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Space-shift Differential Semblance

Space-shift gather / HOCIG via shot record migration:(IEl, Biondi,
Sava, Fomel,...)

I(x,z,h)= Z / dt S(x — h,z, t; xs)R(x + h, z, t; xs)
Xs
S = source wavefield, R = receiver wavefield - computed anyhow
(depth extrapolation, two-way plus time reversal,...)

2D for convenience only!

Dlfferential semblance MVA objective, in simplest form:

J[v]:///dxdzdhh2|l(x,z,h)|2

Shen’s thesis 04, others (Shen & coauthors 03, 05, 07, Shen & S.

08, Kabir 07, Fei 09, 10)
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Space-shift Differential Semblance

Upshot, it works, but...

Gradient tends to oscillate horizonally - side lobes inhibit
convergence (Biondi 08, Fei 10, Vyas 10)

This talk: where the oscillations come from, and how they might
be removed.

Goal: redefine the gradient so that it is still a gradient, but
suppress oscillations.

Approach: explicit ray theory computation suggests a fix
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Ray-theoretic Expression of SSDS

Assume band-unlimited data (Green's function) - then data
d(xs, xr, t) and image /(x, z, h) related by

I(x,z,h) = / / / / dxsdx, dtdT

d(xs, X, t)G(xr,x + h,z, t — 7)G(xs, x — h, 2, T)
= (FTd)(x,z,h)

F = extended Born modeling operator
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Ray-theoretic Expression of SSDS

Simplest form: assume

» rays obey “DSR” condition - no significant amount of energy
on rays turning horizontal.

> rays also obey “simple ray geometry” condition - no
multipathing

Also: ignore amplitudes, (more or less) uniform factors of
frequency (powers of Laplacian) throughout talk.

Then G(xs,x,z,t) ~ §(t — T(xs, X, z)) where T(xs,x,z) =
(unique) traveltime (xs, zs) — (x, z)

More: FT, F are invertible in a large region of phase space
containing most reflection energy (see de Hoop - Stolk - S. 2009)
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Ray-theoretic Expression of SSDS

Rewrite using image space and data space dot products
JIv]l = (hl,hl); = (FTd, h*FTd),
= (d, FW*FTd)

///dxsdxrdtd Xsy Xp, t ///dk dk,dw

exp(i(wt + ksxs + k,x,))Hz(xs,x,, t, ks, Kk, w)a(ks, kr,w)

Egorov's Thm: symbol H = function in data phase space which
maps, under ray tracing, to h? in image phase space.
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Ray-theoretic Expression of SSDS

H homogenous of degree 0 in phase space coords, so write in
terms of function H of phase angles 6, 0,:

wsinf, = k,, wsinfs = ks

> receiver ray; starts at x,, z,, takeoff angle 0,:
z— X(x,0y,2), T(x,0,,2)
> source ray; starts at xs, zZs, takeoff angle 6;:
z — X(xs,0s,2), T(xs,0s,2)
two-way time condition: t = T(xs,0s,2) + T(x,0,,2) -
determines z(xs, Xy, t, 0s,0,)

v

H(xs,xr, t,0s,6,) = X(xr,0r,2) — X(xs,0s,z),
z - Z(X57Xr7 t7 9570r) RICE



Ray-theoretic Expression of SSDS

Xs es v erer
to+t,=t
Zs =1,
H
X(x.8,t,) X(x,8.t)
Homogeneous medium, velocity v:
vt
z(xs, Xr, t, 05,0 _—
(e, ¢ 1,05, 0r) secd, + sec O
H(xs,xr, t,0s,0,) = x, —xs + z(tan, — tan 6s)
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Computing the gradient

Key observation: only v-dependent quantity in oscillatory integral
for J[v] is symbol H.

0X oX

0H = 5X(Xr, ) — 5X(X5, ) + E(XH )52 — E

Compute 0z by differentiating t = T(xs, 0s,2) + T(x,,0,, 2)
implicitly, use ray perturbation equations - obtain

(Xs,..)0z

0H = / dz' (z — 2') [V, : V(S—V(z',xr + 7' tan6,)
0 14

+Vs- V(S—V(z’,xS + Z'tan 95)]
v
Vs, V, = messy functions of 6, 0,.
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Computing the gradient

0H = / dz' (z — 2') [V, : V(S—V(z',xr + 7' tan6,)
0 v

+Vs- V (z Xs—l—ztané?)]

» tomographic: 6H = integral along ray pair, like traveltime
perturbation

> sensitive to oscillations: unlike traveltime perturbation,
involves Viv
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Computing the gradient

Assess effect on gradient at “wrong” velocity: assume that d is
Born data for “target” velocity v*, reflectivity r(zy4, x4). lgnoring
amplitude and frequency factors,

d(xs,xr,t)://dxddzd5(t—T*(X,,xd,zd)—T*(Xs,xd,zd))r(zd,xd)

Insert into expression for J, get

J[v]:////dxddzddx(',dzér(zd,xd)r(z(’,,xé)K(zd,xd;z(’.l,,xé)

in which K represented by same integral as J above with
t = T*(Xr,Xd, 24) + T*(Xs, Xd, Z4)) in expression for H, and
oscillatory phase .

Important: §J rep’d by same “double diffraction” integral with §H

in place of H.
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Computing the gradient

Use stationary phase to eliminate 4 of 11 integrals, ignore resulting
frequency and amplitude factors, obtain

5J[V]5V:////ddedeXc,,dZéI’(Zd,Xd)I’(ZC,I,X&)(SK(Zd,Xd;ZC,I,XQ)

0K = ///d&d@dwe

BZd
x/ dz (Bzd—z)[v V (z X4+ z4tan ©, + Z'tan6,)
0

)
+ Vs - V—V(z’,xd + zgtan O + 2z’ tan 6;)
v

= (xg — x4)®x + (24 — 24)) P, Py, P, B, A = messy functions of
r, ©, = arcsin (TV* sin 0,) .

RICE



Computing the gradient

Can extract explicit multiple integral expression for VJ from this
formula - but not so enlightening

integral along ray is trivial if §v oscillates in perp direction:
6v(z,x) = x(z, x)ekx—ztants) —

> Viv ~ k(—tanfs,1)76v for large k

> 0v(Z,xq + zgtan O + 2 tanfs) = x(...)ek(xatzatan©s) _
approx. independent of ray coord z' for large k

> so integral along ray ~ O(k)dv
» remains approximately true if 65 perturbed, sim. for 6, - O(k)
growth for near-horizontal oscillation
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Computing the gradient

Upshot: dJ[v]dv = O(k) if Oxdv = O(k)
= x-Fourier components of VJ[v] must be large (Plancherel)

= gradient must generally (square-integrable r) oscillate in
near-horizontal directions, as observed

Finer analysis; if reflectivity r(xq,z4) is smooth in x4, then can
integrate by parts to absorb growth - however at x-direction
singularities this is impossible, leading to vertical diffraction
side-lobes observed in numerics (Biondi 08, Fei 10, Vyas 10).

Mathematical expression: for general (non-smooth) r,
band-unlimited data, gradient does not exist!
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Proposed Remedy

Conventionally: “The Gradient” = Riesz representer of derivative
via L? inner product (“continuous dot product”) and discrete
approximations

Non-existence of gradient not a new phenomenon - conventional
reflection traveltime tomography gradient does not exist, either!
(Delprat-Jannaud & Lailly, GJR 1993).

Morally: rate of change of objective (traveltime misfit, DS,...)
depends on derivatives of velocity perturbation, really only makes
sense for smooth v,dv

= must use inner product / norm that controls derivatives
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Proposed Remedy

Natural family of norms for this application: L? Sobolev family

I5v|2 = /dx [5v(l — 02V2)55]

Comparison: “ordinary” gradient VoJ, Sobolev k-norm gradient
Vi
Vid = (I —0?V?)~*vyJ

obtain k gradient from ordinary gradient by application of
smoothing operator - large horizontal oscillations suppressed -
isotropic smoothing applies also to VOCIG-based DS
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Proposed Remedy

Program:

» construct DS (“ordinary”) gradient computation via RTM

» implement Helmholtz operators powers in rect. geom. using
FFTs, sparse matrix methods

» compute k-norm gradient, use in optimization (for 2D, k=2)
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