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Space-shift Differential Semblance

Space-shift gather / HOCIG via shot record migration:(IEI, Biondi,
Sava, Fomel,...)

I (x , z , h) =
∑
xs

∫
dt S(x − h, z , t; xs)R(x + h, z , t; xs)

S = source wavefield, R = receiver wavefield - computed anyhow
(depth extrapolation, two-way plus time reversal,...)

2D for convenience only!

DIfferential semblance MVA objective, in simplest form:

J[v ] =

∫ ∫ ∫
dxdzdh h2 |I (x , z , h)|2

Shen’s thesis 04, others (Shen & coauthors 03, 05, 07, Shen & S.
08, Kabir 07, Fei 09, 10)



Space-shift Differential Semblance

Upshot, it works, but...

Gradient tends to oscillate horizonally - side lobes inhibit
convergence (Biondi 08, Fei 10, Vyas 10)

This talk: where the oscillations come from, and how they might
be removed.

Goal: redefine the gradient so that it is still a gradient, but
suppress oscillations.

Approach: explicit ray theory computation suggests a fix
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Ray-theoretic Expression of SSDS

Assume band-unlimited data (Green’s function) - then data
d(xs , xr , t) and image I (x , z , h) related by

I (x , z , h) =

∫ ∫ ∫ ∫
dxsdxrdtdτ

d(xs , xr , t)G (xr , x + h, z , t − τ)G (xs , x − h, z , τ)

= (FTd)(x , z , h)

F = extended Born modeling operator



Ray-theoretic Expression of SSDS

Simplest form: assume

I rays obey “DSR” condition - no significant amount of energy
on rays turning horizontal.

I rays also obey “simple ray geometry” condition - no
multipathing

Also: ignore amplitudes, (more or less) uniform factors of
frequency (powers of Laplacian) throughout talk.

Then G (xs , x , z , t) ' δ(t − T (xs , x , z)) where T (xs , x , z) =
(unique) traveltime (xs , zs)→ (x , z)

More: FT , F are invertible in a large region of phase space
containing most reflection energy (see de Hoop - Stolk - S. 2009)



Ray-theoretic Expression of SSDS

Rewrite using image space and data space dot products

J[v ] = 〈hI , hI 〉I = 〈FTd , h2FTd〉I

= 〈d ,Fh2FTd〉

=

∫ ∫ ∫
dxsdxrdt d(xs , xr , t)

∫ ∫ ∫
dksdkrdω

exp(i(ωt + ksxs + krxr ))H̄2(xs , xr , t, ks , kr , ω)d̂(ks , kr , ω)

Egorov’s Thm: symbol H̄ = function in data phase space which
maps, under ray tracing, to h2 in image phase space.



Ray-theoretic Expression of SSDS
H̄ homogenous of degree 0 in phase space coords, so write in
terms of function H of phase angles θs , θr :

ω sin θr = kr , ω sin θs = ks

I receiver ray; starts at xr , zr , takeoff angle θr :
z 7→ X (xr , θr , z),T (xr , θr , z)

I source ray; starts at xs , zs , takeoff angle θs :
z 7→ X (xs , θs , z),T (xs , θs , z)

I two-way time condition: t = T (xs , θs , z) + T (xr , θr , z) -
determines z(xs , xr , t, θs , θr )

I

H(xs , xr , t, θs , θr ) = X (xr , θr , z)− X (xs , θs , z),

z = z(xs , xr , t, θs , θr )



Ray-theoretic Expression of SSDS
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Homogeneous medium, velocity v :

z(xs , xr , t, θs , θr ) =
vt

sec θr + sec θs
H(xs , xr , t, θs , θr ) = xr − xs + z(tan θr − tan θs)



Computing the gradient

Key observation: only v -dependent quantity in oscillatory integral
for J[v ] is symbol H.

δH = δX (xr , ...)− δX (xs , ...) +
∂X

∂z
(xr , ..)δz − ∂X

∂z
(xs , ..)δz

Compute δz by differentiating t = T (xs , θs , z) + T (xr , θr , z)
implicitly, use ray perturbation equations - obtain

δH =

∫ z

0
dz ′ (z − z ′)

[
Vr · ∇

δv

v
(z ′, xr + z ′ tan θr )

+Vs · ∇
δv

v
(z ′, xs + z ′ tan θs)

]
Vs ,Vr = messy functions of θs , θr .



Computing the gradient

δH =

∫ z

0
dz ′ (z − z ′)

[
Vr · ∇

δv

v
(z ′, xr + z ′ tan θr )

+Vs · ∇
δv

v
(z ′, xs + z ′ tan θs)

]

I tomographic: δH = integral along ray pair, like traveltime
perturbation

I sensitive to oscillations: unlike traveltime perturbation,
involves ∇δv



Computing the gradient

Assess effect on gradient at “wrong” velocity: assume that d is
Born data for “target” velocity v∗, reflectivity r(zd , xd). Ignoring
amplitude and frequency factors,

d(xs , xr , t) =

∫ ∫
dxddzd δ(t−T ∗(xr , xd , zd)−T ∗(xs , xd , zd))r(zd , xd)

Insert into expression for J, get

J[v ] =

∫ ∫ ∫ ∫
dxddzddx ′ddz ′d r(zd , xd)r(z ′d , x

′
d)K (zd , xd ; z ′d , x

′
d)

in which K represented by same integral as J above with
t = T ∗(xr , xd , zd) + T ∗(xs , xd , zd)) in expression for H, and
oscillatory phase Φ.

Important: δJ rep’d by same “double diffraction” integral with δH
in place of H.



Computing the gradient

Use stationary phase to eliminate 4 of 11 integrals, ignore resulting
frequency and amplitude factors, obtain

δJ[v ]δv =

∫ ∫ ∫ ∫
dxddzddx ′ddz ′d r(zd , xd)r(z ′d , x

′
d)δK (zd , xd ; z ′d , x

′
d)

δK =

∫ ∫ ∫
dθsdθrdω e iΦA

×
∫ Bzd

0
dz ′ (Bzd − z ′)

[
Vr · ∇

δv

v
(z ′, xd + zd tan Θr + z ′ tan θr )

+ Vs · ∇
δv

v
(z ′, xd + zd tan Θs + z ′ tan θs)

]
Φ = (xd − x ′d)Φx + (zd − z ′d)Φz , Φx ,Φz ,B,A = messy functions of
θr ,Θr = arcsin

(
v
v∗ sin θr

)
, ....



Computing the gradient

Can extract explicit multiple integral expression for ∇J from this
formula - but not so enlightening

integral along ray is trivial if δv oscillates in perp direction:
δv(z , x) = χ(z , x)e ik(x−z tan θs) ⇒

I ∇δv ' k(− tan θs , 1)T δv for large k

I δv(z ′, xd + zd tan Θs + z ′ tan θs) = χ(...)e ik(xd+zd tan Θs) -
approx. independent of ray coord z ′ for large k

I so integral along ray ' O(k)δv

I remains approximately true if θs perturbed, sim. for θr - O(k)
growth for near-horizontal oscillation



Computing the gradient

Upshot: δJ[v ]δv = O(k) if ∂xδv = O(k)

⇒ x-Fourier components of ∇J[v ] must be large (Plancherel)

⇒ gradient must generally (square-integrable r) oscillate in
near-horizontal directions, as observed

Finer analysis; if reflectivity r(xd , zd) is smooth in xd , then can
integrate by parts to absorb growth - however at x-direction
singularities this is impossible, leading to vertical diffraction
side-lobes observed in numerics (Biondi 08, Fei 10, Vyas 10).

Mathematical expression: for general (non-smooth) r ,
band-unlimited data, gradient does not exist!
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Proposed Remedy

Conventionally: “The Gradient” = Riesz representer of derivative
via L2 inner product (“continuous dot product”) and discrete
approximations

Non-existence of gradient not a new phenomenon - conventional
reflection traveltime tomography gradient does not exist, either!
(Delprat-Jannaud & Lailly, GJR 1993).

Morally: rate of change of objective (traveltime misfit, DS,...)
depends on derivatives of velocity perturbation, really only makes
sense for smooth v , δv

⇒ must use inner product / norm that controls derivatives



Proposed Remedy

Natural family of norms for this application: L2 Sobolev family

‖δv‖2
k =

∫
dx [δv(I − σ2∇2)kδv ]

Comparison: “ordinary” gradient ∇0J, Sobolev k-norm gradient
∇kJ

∇kJ = (I − σ2∇2)−k∇0J

obtain k gradient from ordinary gradient by application of
smoothing operator - large horizontal oscillations suppressed -
isotropic smoothing applies also to VOCIG-based DS



Proposed Remedy

Program:

I construct DS (“ordinary”) gradient computation via RTM

I implement Helmholtz operators powers in rect. geom. using
FFTs, sparse matrix methods

I compute k-norm gradient, use in optimization (for 2D, k=2)
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