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Motivation

Variable density acoustic wave equation

1

κ

∂2u

∂t2
−∇ · 1

ρ
∇u = f

with appropriate boundary, initial conditions

Typical setting in seismic applications:

I heterogeneous κ, ρ with low contrast O(1)

I model data κ, ρ defined on regular Cartesian grids

I large scale ⇒ waves propagate O(102) wavelengths; solutions
for many different f

I f smooth in time (band-limited)
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Motivation
For piecewise constant κ, ρ with interfaces

I FDM: first order interface error, time shift, incorrect arrival
time, no obvious way to fix (Brown 84, Symes & Vdovina 09)

I Accuracy of standard FEM (eg specFEM3D) relies on
adaptive, interface fitting meshes

I Exception: FDM derived from mass-lumped FEM on regular
grid for constant density acoustics has 2nd order
convergence even with interfaces (Symes & Terentyev 2009)
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Figure : Velocity model
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Motivation

Aim of this project: design approximation method for acoustic
wave equation with

I provable optimal (2nd) order convergence

I regular (non-fitted) grids

I practical error control

I computational complexity similar to standard FD/FE methods
per time step (perhaps after setup phase)
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Review

Transfer-of-approximation FEM (Symes and Wang, 2011) works
(2nd order), and has complete theoretical backing, but hopelessly
inefficient

Owhadi and Zhang 2007: create new elements by composing
standard linear elements on triangular mesh with harmonic
coordinate map to create new, regular grid elements. Sub-optimal
convergence due to element truncation.

Binford 2011: full, un-truncated elements ⇒ optimal (2nd) order
convergence on triangular meshes for 2D static interface problems

This paper: harmonic coordinate FEM (“HCFEM”) on rectangular
regular mesh with bilinear (“Q1”) elements.
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Harmonic Coordinates
Global C -harmonic coordinates F in 2D, its components
F1(x1, x2),F2(x1, x2) are solns of

∇ · C (x)∇Fi = 0 in Ω

Fi = xi on ∂Ω

F : Ω→ Ω C -harmonic coordinates

e.g.,

x2

x1C1 = 20

C2 = 1

r0 =
1
√

2π

(1, 1)

(−1,−1)
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Harmonic Coordinates

I physical regular grid (x1, x2) = (jhx , khy ) (left),

I harmonic grid (F1,F2) =
(
F1(jhx , khy ),F2(jhx , khy )

)
(right)
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Harmonic Coordinate FEM

Workflow of HCFEM:

1 prepare a regular mesh on physical domain, T H ;

2 approximate F on a fine mesh T h by Fh

3 construct the harmonic triangulation T̃ H = Fh(T H);

4 construct the HCFE space
SH = span{φ̃Hi ◦ Fh : i = 0, · · · ,Nh}, where
S̃H = span{φ̃Hi : i = 0, · · · ,Nh} is isoparametric bilinear (Q1)

FEM space on harmonic grid T̃H ;

5 solve the original problem by Galerkin method on SH .
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Harmonic Coordinate FEM

I Solving n (≤ 3) harmonic problems to obtain harmonic
coordinates

I HCFEM works and as efficient (after setup) as standard FEM

I Accuracy control for HC construction: refine grid to diameter
h = O(H2) at interface.
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1D Illustration
1D elliptic interface problem

(βux)x = f 0 ≤ x ≤ 1, u(0) = u(1) = 0

β has discontinuity at x = 2/3

β(x) =

{
β0 = 1, x < 2/3
β1 > 1, x > 2/3

1D ’linear’ HCFE basis:
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Mass Lumping

2nd order time discretization with HCFEM:

MhU
h(t + ∆t)− 2Uh(t) + Uh(t −∆t)

∆t2
+ NhUh(t) = F h(t)

⇒ every time update involves solving a linear system MhUh =RHS

Replace Mh by a diagonal matrix M̃h,

M̃h
ii =

∑
j

Mh
ij

Theoretical justification: lumped mass solution is just as accurate
as the consistent mass solution, can achieve optimal rate of
convergence
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Static acoustic problem - Square Circle Model

−∇ · C(x)∇u = −9r in Ω

where r =
√

x2 + y 2

For piecewise const C(x) shown in the figure below, analytical solution:

u =
1

C(x)
(r 3 − r 3

0 )

x2

x1C1

C2

r0 =
1
√

2π

(1, 1)

(−1,−1)
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High Contrast: C1 = 20,C2 = 1
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I HCFEM is applied on the physical grid of diameter H

I Harmonic coordinates are approximated on the locally refined grid, in which the
grid size is O(h) (h = H2) near interfaces.
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I Standard FEM is applied on the physical grid of diameter H
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Low Contrast: C1 = 2,C2 = 1
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HCFEM

O(H2)

I HCFEM is applied on the physical grid of diameter H

I Harmonic coordinates are approximated on the locally refined grid, in which the
grid size is O(h) (h = H2) near interfaces.
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Low Contrast: C1 = 2,C2 = 1
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2D Acoustic Wave Tests

Acoustic wave equation:

κ−1∂
2u

∂t2
−∇

(
1

ρ
∇u
)

= 0

u(x , 0) = g(x , 0), ut(x , 0) = gt(x , 0)

with g(x , t) =
1

r
f

(
t − r

cs

)
and

f (t) =
(

1− 2 (πf0 (t + t0))2
)
e−(πf0(t+t0))2

, f0 central frequency,

cs =

√
κ(xs)

ρ(xs)
, t0 =

1.45

f0

The following examples similar to those in Symes and Terentyev,
SEG Expanded Abstracts 2009
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Dip Model

Central frequency f0 = 10 Hz, xs = [−300
√

3 m,−300 m]

x2

x1

[ρ1, c1] = [3000 kg/m3, 1.5 m/s]

[ρ2, c2] = [1500 kg/m3, 3 m/s]

(2 km,2 km)

(-2 km,-2 km)

xs
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Dip Model
Q1 FEM solution, regular grid quadrature (= FDM) - this is
equivalent to using ONLY the node values on the regular grid to
compute mass, stiffness matrices

Figure : T = 0.75 s
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Dip Model

Q1 FEM solution - accurate quadrature for mass and stiffness
matrices’ computation,

Figure : Q1 FEM sol, T = 0.75 s Figure : HCFEM sol, T = 0.75 s
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Dip Model

RMS error and estimated convergence rate over the region within
the red box. The Q1 FEM here is the one with accurate
quadrature for mass and stiffness matrices

RMS error

h 7.8125 m 3.90625 m 1.953125 m

Q1 FEM 4.23e-1 1.49e-1 5.72e-2

HCFEM 2.79e-1 7.64e-2 1.94e-2

convergence rate

h 7.8125 m 3.90625 m 1.953125 m

Q1 FEM - 1.51 1.38

HCFEM - 1.87 1.97
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Dome Model
central frequency f0 = 15 Hz, xs = [3920 m, 3010 m]
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Figure : Velocity model
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Dome Model
Difference between HCFEM solution on regular grid (h = 7.8125
m) and FEM solution on locally refined grid, same time stepping

Figure : T = 1.3 s
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Dome Model
Difference between FEM solution on regular grid (h = 7.8125 m)
and FEM solution on locally refined grid, same time stepping

Figure : T = 1.3 s
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Dome Model

Difference plots

Figure : FEM sol, T = 1.3 s Figure : HCFEM sol, T = 1.3 s
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Discussion

I For dip model: HCFEM and mass lumping roughly as
accurate as as good as Q1 FEM with accurate quadrature,
when density contrasts are low (typical of seismic). Both seem
to get rid of stairstep diffractions (more or less). More refined
analysis shows HCFEM somewhat more accurate.

I For dome model: HCFEM closer to refined-grid FEM when
same (very short) time steps taken
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Discussion
“Texture”: fine scale heterogeneity everywhere (reality?)

e.g., coefficient varies on scale 1 m ⇒ accurate regular FD
simulations of 30 Hz waves may require 1 m grid though the
corresponding wavelength is about 100 m at velocity of 3 km/s

HCFEM also 2nd order convergent for this type of heterogeneity,
but no practical method to control accuracy of HC computation
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vp log from well in West Texas [thanks: Total E&P]
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Conclusion

2D HCFEM based on bilinear (Q1) elements on regular grid
achieves second order convergence rate for static and dynamic
acoustic interface problems.

Practical method of local grid refinement for HC accuracy control

Mass-lumped Q1 Galerkin methods (both FEM and HCFEM) have
same stencil and computational cost per time step as standard
centered FD method, but much improved accuracy

For small density contrasts, standard Q1 FEM with accurate
quadrature and mass lumping is usable to working accuracy, and
much cheaper than HCFEM.
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