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The Acoustic Wave Equation

1 82p(x,t)_ 1 =
p(x)cz(x) o172 \ p(x)vp(vt) f(at)a

with appropriate IC and BC.
¢(x): velocity, p(x): density, p(x): pressure, and f(x, t): source.

The wave equation:
e Predicts the pressure at the surface for all time
e Defines a nonlinear map,

S [p7 C] _>p|surfacea

e Inverse problem: recover p, ¢, given p|ufuce
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Abstraction
Let:

e m(x): model (consists of p-parameters: impedance,
velocity, density,. . .)

e p(x,1): state (the solution of the system: pressure,...)

Then, if § is the Forward Map:
e The Forward Problem:

S[m] = plsurpace
e The Inverse Problem:
Sim] ~ §°b
Given 5°%, get m(x)

O Nonlinear and Large Scale ! %RICE
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Linearization

Solution depends nonlinearly on coefficients; if we have an
approximation my to the model, Linearization is advantageous:

o Write m = mg + om
myg: Given reference model
om: First order perturbation about mj

e Define Linearized Forward Map F|[my| (Born Modeling):
Flmg|om = ép
e Linear inverse problem:

Flmo)ém ~ §°S — S[mo] := d
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Normal Equations

Interpret as least squares problem: need to solve normal
equations

N[mo|dm := F*[mgo|F[mo)dm = F*[mg|d

N := F*[mo|F[myp] : Normal Operator (Modeling + Migration),
b := F*d : migrated image
e Can only apply N, modeling + migration
e Large Scale: millions of equations/unknowns, also
om — N ém expensive

e Cannot use Gaussian elimination = need rapidly
convergent iteration = good preconditioner

e Will tell you how to make N undo itself!
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Multi-Parameter Inversion, Toy Problem
Example 1: Layered model, homogeneous background

Depth (m)
Depth (m)

Offset (m) Offset (m)

Figure: vp, velocity Figure: dn, density perturbation
perturbation
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Migrated Images

Depth (m)
Depth (m)

Offset (m) Offset (m)
Mmig,, Velocity component of Mnig,, density component of
the migrated image. the migrated image.

Figure: Migrated images mixing the contributions from density and
velocity. RICE
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Lessons Learned

¢ Discontinuities mixed in migrated images (NOT
Interpretable!)

e Amplitudes distorted

e Need to:

e Separate contributions (notoriously hard)

¢ Resolve resolution problem

¢ Resolve ill conditioning problem (density for v.d.a.)
o Correct amplitudes after separation
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The Trick: Cramer’s Rule

Want to solve
Nm=b.

Nyt Nio
N = .
< N1z N» )

Adjugate (= determinant x inverse) given by:

) Ny —Npp
Adj(N) = ( Y > )

Simple matrix multiplication:

In this case:

Adj(N)N = < NN — Np N2oNi2 — NiaNao )

—NiaNii + NiiNiz NNy — N3,
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Would be great if we had:

Adj(N)N = det(N)I

Diagonal — no mixing
Caution: operators not numbers!
But we can say (in some cases)

Adj(N)N ~ det(N) I

Who says so?
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The Big Guns

e Normal operator is a matrix of pseudodifferential operators:

e Smooth background model m, (Beylkin 1985)

e Scalar wave fields

o Polarized vector fields (P-P, P-S, S-S). (Beylkin and
Burridge, 1989; De Hoop, 2003)

e Pseudodifferential — entries of N approximately commute!
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Not The End Of The Story

e We never have the entries of N
e We can only apply them to data

Q % RICE

ToTAaL



Another Revelation

Adj(N)b = J'NJ b. (1)
0 —1
/= ( ) )
N( —bll’z ) :det(N)( _mnil )

Lesson: apply N to specific permutations of the right hand side
b — N undoes itself!

Where,

Simply
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Application of Adjugate
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(JTNJ myig)1 = det(N) m, (JTNJ Miig)o = det(N) my
Figure: The application of the adjugate separates the velocity and
density contributions.
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Dividing by the determinant

e To undo det(N), apply N to form:
Ndet(N) dm ~ det(N) N dm = det(N) b (2)
e given b and det(N) b, approximate scaling factor c:

¢ = argmin||b — cdet(N) b||? (3)
ceYDO

e Approximate solution:

ém=N"'"b~N"'cdet(N) b~ cdet(N)N~'b
~ cdet(N) om := dmijy,
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Depth (m)
Depth (m)

Offset (m) Offset (m)

det(N ) Mmig, det(N ) Mmig,

Figure: Scaling of the migrated images by det(N), used to undo the
determinant
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Approximate Inverse after Amplitude Correction

Depth (m)
Depth (m)

Offset (m) Offset (m)

invy, nvg,
Figure: The approximate inverse. The contributions from velocity and
density are separated and the amplitudes are corrected.
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Data Fit 70%

Time index
Time index

Trace index Trace index

Data misfit Target Data
Figure: Data misfit, versus target data. The inverted model fits 70% of
the data.
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Marmousi with homogeneous background

Depth (m)
Depth (m)

Offset (m) “ Offset (m)

Density perturbation. Velocity perturbation.

Figure: Perturbations to the homogeneous background.
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Migrated images

Depth (m)
Depth (m)

Offset (m) Offset (m)
Migrated image, density Migrated image, velocity
component. component.

Figure: b, the migrated images.

@ RICE

ToTAaL



Application of the adjugate

Depth (m)
Depth (m)

Offset (m) Offset (m)
Adjugate application, density Adjugate application, velocity
component. component.

Figure: Adj(N) b, application of adjugate.
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Amplitude correction

Depth (m)
Depth (m)

Offset (m) Offset (m)

Approximate inverse, density Approximate inverse, velocity
component. component.

Figure: Approximate inverse.
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Data Fit 45%

Time
Time

Trace index Trace index

Data misfit Target Data

Figure: Data misfit, versus target data. The inverted model fits 45% of
the data.
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Existing Approaches

e For one parmeter:

¢ One application of N to approximate inverse

e Known as scaling methods

e Approximation of inverse: scaling factor

e For multiparameters:

o Amplitude Versus Offset (AVO) variations — information
about physical parameters

e Geometric optics calculations — asymptotic formulas to
approximate N !

o Minimize objective function:

|F ém —d|?

using Krylov subspace methods
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Proposed method:

Not iterative

Uses wave equation migration (Reverse Time Migration)

No geometric optics computations
Relies only on application of normal operator

Novel for multiparameters: Few applications of N —
approximate inverse
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Summary and Future Work

Derived preconditioner for linearized multiparameter
inverse problem

Showed 1D and 2D examples — 3D

Demonstrated on homogeneous background for 2D —
smooth

Applied to v.d.a. — linear elasticity (3 parameters) ...
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