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SUMMARY

Migration velocity analysis (MVA) is an approach to solve a
partially linearized variant of the waveform inversion problem,
i.e. linear in short scales, nonlinear in long scales. The lin-
ear inversion part is often approximated by migration in prac-
tice, which is only adjoint of linearized Born modeling op-
erator. In this abstract, we derive the gradient formulas for
short scales and long scales separately from the two-term ex-
tended waveform inversion objective function, which contains
data fitting and differential semblance term. As the reflectiv-
ity image inverted by Chebyshev iteration, instead of prestack
migration approximation, is used to adjust velocity model, we
call this new velocity analysis scheme inversion velocity anal-
ysis (IVA). Chebyshev iteration method rather than conjugate
gradient method is justified in the derivation of gradient for-
mula of long scales. The corrected gradient calculation is also
proved to be more accurate than naive one. In this abstract, we
focus on depth-oriented model extension in the acoustic con-
stant density medium, but most of the formulas and algorithms
can be extended into other model extensions and more com-
plex medium. Numerical tests on Gaussian anomaly model
demonstrates the effectiveness of our proposed method.

INTRODUCTION

Seismic velocity analysis methods can be divided into two
groups. The first group aims at minimizing the misfit in the
data domain, such as waveform inversion (WI) (Tarantola, 1984;
Pratt, 1999; Virieux and Operto, 2009), while the second group
aims at improving the quality in the image domain, such as mi-
gration velocity analysis (MVA) (Symes and Carazzone, 1991;
Biondi and Sava, 1999; Shen and Symes, 2008). The data
domain methods take into account essentially any physics of
seismic wave propagation that can be modeled, they have the
advantage of high resolution in the inverted model, but the
waveform inversion objective has many spurious local mini-
mum when seismic data lacks low frequencies or initial model
is not accurate enough. The image domain methods, on the
other hand, have the advantage of quasi-global convergence if
we choose objective appropriately. However, as only trans-
mission information is used in the image domain method, the
vertical resolution of inverted velocity model is limited.

One natural way to solve above problems is to invert back-
ground velocity with MVA firstly and then use it as initial
model for WI, but in practice, it’s very hard to determine whether
the initial model derived from MVA is accurate enough for WI.
In fact, It has been demonstrated that MVA is the partially lin-
earized version of waveform inversion, it can be linked with
WI under the concept of extended modeling (Symes, 2008),
which provides a big opportunity to combine them together
and invert all the wavelengths of the model simultaneously

(Sun and Symes, 2012; Biondi and Almomin, 2012; Almomin
and Biondi, 2012).

With the concept of depth-oriented model extension, the scaler
of velocity in conventional seismic modeling becomes an op-
erator in extended modeling (Symes, 2008; Biondi and Al-
momin, 2012), which makes extended waveform inversion ex-
tremely expensive and impractical at present. In this abstract,
we split the extended model into two components, i.e. short
scales and long scales, and extend only short scales. Based
on linearized Born approximation, we derive the gradient for
short scales and long scales of model from the objective func-
tion which combines data misfitting and differential semblance
term. As short scales of model are also inverted with Cheby-
shev iterations, rather than prestack migration approximation,
in the inner loop of background velocity update, the new scheme
is more accurate from the origin. Numerical tests demonstrates
the effectiveness of our proposed method.

THEORY

Extended waveform inversion

The premise of WI is that there exists a forward map or pre-
diction operator F , which relates the model space M (a set of
possible models of Earth structure) to the data space D (a set
of seismic data). While WI finds m ∈M to minimize the mean
square data misfit between the forward map output F [m] and
an observed data d ∈ D, that is:

minmJWI [m,d] =
1
2
‖ F [m]−d ‖2 (1)

in which the symbol ‖ · ‖2 stands for `2 norm.

In order to establish the relation between WI and MVA, The
concept of extended modeling F̄ , which maps the extended
model space M̄ to data space D, was introduced (Symes, 2008).
Extension operator, which maps model space from M to M̄,
has two main properties, that is, (1) M ⊂ M̄ (2) F̄ [m̄] = F [m],
if m ∈ M. Accordingly, extended waveform inversion finds
m̄ ∈ M̄ to minimize the mean square data misfit between the
extended modeling output F̄ [m̄] and an observed data d ∈ D,
that is:

minm̄JEWI [m̄,d] =
1
2
‖ F̄ [m̄]−d ‖2 (2)

However, if we solve above problem directly, the ambiguity
of solutions is more likely to happen due to the fact that the
extended model space has more degree of freedom, so we need
to restrict the solution to be the physical one, then the inverse
problem becomes to finding the physical one in the feasible
model set constrained by the data fitting, that is,

minm̄JDS[m̄,d] =
1
2
‖ A[m̄] ‖2,s.t. :

1
2
‖ F̄ [m̄]−d ‖2≤ ε (3)
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which is equivalent to the following unconstrained inverse prob-
lem under some conditions:

minm̄J̃EWI [m̄,d] = σ ‖ A[m̄] ‖2 + ‖ F̄ [m̄]−d ‖2 (4)

where A is an annihilator which maps extended model space M̄
to some other Hilbert space. It depends on the types of model
extension: (1) When extension is along subsurface space shift
domain, A[m̄] is a diagonal matrix with offset as the diagonal
elements; (2) When extension is along time axis, A[m̄] is a an-
nihilator to suppress non-zero time lag; (3) When extension
is along surface axis, such as source index, source-receiver
offset, plane-wave slope, A[m̄] is one-order derivative opera-
tor to impose coherence. In this paper, we focus on depth-
oriented offset extension. where σ is the penalty parameter,
when σ = 0, Equation 4 limits to the problem of extended
waveform inversion, when σ → ∞, Equation 4 limits to the
problem of non-linear MVA.

Inversion velocity analysis

Split extended model m̄∈ M̄ into two parts, the first one is long
scales m0 ∈M, the second one is short scales δ m̄ ∈ M̄. that is,

m̄' m0 +δ m̄ (5)

If m0 is smooth and δ m̄ is rough or oscillatory on the wave-
length scale (well-separated scales), then extended forward mod-
eling operator F̄ [m̄] can be approximated with small error as
follows (Symes, 2009):

F̄ [m̄]' F [m0]+DF [m0]∗δ m̄ (6)

where DF [m0] is one order derivative of F to m at m0, which
is also called linearized Born operator in geophysics, Then the
inverse problem becomes to:

minm0,δ m̄JDS[m0,δ m̄] =‖ DF [m0]δ m̄−Fd ‖2 +σ ‖ Aδ m̄ ‖2

(7)
Where Fd = d−F [m0] is the observed seismic data after sub-
stracting the modeled data with initial model. In practice, the
first term is often approximated by the result of adjoint of Born
operator (migration operator) applied to seismic data and then
solve the second term with the method namely called migraton
velocity analysis.

In this paper, we also adopt this two-stage scheme, but with
more precise derivation and calculations. Correspondingly, the
first stage is to solve problem 7 with respected to δ m̄, which
is a quadratic inverse problem and can be solved stably with
gradient methods, while the second stage is to solve problem 7
respected to m0, which is a nonlinear and often non-convex
inverse problems. However, there are some numerical and the-
oretical results show that the second problem is quasi-convex
if we choose A as differential semblance operator.

The key to solve these two inverse problems is calculating their
gradients. Firstly, Let’s look at the gradient of the objective
function JDS[m0,δ m̄] with respect to δ m̄. The gradient can be
derived easily as follows:

∇δ m̄JDS[m0,δ m̄] = DFT [m0](DF [m0]δ m̄−Fd)+σAT Aδ m̄
(8)

Set the gradient to zero gives the normal equation, i.e.

(DFT [m0]DF [m0]+σAT A)δ m̄ = DFT [m0]Fd (9)

which can be re-written as:

N[m0]δ m̄ = M[m0]Fd (10)

where N[m0] is normal operator and M[m0] is migration oper-
ator.

After minimizing the objective function JDS[m0,δ m̄] with re-
spect to δ m̄, we can start the second stage, which minimizes
the objective function JDS[m0,δ m̄[m0]] with respect to m0. Let’s
calculate the directional derivative of JDS in the direction of
m0,

Dm0 JDS[m0,δ m̄[m0]]dm0 = Dm0 JDS[m0,δ m̄[m0]]dm0+

(Dδ m̄JDS[m0,δ m̄[m0]])
T Dm0 δ m̄dm0

(11)

If we first assume that we have solved the first problem accu-
rately, the second term in equation 11 will be vanished. Since
the differential semblance term is independent of m0, we can
obtain:

Dm0 JDS[m0,δ m̄[m0]]dm0

= 〈D(DF [m0]δ m̄)dm0,DF [m0]δ m̄−Fd〉
= 〈dm0,B[δ m̄,DF [m0]δ m̄−Fd ]〉 (12)

where B is bilinear operator. In fact, the second term in 11 can
be very large, even when the normal equation is solved rather
precisely, because it involves the derivative of the reflectivity
estimate with respect to velocity. It is the anomalously large
size of the derivative of the synthetic data with respect to veloc-
ity that led to non-convexity of the mean-square error function.
For exactly the same reason (phase perturbation of rapidly os-
cillating signals), neglect of the second term in equation 8 will
leads to large errors (Symes and Kern, 1994).

Any iterative scheme for δ m̄ of equation 10 gives the following
approximation:

δ m̄ = P(N[m0])M[m0]Fd (13)

where P(N[m0]) is a polynomial in the normal operatorN[m0].
Take the direvative of δ m̄ with respect to m0, we can get:

Dm0 δ m̄dm0

= σ(DNP(N[m0])DN[m0]dm0M[m0]Fd +P(N[m0])D(M[m0]Fd)dm0)
(14)

In the case of depth-oriented model extension, normal opera-
tor will not change the phase of input, while migration oper-
ator will dramatically change the phase of input when back-
ground model is changed (Stolk et al., 2009), so DN[m0]dm0
is relatively very small compared with DM[m0]dm0. More-
over, DNP(N[m0]) is bounded if we use Chebyshev iteration,
which it’s not the case if we use CG method, So we can drop
the first term of equation 14 if we use Chebeshev iteration to
solve equation 10 in the case of depth-oriented model exten-
sion. Then equation 14 changes to:

Dm0 δ m̄dm0 = P(N[m0])D(M[m0]Fd)dm0

= P(N[m0])D(DFT [m0]Fd)dm0 (15)
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After k iterations at the first stage of reflectivity inversion,
Dδ m̄JDS[m0,δ m̄], the normal equation error, can be denoted
as ek, and δ m̄ by δ m̄k. Then equation 11 becomes:

Dm0 JDS[m0,δ m̄[m0]]dm0

=〈dm0,B[δ m̄k,DF [m0]δ m̄k−Fd ]〉+

〈ek,P(N[m0])D(DFT [m0]Fd)dm0〉
=〈dm0,B[δ m̄k,DF [m0]δ m̄k−Fd ]〉+
〈dm0,B[P(N[m0])ek,Fd ]〉 (16)

At last, we can get the gradient formula as follows,

∇m0 JDS[m0,δ m̄[m0]]

= B[δ m̄k,DF [m0]δ m̄k−Fd ]+B[P(N[m0])ek,Fd ] (17)

Acoustic constant density medium case

We should claim firstly that even though the following deriva-
tion is done in frequency domain, the actual implementation is
done in time domain. In the acoustic constant density medium,
wave propogation can be formulated in the frequency domain
as:

(∇2 +ω
2m(x,z))u(x,z,ω) = f (ω)δ (x−xs) (18)

where x is the horizontal vector, z is the depth axis, xs is the
source position, m(x,z) is squared slowness, u(x,z,ω) is the
seismic wavefiled at freqency ω , f (ω) is the spectrum of source
function. We should note that m(x,z) is a scaler here.

Based on the idea of extended modeling, equation 18 changes
to:

∇
2u(x,z,ω)+ω

2
∫

dym(x,y,z)u(y,z,ω) = f (ω)δ (x−xs)

(19)
where m(x,y,z) becames to be an operator. When m(x,z) =
m(x,y,z)δ (x−y), equation 19 is equivalent to equation 18.

Split the extended model into two parts as follows:

m(x,y,z) = b(x,z)δ (x−y)+ r(x,y,z) (20)

where b(x,z) is background velocity and r(x,y,z) is extended
reflectivity. Correspondingly, split the wavefield into two parts,
i.e. u(x,y,z, t) = u0(x,y,z, t) + δu(x,y,z,ω), then after lin-
earized approximation, equation 18 changes to:

(∇2 +ω
2b(x,z))δu(x,z,ω) =−ω

2
∫

dyr(x,y,z)u0(y,z,ω)

(21)
where u0(y,z,ω) satisfies:

(∇2 +ω
2b(x,z))u0(x,z,ω) = f (ω)δ (x−xs) (22)

The solution of equation 22 can be written as:

u0(x,z,ω) = f (ω)G(x,xs,ω) (23)

where G(x,xs,ω) is the Green function, which is the seismic
wave responds after excitating a spike at position xs. Seismic
data d(xr,xs,ω) can be approximated modeled by the solution
δu(x,z,ω) of equation 21 at the predefined source locations xs
and receiver locations xr. Define y = x+ 2h, replace x with

x−h and assuming zs = zr = 0, The modeling formula can be
expressed as:

d(xr,xs,ω) =

−ω
2 f (ω)

∫
dxdhG(xr,x+h,ω)r(x,h)G(x−h,xs,ω)

(24)

From equation 24, we can see the linear relation between seis-
mic data and model pertubation. This is actually the output of
linearized Born modeling operator, i.e. DF [b(x)]r(x,h). Ad-
joint of Born modeling is:

r(x,h) =

−
∫

dxsdxrdω ω
2 f ∗(ω)G∗(xs,x−h,ω)G∗(x+h,xr,ω)d(xr,xs,ω)

(25)

This is actually the output of the adjoint of linearized Born
operator with d(xr,xs,ω) as input, i.e. DFT [b(x)]d(xr,xs,ω),
which is often called space-shift imaging condition (Rickett
and Sava, 2002; Biondi and Symes, 2004).

Similarly, we can get the bilinear operator with perturbation on
background velocity. The final formula is:

∆b(y) =∫
dxsdxrdω

{
G0(y,xs,ω)ω4 f (ω)

}∗
{G∗0(y,x−h,ω)r(x,h)G∗0(x+h,xr,ω)∆d(xr,xs,ω)}+∫

dxsdxrdω

{
G0(y,x+h,ω)r(x,h)G0(x−h,xs,ω)ω4 f (ω)

}∗
{G∗0(y,xr,ω)∆d(xr,xs,ω)} . (26)

which defines the output of bilinear operator with r(x,h) and
∆d(xr,xs,ω) as input, i.e. B[r(x,h),DF [b(x)]r(x,h)−∆d(xr,xs,ω)].

NUMERICAL TESTS

Gaussian model, which contains a Gaussian anomaly in the
two-layer model, is used in the numerical tests. The veloc-
ity for the top layer, bottom layer and peak of the Gaussian
anomaly are 3 km/s, 3.5 km/s and 3.5 km/s respectively. Fig-
ure 1(a) shows the true velocity model. A Ricker wavelet with
a fundamental frequency of 15 Hz and temporal sampling of
0.75 ms is used as a source function to model the data. There
are 151 fixed receivers with a spacing of 20 m and 31 sources
with a spacing of 100 m. The maximum offset used is 1.5
km in both sides and the intial model is a constant model of
3 km/s velocity. Synthetic seismic data cube is shown in the
figure 1(b). Constant velocity model with velocity of 3 km/s is
used as the initial velocity model in our numerical test of IVA.

As we demonstrated in the theory section, in the inner loop of
background velocity update, Chebyshev iteration, rather than
conjugate gradient method, is used to solve the normal equa-
tion 10. Figure 2(a) shows the result of prestack reverse time
migration, we can see that the layer is not flat and subsurface
offset gather does not focus on zero offset due to the velocity
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(a) (b)

Figure 1: (a) Gaussian velocity model; (b) Synthetic data.

error. Figure 2(b) shows the inverted reflectivity by Cheby-
shev iteration method. Compared with figure 2(a), we can see
that the inverted result has higher resolution, more balanced
amplitude and more focused energy near zero offset. With
the inverted reflectivity, we can calculate the data misfit resid-
ual, which shows in figure 2(c). Figure 2(d) shows the relative
normal residual of Chebyshev iteration, we can see that it can
achieve a very small residual (0.043 at the last iteration) even
though the spectrum bound was reseted several times at each
jump on the curve.

(a) (b)

(c) (d)

Figure 2: (a) Reflectivity with prestack reverse-time migration;
(b) Inverted reflectivity with Chebyshev iteration method; (c)
Data misfit residual of Chebyshev iteration method in the same
scale with figure 1(b); (d) Relative normal residual curve.

Figure 3(a) shows the first term of gradient formula in equa-
tion 17, we can see that the negative gradient shows the update
direction of background velocity correctly even though it con-
tains very strong artifacts at both side of Gaussian anomaly,
which is introduced by the differential term in the objective
function. The artifacts can be suppressed by the idea of im-
age warping (Shen and Symes, 2013). Figure 3(b) shows the
second term of gradient formula and figure 3(c) shows the cor-
rected gradient. Compared figure 3(a) and figure 3(c), we can
see that the reflection effect is suppressed more after correc-
tion on the original one, which is coincident with the smooth
assumption of background velocity in the linearized Born ap-
proximation .

(a) (b)

(c)

Figure 3: (a) The first term of gradient formula; (b) The second
term of gradient formula; (c) The final gradient.

CONCLUSION AND DISCUSSION

Based on linearzied Born approximation, we derive the gradi-
ent formula for both short scales and long scales of velocity
model from the objective function which combines data fitting
and differential semblance. As the reflectiviy is inverted with
Chebyshev iteration in the inner loop of background velocity
update and a corrected formula is also proposed in the back-
ground velocity gradient calculation, we have called this new
scheme as inversion velocity analysis. The numerical tests on
Gaussian model show that,

• The inverted reflectivity has higher resolution and more
balanced amplitude;

• Compared with CG method, Chebyshev iteration method
has a comparable convergent rate after estimating the
spectrum bound of normal operator correctly;

• The corrected gradient provides the update direction of
background velocity and put more emphasis on trans-
mission effect, which is coincident with linearized Born
approximation.

However, there are still lots of work need to do. the first one is
how to improve the efficiency of IVA, such as estimate spec-
trum bound quickly and accelerate convergent rate via precon-
ditioning. Another more theoretical challenge is how to extend
the idea of IVA to non-linear extended waveform inversion.
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