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Inverse Problem TRIP

The Usual Set-up
M =a set of models
D =a Hilbert space of (potential) data
Forward Map F : M → D

Inverse Problem:
Given d ∈ D, find m ∈ M so that F [m] ≃ d

Wave equation:

1

ρ(x)v2(x)
∂2u
∂t2 (x, t)−∇ · 1

ρ(x)∇u(x, t) = f(xs, t)
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Born Approximation TRIP

Born Approximation(Linearized Inverse Problem)
Given smooth background velocity v(x, y, z) = v(x), seismic data
d(xr, t;xs), find oscillatory reflectivity r(x) = δv(x)

v(x) to fit the data:

F[v]r ≃ d
.
Born Modeling(Acoustic Forward Operator F[v])
..

......

(
1

v2 −∇2

)
G = δ(t)δ(x − xs);

(
1

v2 −∇2

)
δu =

2r
v2G

F[v]r(xr, t;xs) = δu(xr, t;xs)

Assumption: Single scattering at points of discontinuity of impedance in
the subsurface(No multiple scattering!)

Migration is an approximate solution of this linearized inverse problem
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Adjoint of Born Modeling Operator TRIP

Adjoint of Born Modeling = Imaging Operator
Migration operator ( producing image ) is adjoint or transpose of
modeling operator(Lailly, Tarantola, Claerbout(80’s)).
Migration operator can position reflectors correctly but with possibly
incorrect amplitudes.

+ Due to the symmetry of wave-propagation with respect to
time-reversal, migrating with the adjoint operator treats event
kinematics correctly, and produces structurally correct images of the
subsurface. It is robust to the presence of noise, or missing or
inconsistent data.

- The migration with the adjoint doesn’t treat seismic amplitudes
correctly. It focus on kinematics rather than amplitudes, amplitude
terms are usually completely ignored, or artificially constructed so that
F∗F ≈ I

True amplitude migration is (pseudo) inverse
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Derivation of Adjoint Operator TRIP

Born Modeling

F[v]r(xr, t;xs) =
∂2

∂t2
∫

dx
∫

dτ 2r(x)
v2(x)G(x, t − τ ;xr)G(x, τ ;xs)

The adjoint of F is a prestack migration operator. It is defined by∫
dxsdxrdt(Fr)(xr, t;xs)d(xr, t;xs) =

∫
dxr(x)(F∗d)(x)

Do the integral by parts shows that

F∗d(x) = 2

v2(x)

∫
dxsdxrdtdτG(x, t − τ ;xr)

∂2G(x, τ ;xs)

∂τ2
d(xr, t;xs)
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Extended Modeling TRIP

Least Squares Inversion:
Given d, find m to minimize

JLS[m] = ||F[m]− d||2[+Regularizing terms]

Due to the local minima problem, extended model was introduced.
Definition: the modeling of wavefields is extended to nonphysical
models depending on redundant parameters.
Extended Model F̄ : M̄ → D where M̄ is a larger model space =
models depending on x and h
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Extended Modeling TRIP

Extended Modeling(subsurface common offset):
In integral representation of F[v]r, permit r to depend on (half) offset h.

.Extended Modeling and Migration..

......

F̄[v]r = ∂2

∂t2
∫

dxdhdτG(x + h, t − τ ;xr)
2r(x,h)
v2(x) G(x − h, τ ;xs)

F̄∗d =
2

v2(x)

∫
dxsdxrdtdτ ∂

2G
∂τ2

(x − h, τ ;xs)∂τ
2G(x + h, t − τ ;xr)d(xr, t;xs)

When we use it to solve the inverse problem, it needs many iterations. So
we need an approximate inverse to do the preconditioning.
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Ten Kroode’s New Operators TRIP

K̃i = 1

2π

∫
dxdhdωe−iωtG(xr,x + h, ω)∂i(x,h)

∂z G(x − h,xs, ω)

Ĩd =
32

πv2(x)

∫
dxrdxsdω(−iω)∂G∗(x + h,xr, ω)

∂zr
d(xr,xs, ω)

∂G∗(xs,x − h, ω)
∂zs

.
Result 3(Fons ten Kroode,2012)
..

......

K̃ and Ĩ are the Fourier integral operators of order 1 and −1 respectively.There
exist order zero pseudo-differential operators ΨX and ΨY, such that

Ĩ ◦ K̃ = ΨX

K̃ ◦ Ĩ = ΨY

The operator ΨX acts as identity on focused space-shift-extended images. The
operators ΨY acts as identity on primary reflection data.

(http://iopscience.iop.org/0266-5611/28/11/115013)
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Relation: K̃ → F̄ TRIP

(K̃i)(xs,xr, t) =
1

2π

∫
dxdhdωe−iωtG(xr,x + h, ω) ∂i

∂z(x,h)G(x − h,xs, ω)

=

∫
dxdhdτG(x + h, t − τ ;xr)

∂i(x,h)
∂z G(x − h, τ ;xs)

F̄[v]r = ∂2

∂t2
∫

dxdhdτG(x + h, t − τ ;xr)
2r(x,h)
v2(x) G(x − h, τ ;xs)

If we assume i(x,h) = 2r(x,h)
v2(x) , then we have

.

......
F̄ ◦ ∂

∂z ◦ 2r
v2 =

∂2

∂t2 ◦ K̃ ◦ i
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Relation: Ĩ → F̄∗ TRIP

Ĩd =
32

πv2(x)

∫
dxrdxsdω(−iω)∂G∗(x + h,xr, ω)

∂zr
d(xr,xs, ω)

∂G∗(xs,x − h, ω)
∂zs

=
64

v2(x)
∂2

∂zr∂zs

∫
dxsdxrdtdτ ∂G(x − h, τ ;xs)

∂τ
G(x + h, t − τ ;xr)d(xs,xr, t)

F̄∗d =
2

v2(x)

∫
dxsdxrdtdτ ∂

2G
∂τ2

(x − h, τ ;xs)∂τ
2G(x + h, t − τ ;xr)d(xr), t;xs)

= − 2

v2(x)

∫
dxsdxrdtdτ ∂G(x − h, τ ;xs)

∂τ
G(x + h, t − τ ;xr)

∂d(xr, t;xs)

∂t

.

......
− 64

v2(x)
∂2

∂zs∂zr
◦ F̄∗ ◦

∫
t
= Ĩ
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Meaning of Result 3 TRIP

If we apply K̃ on Ĩ, the result is in terms of a ratio of some slowness
(s, s+, s−) at different places, where s, s+, s− are the slowness at the points
x,x + h,x − h respectively. So s+, s− are the slowness values at the ends
of two different rays of geometric optics.

If the rays meet at the same place, i.e. the data focuses. Then
s+ = s− = s, the result will equal to I.
If the rays meet at different places, the result will be the ratio of
slownesses. It will be bounded by the biggest slowness divided by the
smallest slowness, which means identity scaled by a very small range
of numbers. Even if the result isn’t identity, it’s not big.

K̃ ◦ Ĩ ≃ I
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Approximate Inverse TRIP

From the analysis above, we can get the following results:

F̄ ◦ ∂

∂z ◦ 2r
v2 =

∂2

∂t2 ◦ K̃ ◦ i

− 64

v2(x)
∂2

∂zs∂zr
◦ F̄∗ ◦

∫
t
= Ĩ

K̃ ◦ Ĩ ≃ I

}
F̄ ◦ −64

v2
∂2

∂zs∂zr
◦ F̄∗ ◦

∫ ∫ ∫
t
≃ I

Now we can get the approximate inverse

F̄−1 ≃ ∂

∂z ◦ −64

v2
∂2

∂zs∂zr
◦ F̄∗ ◦

∫ ∫ ∫
t
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Implementation Process TRIP

r(x,h) = F̄−1d ≃ ∂

∂z ◦ −64

v2
∂2

∂zs∂zr
◦ F̄∗ ◦

∫ ∫ ∫
t
d(xr, t;xs)

...1 Data Preparation: Since we need to take derivative to zs, zr, we
need four data(d(xs1,xr1), d(xs1,xr2), d(xs2,xr1), d(xs2,xr2)

s1 r1
s2 r2

∗ ∧ ∧ ∧ ∧ ∧

∗ ∧ ∧ ∧ ∧ ∧
...2 Integrate the data: Just do the sums
...3 Do prestack depth migration: Use normal RTM code
...4 Derivative: Do differential three times

∂2i(x,h;xs,xr)

∂zs∂zr
=

i(xs1,xr1) + i(xs2,xr2)− i(xs1,xr2)− i(xs2,xr1)

∆z2
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Preliminary Result TRIP

Migration Result Approximate Inverse Result

Thanks for Yujin’s RTM code
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Summary TRIP

If it’s true
Approximate Inverse
Get the amplitude right
It’s not expensive

Possible Problems
Ten Kroode(2012) → 3D How about 2D?
Green Function: 3D form Mod.

== 2D form
(Creation of GRT inversion formula, William Symes,1998)
Blow up the low frequency and kill the high frequency.
(A lot of sums and differences)
Numerical Errors
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Future Plans TRIP

Go through the proof, make any necessary modification for 2D.
Implement the operator in 2D and 3D
Replace four migrations with respect to one-way operator

replace ∂
∂zr

with the one way operator
according to the reciprocal principle, same to ∂

∂zs

Apply this operator as a preconditioner
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