of conjugate gradient iterations,
which makes it expensive. Another variant of IRLS method,
namely CGG method, guides the gradient to the imposed di-
rection, is more efficient than IRLS(Ji, 2006).

In our implementation, we adapt the approximation of diago-
nal Hessian in the last section as preconditioner in the loop of
CGG method, which we call preconditioning guided gradient
(PGG) method. The complete algorithm of mutisource least-
squares extended revere-time migration with PGG method is
shown in 1 as follows:

Algorithm 1 MLSERTM with PGG
1: for k = 0 · · ·niter do
2: generate random squence of signs γ

3: encode sources and data to get L̃ and d̃obs
4: rk = L̃m̂k− d̃obs
5: compute Ŵk

r
6: compute Ŵk

m

7: dmk = ŴT,k
m ˜DSS

−1L̃T ŴT,k
r rk

8: drk = L̃dmk

9: αk =
〈drk ,rk〉
〈drk ,drk〉

10: mk+1 = mk+1−αkdmk

11: end for

NUMERICAL TEST

In this part, SEG/EAGE salt model is used for our numerical
tests. The spatial sampling for both spatial axses is 30 m. Fig-
ure 1(a) shows the salt velocity model. The reflectivity model,
calculated from velocity model using equation 3, is shown in
Figure 1(b). A Ricker wavelet with a fundamental frequency
of 15 Hz and temporal sampling of 1 ms is used to model the
seismic data. 163 sources are evenly deployed on the surface
with the sampling interval of 120 m and all of sources share
the same 645 receivers with the sampling interval of 30 m on

the surface. The synthetic data is generated by Born modeling
operator with a time-domain finite-difference method.

Figure 2(a) shows the result of RTM, we can see that it is dom-
inated by low-freqency noise. After applying laplacian filter,
low-frequency noise was eliminated but the amplitude of the
result is still imbalanced and very different from the true re-
flectivity model, as shown in figure 2(b). Next, We ran Multi-
source LSRTM without any precondtioning for 163 iterations,
which equals to the total number of sources, the result is shown
in figure 2(c). By comparing figure 2(b) and 2(c), we can see
that MLSRTM gives much better results. Figure 2(d) shows
the approximated diagonal of Hessian with equation 18, we
can see that the illumination under the salt is uneven caused by
the complex salt body and limited acquisition geometry. Using
figure 2(d) as a preconditioner, we can accelerate the conver-
gent rate of LSRTM, the accelerated inversion result is shown
in figure 2(e). Compared with figure 2(c) and 2(e), we can see
that the amplitude of accelerated inversion result is more bal-
anced, especially under the salt. Moreover, MLSRTM with
different norm on model residual is also tested, Figure 2(f)
shows the result using `1.5 on model residual. From the re-
sult, we can see the S/N is higher than the result of `2 norm as
shown in figure 2(e).

(a)

(b)

Figure 1: (a) velocity model; (b) reflectivity.

Next, we ran MLSERTM to see the effect of crosstalk intro-
duced by phase encoding on prestack imaging. Figure 3(a)
shows the approximated diagonal of Hessian in the subsurface
offset domain, we can also see the uneven illumination under
the salt and some energy smear around non-zero offset. Fig-
ure 3(b) shows the result of MLSERTM with `2 norm. Com-
paring figure 2(e) and figure 3(b), we can see that, the ex-
tended image is more prone to crosstalk introduced by phase
encoding. That’s reasonable because the extended model al-
lows another degree of flexibility on the solution. After us-
ing PGG method to solve the `1 problem, we get the result as
shown in figure 3(c). The result is much better than the result
using `2 norm.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: (a) RTM; (b) RTM after Laplacian filtering; (c)
LSRTM without preconditioning; (d) Approximated diagonal
Hessian; (e) LSRTM with conditioning; (f) LSRTM with pre-
conditioning and sparsity-promotion.

CONCLUSION AND DISCUSSION

In this abstract, we develop LSERTM with PGG method, which
can be used to solve `p norm problem flexibly and efficiently.
With phase encoding method and approximated diagonal of
Hessian as preconditioner, we can get the inversion result of
extended reflectivity in the subsurface offset domain at the cost
of ERTM but with more balanced amplitude and higher resolu-
tion, which is useful in the following migration velocity anal-
ysis and AVO/AVA analysis.

(a)

(b)

(c)

Figure 3: (a) Approximated diagonal Hessian in subsur-
face offset domain; (b) LSERTM with preconditioning; (c)
LSERTM with preconditioning and sparsity-promotion.
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