Linearized Multi-Parameter Inversion

Rami Nammour

Total E&P USA

TRIP 2012 Meeting
March 30, 2012
Outline

• Linearization of the inverse problem
• Normal equations
• Cramer’s rule
• Variable density acoustics (2 parameters)
 • 1D layered example
 • Marmousi with homogeneous background
• Comparison with existing approaches
• Summary and future work
The Acoustic Wave Equation

\[
\frac{1}{\rho(x)c^2(x)} \frac{\partial^2 p(x, t)}{\partial t^2} - \nabla \cdot \frac{1}{\rho(x)} \nabla p(x, t) = f(x, t),
\]

with appropriate IC and BC.

\(c(x):\) velocity, \(\rho(x):\) density, \(p(x):\) pressure, and \(f(x, t):\) source.

The wave equation:

- Predicts the pressure at the surface for all time
- Defines a nonlinear map,

\[S: [\rho, c] \rightarrow p|_{\text{surface}},\]

- Inverse problem: recover \(\rho, c,\) given \(p|_{\text{surface}}\)
Abstraction

Let:

- \(m(x) \): model (consists of p-parameters: impedance, velocity, density,...)
- \(p(x, t) \): state (the solution of the system: pressure,...)

Then, if \(S \) is the Forward Map:

- The Forward Problem:
 \[S[m] = p|_{\text{surface}} \]

- The Inverse Problem:
 \[S[m] \approx S^{\text{obs}} \]

Given \(S^{\text{obs}} \), get \(m(x) \)

Nonlinear and Large Scale!
Solution depends nonlinearly on coefficients; if we have an approximation \(m_0 \) to the model, **Linearization** is advantageous:

- Write \(m = m_0 + \delta m \)
 - \(m_0 \): Given reference model
 - \(\delta m \): First order perturbation about \(m_0 \)

- Define Linearized Forward Map \(F[m_0] \) (Born Modeling):
 \[
 F[m_0] \delta m = \delta p
 \]

- **Linear** inverse problem:
 \[
 F[m_0] \delta m \approx S^{obs} - S[m_0] := d
 \]
Normal Equations

Interpret as least squares problem: need to solve normal equations

\[N[m_0] \delta m := F^*[m_0]F[m_0] \delta m = F^*[m_0]d \]

\[N := F^*[m_0]F[m_0] : \text{Normal Operator (Modeling + Migration)}, \]
\[b := F^*d : \text{migrated image} \]

- Can only apply \(N \), modeling + migration
- \textit{Large Scale}: millions of equations/unknowns, also \(\delta m \rightarrow N \delta m \) expensive
- Cannot use Gaussian elimination \(\Rightarrow \) need rapidly convergent iteration \(\Rightarrow \) good preconditioner
- Will tell you how to make \(N \) undo itself!
Multi-Parameter Inversion, Toy Problem
Example 1: Layered model, homogeneous background

Figure: vp, velocity perturbation

Figure: dn, density perturbation
m_{mig_1}, velocity component of the migrated image.

m_{mig_2}, density component of the migrated image.

Figure: Migrated images mixing the contributions from density and velocity.
Lessons Learned

• Discontinuities mixed in migrated images (NOT Interpretable!)
• Amplitudes distorted
• Need to:
 • Separate contributions (notoriously hard)
 • Resolve resolution problem
 • Resolve ill conditioning problem (density for v.d.a.)
 • Correct amplitudes after separation
The Trick: Cramer’s Rule

Want to solve

$$N m = b.$$

In this case:

$$N = \begin{pmatrix} N_{11} & N_{12} \\ N_{12} & N_{22} \end{pmatrix}.$$

Adjugate (= determinant \times inverse) given by:

$$\text{Adj}(N) = \begin{pmatrix} N_{22} & -N_{12} \\ -N_{12} & N_{11} \end{pmatrix}.$$

Simple matrix multiplication:

$$\text{Adj}(N) \, N = \begin{pmatrix} N_{22}N_{11} - N_{12}^2 & N_{22}N_{12} - N_{12}N_{22} \\ -N_{12}N_{11} + N_{11}N_{12} & N_{11}N_{22} - N_{12}^2 \end{pmatrix}.$$
• Would be great if we had:

\[\text{Adj}(N) N = \det(N) I \]

• Diagonal \(\rightarrow \) no mixing

• Caution: operators not numbers!

• But we can say (in some cases)

\[\text{Adj}(N) N \approx \det(N) I \]

• Who says so?
The Big Guns

• Normal operator is a matrix of pseudodifferential operators:
 • Smooth background model m_0 (Beylkin 1985)
 • Scalar wave fields
 • Polarized vector fields (P-P, P-S, S-S). (Beylkin and Burridge, 1989; De Hoop, 2003)

• Pseudodifferential \rightarrow entries of N approximately commute!
Not The End Of The Story

- We never have the entries of N
- We can only apply them to data
Another Revelation

\[\text{Adj}(N) b = J^T N J b. \]

(1)

Where,

\[J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \]

Simply

\[N \begin{pmatrix} -b_2 \\ b_1 \end{pmatrix} = \text{det}(N) \begin{pmatrix} m_2 \\ -m_1 \end{pmatrix} \]

Lesson: apply \(N \) to specific permutations of the right hand side \(b \rightarrow N \) undoes itself!
Application of Adjugate

\[(J^T J m_{mig})_1 \approx \text{det}(N) m_1\] \[(J^T J m_{mig})_2 \approx \text{det}(N) m_2\]

Figure: The application of the adjugate separates the velocity and density contributions.
Dividing by the determinant

• To undo $\det(N)$, apply N to form:

$$N \det(N) \delta m \approx \det(N) N \delta m = \det(N) b$$

(2)

• given b and $\det(N) b$, approximate scaling factor c:

$$c = \arg\min_{c \in \Psi DO} \|b - c \det(N) b\|^2$$

(3)

• Approximate solution:

$$\delta m = N^{-1} b \approx N^{-1} c \det(N) b \approx c \det(N) N^{-1} b$$

$$\approx c \det(N) \delta m := \delta m_{inv}$$

(4)
Figure: Scaling of the migrated images by $\det(N)$, used to undo the determinant
Approximate Inverse after Amplitude Correction

Figure: The approximate inverse. The contributions from velocity and density are separated and the amplitudes are corrected.
Figure: Data misfit, versus target data. The inverted model fits 70% of the data.
Marmousi with homogeneous background

Figure: Perturbations to the homogeneous background.

Density perturbation.

Velocity perturbation.
Migrated images

Migrated image, density component.

Migrated image, velocity component.

Figure: b, the migrated images.
Application of the adjugate

Adjugate application, density component.

Adjugate application, velocity component.

Figure: $\text{Adj}(N)b$, application of adjugate.
Amplitude correction

Approximate inverse, density component.

Approximate inverse, velocity component.

Figure: Approximate inverse.
Data Fit 45%

Figure: Data misfit, versus target data. The inverted model fits 45% of the data.
Existing Approaches

- For one parameter:
 - One application of N to approximate inverse
 - Known as *scaling methods*
 - Approximation of inverse: *scaling factor*

- For multiparameters:
 - Amplitude Versus Offset (AVO) variations \rightarrow information about physical parameters
 - Geometric optics calculations \rightarrow asymptotic formulas to approximate N^{-1}
 - Minimize objective function:

$$\|F \delta m - d\|^2$$

using Krylov subspace methods
Proposed method:

- Not iterative
- Uses wave equation migration (Reverse Time Migration)
- No geometric optics computations
- Relies only on application of normal operator
- **Novel for multiparameters:** Few applications of $N \rightarrow$ approximate inverse
Summary and Future Work

- Derived preconditioner for linearized multiparameter inverse problem
- Showed 1D and 2D examples → 3D
- Demonstrated on homogeneous background for 2D → smooth
- Applied to v.d.a. → linear elasticity (3 parameters) . . .
THANK YOU!

- Dr. Symes
- TRIP
- Total E&P USA