Adaptive Time Stepping for Optimal Control Problems

Marco Enriquez

The Rice Inversion Project
marco.enriquez@caam.rice.edu

December 9, 2010
Simulation-Driven Optimization Problems

We are interested in solving optimization problems constrained by differential equations,

$$\min_c J(c) = G(u(c, \cdot))$$

s.t. $\bar{H} \left(\frac{du}{dt}, u, c \right) = 0$,

given that we have an application package capable of solving the state equation.

Other Examples:
- History Matching
- Seismic Inversion (Dong)
Motivating Problem

Suppose the following:

1. We use derivative-based methods to solve [SD], relying on the adjoint-state method to obtain derivatives of J.

2. The solution of the state equation changes rapidly in certain time intervals, motivating use of adaptive time-stepping.

How will this affect the numerical approach we use to solve [SD]?
Motivating Example: Optimal Well Rate Allocation

[OWRA]: Given a reservoir model, along with location of injection and production wells, find the optimal well rates to maximize revenue

\[1\] Images courtesy of www.amerexco.com/recovery
Motivating Example: Optimal Well Rate Allocation

\[
\max_{q_i \in I \cup P} J(q) = \int_0^T dt \left(\sum_{i \in P} \alpha (1 - s_a) q_i(t) - \sum_{i \in P} \frac{\beta}{2} s_a q_i^2(t) - \sum_{i \in I} \gamma q_i(t) \right),
\]

where \(\alpha, \beta\) and \(\gamma\) are scalar variables and the aqueous pressure \(p\) and aqueous saturation \(s_a\) solve:

\[
-\nabla \cdot (K(x) \lambda_{tot}(s_a(x, t)) \nabla p(x, t)) = \sum_{i \in P} (1 - s_a) q_i(t) \delta(x - x_i)
+ \sum_{i \in P \cup I} s_a q_i(t) \delta(x - x_i)
\]

\[
\phi(x) \frac{\partial}{\partial t} s_a(x, t) - \nabla \cdot (K(x) \lambda_a(s_a(x, t)) \nabla p(x, t)) = \sum_{i \in P \cup I} s_a q_i(t) \delta(x - x_i)
\]

\(^1\)Problem formulation from Wiegand et al., *Adjoint calculations for a reservoir management problem*
Motivating Example: Optimal Well Rate Allocation

Rapid changes in the wellrates (q) lead to rapid variation in the solution of the Black-Oil Equations.
Motivating Example: Optimal Well Rate Allocation

Rapid changes in the wellrates \((q) \) lead to rapid variation in the solution of the Black-Oil Equations.

![Aqueous Saturation Profile (For 1 Grid Cell)](image)
Motivating Example: Optimal Well Rate Allocation

Rapid changes in the wellrates (q) lead to rapid variation in the solution of the Black-Oil Equations

- Adaptive time-stepping is a common feature in industrial reservoir simulators.
Adaptive Time Stepping

Adaptive time stepping is the preferred method for solving differential equations with rapidly changing solutions

- Requires an input: error tolerance τ
- Steplengths expand or contract, to maintain solution error of $O(\tau)$

How to use adaptive time stepping with the adjoint state method?

- In order to use adaptive time stepping to solve [SD], we apply the optimality conditions to [SD], before discretizing
The Continuous Adjoint-State Method

Applying the optimality conditions to [SD], for \(t \in [0, T] \):

Continuous State Equation:

\[
\frac{du}{dt} = H(u(t), c) \quad u(0) \equiv 0
\]

Continuous Adjoint Equation:

\[
\frac{dw}{dt} = -D_u H(u(t), c)^*w(t) + J_u(u(t), c) \quad w(T) \equiv 0
\]

Gradient:

\[
\nabla f(c) = \int_0^T D_c H(u(t), c)^*w(t) + J_c(u(t), c) dt
\]
Adaptive Time Stepping and the Adjoint State Equations

Solve the state and adjoint equations above via adaptive time-stepping

Problem: Mismatched time grids

- Interpolation is needed to complete the adjoint evolution
- Interpolation Error \rightarrow Adjoint Error \rightarrow Gradient Error
- **Claim:** Despite interpolation error, we can still guarantee local convergence to [SD]
The Adaptive Tolerance Method

Claim: Suppose we solve [SD] with the Newton method and use adaptive time-stepping to resolve the DE constraints.

Using the following time-stepping tolerance update:

\[
\tau_{k+1} = \min(\tau_k, \|g_k\|^p), \quad p \in (1, 2]
\]

is enough to guarantee local convergence to a stationary point
Algorithm: Adaptive Tolerance Method

a. Set initial time-stepper tolerance τ_0 and initial control c_0. Set $k = 0$.

b. while (optimization error $< tol_{opt}$)
 1. With τ_k and c_k, solve reference and adjoint equations.
 2. Take Newton Step: solve $H_k s_k = g_k$, then $c_{k+1} = c_k + s_k$.
 3. $\tau_{k+1} = \min(\tau_k, \kappa(\text{optimization error})^p)$ for $p \in (1, 2]$.
 4. Set $k = k + 1$.
The Adaptive Tolerance Method
TSOpt ("Time Stepping For Optimization")

TSOpt is “middle-ware” written in C++, designed to aid solution of simulation-driven optimization problems

TSOpt:
- abstracts commonalities among time-stepping methods
- provides a way for a simulation package to inter-operate with optimization algorithms
- supports use of the adjoint-state method

Motivating observation: for every simulation driven optimization problem, the solution process is (mostly) the same:
- reference, linearized and adjoint simulation execution order
- constructing needed data structures for optimization
TSOpt ("Time Stepping For Optimization")
TSOpt ("Time Stepping For Optimization")

\[u^+ = u + \Delta t H(u, c, t) \]
TSOpt ("Time Stepping For Optimization")

\[\nabla J(c), J(c), \ldots \]

Optimizer TSOpt Simulator
TSOpt ("Time Stepping For Optimization")

\[
\begin{align*}
 s &= -B(c)^{-1}\nabla J(c) \\
 c^+ &= c + \alpha s
\end{align*}
\]
TSopt ("Time Stepping For Optimization")
TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations. Hence, a Jet object “holds” information on how to take forward, derivative and adjoint evolution steps.
TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations. Hence, a Jet object “holds” information on how to take forward, derivative and adjoint evolution steps.

![Diagram of TSOpt's Components]

All of these classes are templated on a State class, which itself holds state data and a time object.
Inversion Software Construction

A consequence of TSOpt’s modular structure is that it minimizes the amount of code needed to perform an inversion

User:
- provides TSOpt with a forward, linearized, and adjoint “step”
- provide a “State” class

TSOpt:
- arranges proper execution forward, linearized and adjoint simulation
- implements the Adjoint-State method to form gradients

Output can be passed to optimization software
TSOpt and the Adjoint-State (AS) Method

The AS method requires access to the reference simulation state history.

TSOpt implements the following strategies, for both fixed-step and adaptive time-stepping:

- **save all**: save states as you forward simulate, access as needed
 - Cost: A typical 3D RTM, $O(TB)$

- **checkpointing**: rely on forward simulations, *and* use stored simulation states as a starting point for evolution
 - Cost: $O(\log(N))$ recomputation, given a special distribution of the states and a small amount of buffers

- **specialized strategies for specific problems**
A Checkpointing Example

Consider a 15 day simulation, with $dt = 1$ day. Checkpoint with 3 buffers.

Checkpointing Initial Steps:
1. Figure out which states to save.
2. Run forward simulation.
3. Store states at times $t = 0, 6, 11$ into the 3 buffers.

The first adjoint step: solve for the adjoint variable at $t = 14$
- Requires access to simulation state at $t = 14$
2: From the Last CP, Timestep to Generate u_{14}
3: From the Last CP, Timestep to Generate u_{13}
4: From the Last CP, Timestep to Generate u_{12}
5: Since We Stored It, Access u_{11}
6: From u_6, Generate New CP
7: Overwrite Useless Buffer with New CP
8: From Updated Last CP, Timestep to Generate u_{10}
9: From Updated Last CP, Timestep to Generate u_9
10: Since We Stored It, Access u_8
11: From Second Stored CP, Timestep to Generate u_7
12: Since We Stored It, Access u_6
13: From First CP, Timestep to Generate u_5, Gen. 2 CPs
14: Overwrite Buffers with 2 New CPs

![Diagram showing buffers 0, 1, and 3]
From Last CP, Timestep to Generate u_4
16: Since We Stored It, Access u_3
17: From Second CP, Timestep to Generate u_2
18: Since We Stored It, Access u_1
19: Since We Stored It, Access \(u_0 \)
Recomputation Cost of Checkpointing

Consider the following case, where $N = 10000$

<table>
<thead>
<tr>
<th>buffers</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>ratio</td>
<td>27.9</td>
<td>11.3</td>
<td>5.8</td>
<td>4.5</td>
<td>3.8</td>
<td>3.6</td>
<td>3.4</td>
<td>3.1</td>
<td>2.9</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Simulation Verification

In order to obtain meaningful results from inversion, one must guarantee that the gradient is accurate.

Gradient quality depends on the adjoint states, which depends on:
- linearization of the reference equations
- adjoint of the linearization

TSOpt is capable of the following simulation verification (unit) tests:
- **derivative test**: compare linearized simulation to finite difference approximation (using reference simulation)
- **dot product test**: give the linearized simulation operator A, adjoint simulation operator A^* and random control x and random state y, check $\langle Ax, y \rangle - \langle x, A^*y \rangle$ (Fixed timestep only)
The Optimal Well Rate Allocation Problem

Recall the optimal well rate allocation problem:

\[
\min_{q_i \in I \cup P} \ J(q) = \int_0^T \ dt \left(\sum_{i \in P} \alpha (1 - s_a) q_i(t) - \sum_{i \in P} \frac{\beta}{2} s_a q_i^2(t) - \sum_{i \in I} \gamma q_i(t) \right),
\]

where \(\alpha, \beta \) and \(\gamma \) are scalar variables and the aqueous pressure \(p \) and aqueous saturation \(s_a \) solve:

\[
-\nabla \cdot (K(x) \lambda_{tot}(s_a(x, t)) \nabla p(x, t)) = \sum_{i \in P} (1 - s_a) q_i(t) \delta(x - x_i) \\
+ \sum_{i \in P \cup I} s_a q_i(t) \delta(x - x_i)
\]

\[
\phi(x) \frac{\partial}{\partial t} s_a(x, t) - \nabla \cdot (K(x) \lambda_a(s_a(x, t)) \nabla p(x, t)) = \sum_{i \in P \cup I} s_a q_i(t) \delta(x - x_i)
\]
Fully Discretized Problem

After using a Finite Volume method in space and a 1-2 scheme in time (Bwd. Euler + Trapezoid Rule):

$$\begin{align*}
\min_{q} & \quad \bar{J}(q) = \sum_{k=1}^{N} h^k \ell(t^k, s_a(t^k), q) \\
\text{s.t.} & \quad e^T q = 0 \\
& \quad q_{\min} \leq q_i \leq q_{\max}
\end{align*}$$

where $s_a(t^{k+1})$ and $p(t^{k+1})$ solve:

$$\begin{bmatrix}
\varphi[q](t^{k+1}) - Ap(t^{k+1}) \\
D^{-1}(\varphi[q](t^{k+1}) - \tilde{A}p(t^{k+1}))
\end{bmatrix} = \begin{bmatrix}
0 \\
\frac{s_a(t^{k+1}) - s_a(t^k)}{h^k}
\end{bmatrix}$$

where the matrices $A(\theta)$ and D are defined as:

$$\begin{align*}
D_{i,i} & = \phi_i \cdot |\Omega_i| \\
A_{i,j}^{(\theta)} & = -T_{i,j} \lambda_{\theta i,j} \\
A_{i,i}^{(\theta)} & = \sum_{j} T_{i,j} \lambda_{\theta i,j}
\end{align*}$$
The Adjoint Equations

Simultaneously solve for the adjoint variables $w^s_{(t^k)}$ and $w^p_{(t^k)}$ in the following equation:

$$-rac{w^s_{(t^{k+1})} - w^s_{(t^k)}}{h^k} = D_s f(\ldots(t^k)) w^s_{(t^k)} - D_s g(\ldots(t^k)) w^p_{(t^k)} - \nabla_s l(\ldots(t^k))$$

$$0 = -D_p f(\ldots(t^k)) w^s_{(t^k)} + D_p g(\ldots(t^k)) w^p_{(t^k)}$$

The directional derivative can then be obtained from the following expression:

$$\nabla J(q) = \Delta q \sum_{i=1}^{N} \nabla_q l(\ldots(i\Delta q)) - D_q f(\ldots(i\Delta q)) w^s_{(i\Delta q)} + D_q g(\ldots(i\Delta q)) w^p_{(i\Delta q)}$$
Simulation Information

- SPE10 data for porosity and permeability (left)
- Location of Injecting/Producing Wells (right)
- Grid Cell Size: 10×20 feet
Reference Simulation Results

Saturation plot for $t = 25$ days
Reference Simulation Results

Saturation plot for $t = 50$ days
Reference Simulation Results

Saturation plot for $t = 75$ days
Reference Simulation Results

Saturation plot for $t = 100$ days
Reference Simulation Results

Saturation plot for $t = 125$ days
Reference Simulation Results

Saturation plot for $t = 150$ days
Reference Simulation Results

Saturation plot for $t = 175$ days
Reference Simulation Results

Saturation plot for $t = 200$ days
Inversion Information

Computational Software:
- Simulation: BlackOil simulator
- TSOpt to handle simulation execution, gradient construction
- Optimization: IPOpt, “Interior-Point Optimizer”

Inversion:
- Find optimal well-rate configuration over 200-day timespan
- Stopping tol.: 5×10^{-2} NLP error
- LBFGS Hessian approximation
- Globalization: Linesearch
- Wellrate bounds: $[0, 20]$ bbl/day
- Initial guess: 10 bbl/day for all wells
Objective Function

![Adaptive and Fixed Grid Objective Function](image)

- **Fixed Simulation**
- **Adaptive Simulation**

- **Objective Function Value**
- **Optimization Iteration**

- Values range from 450,000 to 660,000.
NLP Error vs. Tolerance Values

![Graph showing NLP Error vs. Iteration Number]

The graph illustrates the relationship between the tolerance value (tol) and the NLP Error as the iteration number increases. The x-axis represents the iteration number, while the y-axis shows the error values ranging from 0.001 to 1.0. The graph demonstrates a decreasing trend of both the tolerance and NLP Error, indicating effective convergence as the iterations progress.
To reach 11% NLP error:

- Fixed: 9+ hrs., $\Delta t = 0.25$
- Adaptive: 3 hrs.
Conclusions

Fixed-step approach to solving optimal control problems with DE constraints with rapidly-varying solutions

▶ Requires fine time grid for accuracy (**Expensive**)

Adaptive Approach:

▶ Requires OtD approach

▶ Higher sim. accuracy \rightarrow accurate derivatives \rightarrow better optim. results

▶ Adaptive tolerance method: solves DE as accurately as needed
Conclusions

TSOpt:
- Modular C++ framework aiding inversion software construction
- Easily switch between strategies for inversion and gradient formation
- Supports checkpointing for fixed and adaptive simulations

Using the Adaptive Tolerance Method for OWRA:
- Solved via BlackOil + TSOpt + IPOpt
- Increase in projected revenue (3%)
- Reached NLP error of 5%
Questions?
Theorem: Let g and H be the computed gradient and Hessian, respectively. If the reference and adjoint equations are solved adaptively with tolerance τ, then:

$$
\|g - \nabla f(c)\| \leq C_g \tau \\
\|(H - \nabla^2 f(c)) p\| \leq C_H \tau
$$

for constants $C_g, C_H > 0$ and a search direction p.
Inexact Optimization Algorithms

How will the derivative error affect solution of the optimal control problem?

Inexact Optimization Algorithms:
- Theoretically guarantees convergence, despite derivative error
- Focus: Inexact Newton Methods
- **Idea:** Couple derivative error to inexact Newton theory
The Inexact Newton Method

Consider the following problem:

$$\min_c f(c), \quad f : \mathbb{R}^n \rightarrow \mathbb{R}$$

Standard Newton:

Solve: $$\nabla^2 f(c) s = \nabla f(c)$$

Update: $$c^+ = c + s$$

Inexact Newton Algorithm

Solve $$\nabla^2 f(c) s = \nabla f(c) + r(c)$$

Update: $$c^+ = c + s$$

- Local convergence if $$\|r(c)\| \leq K \cdot \|\nabla f(c)\|^p$$ for $$p \in (1, 2]$$
The Adaptive Tolerance Method

Insight: If the derivative discretization error at the k^{th} iteration,

$$\|r_k\| \approx C \tau_k,$$

then the inexact Newton criterion

$$\|r_k\| \leq K \cdot \|\nabla f(c_k)\|^p, \quad p \in (1, 2]$$

yields an update scheme for the tolerance
The Adaptive Tolerance Method

Claim: Suppose we solve [SD] with the Newton method and use adaptive time-stepping to resolve the DE constraints.

Using the following time-stepping tolerance update:

$$\tau_{k+1} = \min(\tau_k, \|g_k\|^p), \quad p \in (1, 2]$$

is enough to guarantee local convergence to a stationary point.
Adaptive Checkpointing

This algorithm stems from Walter’s ARevolve:

- **Good:** Recomputation cost close to optimal \(\log(N) \), plus small penalty due to adaptivity
- **Bad:** Assumes reference time grid and adjoint time grid align

Goal: Keep the near-optimal recomputation ratio, without the restriction on the time grids

Solution:
- Add interpolation buffer that moves with the adjoint evolution
- Manage calls are made to ARevolve
Adaptive Checkpointing
Adaptive Checkpointing
Adaptive Checkpointing
Adaptive Checkpointing

[F]

[A]
Adaptive Checkpointing

[F]

[A]
Adaptive Checkpointing

[F]

[A]

Diagram showing adaptive checkpointing in computational processes.