Gradient artifacts in space-shift differential semblance

William Symes

TRIP Annual Review, 2010

Agenda

Background

Ray Theory

The Fix

Space-shift Differential Semblance

Space-shift gather / HOCIG via shot record migration:(IEI, Biondi, Sava, Fomel,...)

$$
I(x, z, h)=\sum_{x_{s}} \int d t S\left(x-h, z, t ; x_{s}\right) R\left(x+h, z, t ; x_{s}\right)
$$

$S=$ source wavefield, $R=$ receiver wavefield - computed anyhow (depth extrapolation, two-way plus time reversal,...)

2D for convenience only!
DIfferential semblance MVA objective, in simplest form:

$$
J[v]=\iiint d x d z d h h^{2}|I(x, z, h)|^{2}
$$

Shen's thesis 04, others (Shen \& coauthors 03, 05, 07, Shen \& S. 08, Kabir 07, Fei 09, 10)

Space-shift Differential Semblance

Upshot, it works, but...
Gradient tends to oscillate horizonally - side lobes inhibit convergence (Biondi 08, Fei 10, Vyas 10)

This talk: where the oscillations come from, and how they might be removed.

Goal: redefine the gradient so that it is still a gradient, but suppress oscillations.

Approach: explicit ray theory computation suggests a fix

Agenda

Background

Ray Theory

The Fix

Ray-theoretic Expression of SSDS

Assume band-unlimited data (Green's function) - then data $d\left(x_{s}, x_{r}, t\right)$ and image $I(x, z, h)$ related by

$$
\begin{aligned}
& I(x, z, h)=\iiint \int d x_{s} d x_{r} d t d \tau \\
& d\left(x_{s}, x_{r}, t\right) G\left(x_{r}, x+h, z, t-\tau\right) G\left(x_{s}, x-h, z, \tau\right) \\
&=\left(F^{T} d\right)(x, z, h)
\end{aligned}
$$

$F=$ extended Born modeling operator

Ray-theoretic Expression of SSDS

Simplest form: assume

- rays obey "DSR" condition - no significant amount of energy on rays turning horizontal.
- rays also obey "simple ray geometry" condition - no multipathing

Also: ignore amplitudes, (more or less) uniform factors of frequency (powers of Laplacian) throughout talk.

Then $G\left(x_{s}, x, z, t\right) \simeq \delta\left(t-T\left(x_{s}, x, z\right)\right)$ where $T\left(x_{s}, x, z\right)=$ (unique) traveltime $\left(x_{s}, z_{s}\right) \rightarrow(x, z)$

More: F^{T}, F are invertible in a large region of phase space containing most reflection energy (see de Hoop - Stolk - S. 2009)

Ray-theoretic Expression of SSDS

Rewrite using image space and data space dot products

$$
\begin{gathered}
J[v]=\langle h I, h I\rangle_{I}=\left\langle F^{T} d, h^{2} F^{T} d\right\rangle_{I} \\
=\left\langle d, F h^{2} F^{T} d\right\rangle \\
=\iiint d x_{s} d x_{r} d t d\left(x_{s}, x_{r}, t\right) \iiint d k_{s} d k_{r} d \omega \\
\exp \left(i\left(\omega t+k_{s} x_{s}+k_{r} x_{r}\right)\right) \bar{H}^{2}\left(x_{s}, x_{r}, t, k_{s}, k_{r}, \omega\right) \hat{d}\left(k_{s}, k_{r}, \omega\right)
\end{gathered}
$$

Egorov's Thm: symbol $\bar{H}=$ function in data phase space which maps, under ray tracing, to h^{2} in image phase space.

Ray-theoretic Expression of SSDS

\bar{H} homogenous of degree 0 in phase space coords, so write in terms of function H of phase angles θ_{s}, θ_{r} :

$$
\omega \sin \theta_{r}=k_{r}, \omega \sin \theta_{s}=k_{s}
$$

- receiver ray; starts at x_{r}, z_{r}, takeoff angle θ_{r} :

$$
z \mapsto X\left(x_{r}, \theta_{r}, z\right), T\left(x_{r}, \theta_{r}, z\right)
$$

- source ray; starts at x_{s}, z_{s}, takeoff angle θ_{s} :

$$
z \mapsto X\left(x_{s}, \theta_{s}, z\right), T\left(x_{s}, \theta_{s}, z\right)
$$

- two-way time condition: $t=T\left(x_{s}, \theta_{s}, z\right)+T\left(x_{r}, \theta_{r}, z\right)$ determines $z\left(x_{s}, x_{r}, t, \theta_{s}, \theta_{r}\right)$

$$
\begin{aligned}
H\left(x_{s}, x_{r}, t, \theta_{s}, \theta_{r}\right) & =X\left(x_{r}, \theta_{r}, z\right)-X\left(x_{s}, \theta_{s}, z\right) \\
z & =z\left(x_{s}, x_{r}, t, \theta_{s}, \theta_{r}\right)
\end{aligned}
$$

Ray-theoretic Expression of SSDS

Homogeneous medium, velocity v :

$$
\begin{aligned}
z\left(x_{s}, x_{r}, t, \theta_{s}, \theta_{r}\right) & =\frac{v t}{\sec \theta_{r}+\sec \theta_{s}} \\
H\left(x_{s}, x_{r}, t, \theta_{s}, \theta_{r}\right) & =x_{r}-x_{s}+z\left(\tan \theta_{r}-\tan \theta_{s}\right)
\end{aligned}
$$

Computing the gradient

Key observation: only v-dependent quantity in oscillatory integral for $J[v]$ is symbol H.

$$
\delta H=\delta X\left(x_{r}, \ldots\right)-\delta X\left(x_{s}, \ldots\right)+\frac{\partial X}{\partial z}\left(x_{r}, . .\right) \delta z-\frac{\partial X}{\partial z}\left(x_{s}, . .\right) \delta z
$$

Compute δz by differentiating $t=T\left(x_{s}, \theta_{s}, z\right)+T\left(x_{r}, \theta_{r}, z\right)$ implicitly, use ray perturbation equations - obtain

$$
\begin{aligned}
& \delta H=\int_{0}^{z} d z^{\prime}\left(z-z^{\prime}\right)\left[V_{r} \cdot \nabla \frac{\delta v}{v}\left(z^{\prime}, x_{r}+z^{\prime} \tan \theta_{r}\right)\right. \\
&\left.+V_{s} \cdot \nabla \frac{\delta v}{v}\left(z^{\prime}, x_{s}+z^{\prime} \tan \theta_{s}\right)\right]
\end{aligned}
$$

$V_{s}, V_{r}=$ messy functions of θ_{s}, θ_{r}.

Computing the gradient

$$
\begin{gathered}
\delta H=\int_{0}^{z} d z^{\prime}\left(z-z^{\prime}\right)\left[V_{r} \cdot \nabla \frac{\delta v}{v}\left(z^{\prime}, x_{r}+z^{\prime} \tan \theta_{r}\right)\right. \\
\left.+V_{s} \cdot \nabla \frac{\delta v}{v}\left(z^{\prime}, x_{s}+z^{\prime} \tan \theta_{s}\right)\right]
\end{gathered}
$$

- tomographic: $\delta H=$ integral along ray pair, like traveltime perturbation
- sensitive to oscillations: unlike traveltime perturbation, involves $\nabla \delta v$

Computing the gradient

Assess effect on gradient at "wrong" velocity: assume that d is Born data for "target" velocity v^{*}, reflectivity $r\left(z_{d}, x_{d}\right)$. Ignoring amplitude and frequency factors,
$d\left(x_{s}, x_{r}, t\right)=\iint d x_{d} d z_{d} \delta\left(t-T^{*}\left(x_{r}, x_{d}, z_{d}\right)-T^{*}\left(x_{s}, x_{d}, z_{d}\right)\right) r\left(z_{d}, x_{d}\right)$
Insert into expression for J, get
$J[v]=\iiint \int d x_{d} d z_{d} d x_{d}^{\prime} d z_{d}^{\prime} r\left(z_{d}, x_{d}\right) r\left(z_{d}^{\prime}, x_{d}^{\prime}\right) K\left(z_{d}, x_{d} ; z_{d}^{\prime}, x_{d}^{\prime}\right)$
in which K represented by same integral as J above with $\left.t=T^{*}\left(x_{r}, x_{d}, z_{d}\right)+T^{*}\left(x_{s}, x_{d}, z_{d}\right)\right)$ in expression for H, and oscillatory phase Φ.

Important: δJ rep'd by same "double diffraction" integral with δH in place of H.

Computing the gradient

Use stationary phase to eliminate 4 of 11 integrals, ignore resulting frequency and amplitude factors, obtain

$$
\begin{gathered}
\delta J[v] \delta v=\iiint \int d x_{d} d z_{d} d x_{d}^{\prime} d z_{d}^{\prime} r\left(z_{d}, x_{d}\right) r\left(z_{d}^{\prime}, x_{d}^{\prime}\right) \delta K\left(z_{d}, x_{d} ; z_{d}^{\prime}, x_{d}^{\prime}\right) \\
\delta K=\iiint d \theta_{s} d \theta_{r} d \omega e^{i \Phi} A \\
\times \int_{0}^{B z_{d}} d z^{\prime}\left(B z_{d}-z^{\prime}\right)\left[V_{r} \cdot \nabla \frac{\delta v}{v}\left(z^{\prime}, x_{d}+z_{d} \tan \Theta_{r}+z^{\prime} \tan \theta_{r}\right)\right. \\
\left.+V_{s} \cdot \nabla \frac{\delta v}{v}\left(z^{\prime}, x_{d}+z_{d} \tan \Theta_{s}+z^{\prime} \tan \theta_{s}\right)\right]
\end{gathered}
$$

$\Phi=\left(x_{d}-x_{d}^{\prime}\right) \Phi_{x}+\left(z_{d}-z_{d}^{\prime}\right) \Phi_{z}, \Phi_{x}, \Phi_{z}, B, A=$ messy functions of $\theta_{r}, \Theta_{r}=\arcsin \left(\frac{v}{v^{*}} \sin \theta_{r}\right), \ldots$.

Computing the gradient

Can extract explicit multiple integral expression for ∇J from this formula - but not so enlightening
integral along ray is trivial if δv oscillates in perp direction:
$\delta v(z, x)=\chi(z, x) e^{i k\left(x-z \tan \theta_{s}\right)} \Rightarrow$

- $\nabla \delta v \simeq k\left(-\tan \theta_{s}, 1\right)^{T} \delta v$ for large k
- $\delta v\left(z^{\prime}, x_{d}+z_{d} \tan \Theta_{s}+z^{\prime} \tan \theta_{s}\right)=\chi(\ldots) e^{i k\left(x_{d}+z_{d} \tan \Theta_{s}\right)}$ approx. independent of ray coord z^{\prime} for large k
- so integral along ray $\simeq O(k) \delta v$
- remains approximately true if θ_{s} perturbed, sim. for $\theta_{r}-O(k)$ growth for near-horizontal oscillation

Computing the gradient

Upshot: $\delta J[v] \delta v=O(k)$ if $\partial_{x} \delta v=O(k)$
$\Rightarrow \mathrm{x}$-Fourier components of $\nabla J[v]$ must be large (Plancherel)
\Rightarrow gradient must generally (square-integrable r) oscillate in near-horizontal directions, as observed

Finer analysis; if reflectivity $r\left(x_{d}, z_{d}\right)$ is smooth in x_{d}, then can integrate by parts to absorb growth - however at x-direction singularities this is impossible, leading to vertical diffraction side-lobes observed in numerics (Biondi 08, Fei 10, Vyas 10).

Mathematical expression: for general (non-smooth) r, band-unlimited data, gradient does not exist!

Agenda

Background

Ray Theory

The Fix

Proposed Remedy

Conventionally: "The Gradient" = Riesz representer of derivative via L^{2} inner product ("continuous dot product") and discrete approximations

Non-existence of gradient not a new phenomenon - conventional reflection traveltime tomography gradient does not exist, either! (Delprat-Jannaud \& Lailly, GJR 1993).

Morally: rate of change of objective (traveltime misfit, DS,...) depends on derivatives of velocity perturbation, really only makes sense for smooth $v, \delta v$
\Rightarrow must use inner product / norm that controls derivatives

Proposed Remedy

Natural family of norms for this application: L^{2} Sobolev family

$$
\|\delta v\|_{k}^{2}=\int d \mathbf{x}\left[\delta v\left(I-\sigma^{2} \nabla^{2}\right)^{k} \delta v\right]
$$

Comparison: "ordinary" gradient $\nabla_{0} J$, Sobolev k-norm gradient $\nabla_{k} J$

$$
\nabla_{k} J=\left(I-\sigma^{2} \nabla^{2}\right)^{-k} \nabla_{0} J
$$

obtain k gradient from ordinary gradient by application of smoothing operator - large horizontal oscillations suppressed isotropic smoothing applies also to VOCIG-based DS

Proposed Remedy

Program:

- construct DS ("ordinary") gradient computation via RTM
- implement Helmholtz operators powers in rect. geom. using FFTs, sparse matrix methods
- compute k-norm gradient, use in optimization (for 2D, $\mathrm{k}=2$)

