Gradient artifacts in space-shift differential semblance

William Symes

TRIP Annual Review, 2010

Background

Ray Theory

The Fix

Space-shift Differential Semblance

Space-shift gather / HOCIG via shot record migration:(IEI, Biondi, Sava, Fomel,...)

$$I(x,z,h) = \sum_{x_s} \int dt \, S(x-h,z,t;x_s) R(x+h,z,t;x_s)$$

S = source wavefield, R = receiver wavefield - computed anyhow (depth extrapolation, two-way plus time reversal,...)

2D for convenience only!

DIfferential semblance MVA objective, in simplest form:

$$J[v] = \int \int \int dx dz dh h^2 |I(x, z, h)|^2$$

Shen's thesis 04, others (Shen & coauthors 03, 05, 07, Shen & S. 08, Kabir 07, Fei 09, 10)

Space-shift Differential Semblance

Upshot, it works, but ...

Gradient tends to oscillate horizonally - side lobes inhibit convergence (Biondi 08, Fei 10, Vyas 10)

This talk: where the oscillations come from, and how they might be removed.

Goal: redefine the gradient so that it is *still a gradient*, but suppress oscillations.

Approach: explicit ray theory computation suggests a fix

Background

Ray Theory

The Fix

Assume band-unlimited data (Green's function) - then data $d(x_s, x_r, t)$ and image I(x, z, h) related by

$$I(x, z, h) = \int \int \int \int dx_s dx_r dt d\tau$$
$$d(x_s, x_r, t)G(x_r, x + h, z, t - \tau)G(x_s, x - h, z, \tau)$$
$$= (F^T d)(x, z, h)$$

F = extended Born modeling operator

Simplest form: assume

- rays obey "DSR" condition no significant amount of energy on rays turning horizontal.
- rays also obey "simple ray geometry" condition no multipathing

Also: ignore amplitudes, (more or less) uniform factors of frequency (powers of Laplacian) throughout talk.

Then $G(x_s, x, z, t) \simeq \delta(t - T(x_s, x, z))$ where $T(x_s, x, z) =$ (unique) traveltime $(x_s, z_s) \rightarrow (x, z)$

More: F^{T} , F are *invertible* in a large region of phase space containing most reflection energy (see de Hoop - Stolk - S. 2009)

Rewrite using image space and data space dot products

$$J[v] = \langle hI, hI \rangle_{I} = \langle F^{T}d, h^{2}F^{T}d \rangle_{I}$$
$$= \langle d, Fh^{2}F^{T}d \rangle$$
$$= \int \int \int dx_{s}dx_{r}dt \, d(x_{s}, x_{r}, t) \int \int \int dk_{s}dk_{r}d\omega$$
$$\exp(i(\omega t + k_{s}x_{s} + k_{r}x_{r}))\bar{H}^{2}(x_{s}, x_{r}, t, k_{s}, k_{r}, \omega)\hat{d}(k_{s}, k_{r}, \omega)$$

Egorov's Thm: symbol \overline{H} = function in data phase space which maps, under ray tracing, to h^2 in image phase space.

 \overline{H} homogenous of degree 0 in phase space coords, so write in terms of function H of phase angles θ_s, θ_r :

$$\omega \sin \theta_r = k_r, \ \omega \sin \theta_s = k_s$$

► receiver ray; starts at
$$x_r, z_r$$
, takeoff angle θ_r :
 $z \mapsto X(x_r, \theta_r, z), T(x_r, \theta_r, z)$

- ▶ source ray; starts at x_s, z_s , takeoff angle θ_s : $z \mapsto X(x_s, \theta_s, z), T(x_s, \theta_s, z)$
- ► two-way time condition: t = T(x_s, θ_s, z) + T(x_r, θ_r, z) determines z(x_s, x_r, t, θ_s, θ_r)

$$H(x_s, x_r, t, \theta_s, \theta_r) = X(x_r, \theta_r, z) - X(x_s, \theta_s, z),$$

$$z = z(x_s, x_r, t, \theta_s, \theta_r)$$

Homogeneous medium, velocity v:

$$\begin{aligned} z(x_s, x_r, t, \theta_s, \theta_r) &= \frac{vt}{\sec \theta_r + \sec \theta_s} \\ H(x_s, x_r, t, \theta_s, \theta_r) &= x_r - x_s + z(\tan \theta_r - \tan \theta_s) \end{aligned}$$

Key observation: only v-dependent quantity in oscillatory integral for J[v] is symbol H.

$$\delta H = \delta X(x_r, ...) - \delta X(x_s, ...) + \frac{\partial X}{\partial z}(x_r, ...) \delta z - \frac{\partial X}{\partial z}(x_s, ...) \delta z$$

Compute δz by differentiating $t = T(x_s, \theta_s, z) + T(x_r, \theta_r, z)$ implicitly, use ray perturbation equations - obtain

$$\delta H = \int_0^z dz' (z - z') \left[V_r \cdot \nabla \frac{\delta v}{v} (z', x_r + z' \tan \theta_r) + V_s \cdot \nabla \frac{\delta v}{v} (z', x_s + z' \tan \theta_s) \right]$$

 $V_s, V_r = messy functions of \theta_s, \theta_r.$

$$\delta H = \int_0^z dz' (z - z') \left[V_r \cdot \nabla \frac{\delta v}{v} (z', x_r + z' \tan \theta_r) + V_s \cdot \nabla \frac{\delta v}{v} (z', x_s + z' \tan \theta_s) \right]$$

- ► tomographic: δH = integral along ray pair, like traveltime perturbation
- \blacktriangleright sensitive to oscillations: unlike traveltime perturbation, involves $\nabla\delta v$

Assess effect on gradient at "wrong" velocity: assume that d is Born data for "target" velocity v^* , reflectivity $r(z_d, x_d)$. Ignoring amplitude and frequency factors,

$$d(x_s, x_r, t) = \int \int dx_d dz_d \,\delta(t - T^*(x_r, x_d, z_d) - T^*(x_s, x_d, z_d)) r(z_d, x_d)$$

Insert into expression for J, get

$$J[v] = \int \int \int \int dx_d dz_d dx'_d dz'_d r(z_d, x_d) r(z'_d, x'_d) K(z_d, x_d; z'_d, x'_d)$$

in which K represented by same integral as J above with $t = T^*(x_r, x_d, z_d) + T^*(x_s, x_d, z_d))$ in expression for H, and oscillatory phase Φ .

Important: δJ rep'd by same "double diffraction" integral with δH in place of H.

Use stationary phase to eliminate 4 of 11 integrals, ignore resulting frequency and amplitude factors, obtain

$$\delta J[v] \delta v = \int \int \int \int dx_d dz_d dx'_d dz'_d r(z_d, x_d) r(z'_d, x'_d) \delta K(z_d, x_d; z'_d, x'_d)$$
$$\delta K = \int \int \int d\theta_s d\theta_r d\omega e^{i\Phi} A$$
$$\times \int_0^{Bz_d} dz' (Bz_d - z') \left[V_r \cdot \nabla \frac{\delta v}{v} (z', x_d + z_d \tan \Theta_r + z' \tan \theta_r) + V_s \cdot \nabla \frac{\delta v}{v} (z', x_d + z_d \tan \Theta_s + z' \tan \theta_s) \right]$$

 $\Phi = (x_d - x'_d) \Phi_x + (z_d - z'_d) \Phi_z, \ \Phi_x, \Phi_z, B, A = \text{messy functions of } \\ \theta_r, \Theta_r = \arcsin\left(\frac{v}{v^*} \sin \theta_r\right), \dots$

Can extract explicit multiple integral expression for ∇J from this formula - but not so enlightening

integral along ray is trivial if δv oscillates in perp direction: $\delta v(z,x) = \chi(z,x)e^{ik(x-z\tan\theta_s)} \Rightarrow$

- $\nabla \delta v \simeq k(-\tan \theta_s, 1)^T \delta v$ for large k
- δv(z', x_d + z_d tan Θ_s + z' tan θ_s) = χ(...)e^{ik(x_d+z_d tan Θ_s)} approx. independent of ray coord z' for large k
- so integral along ray $\simeq O(k)\delta v$
- ► remains approximately true if θ_s perturbed, sim. for $\theta_r O(k)$ growth for near-horizontal oscillation

Upshot: $\delta J[v] \delta v = O(k)$ if $\partial_x \delta v = O(k)$

 \Rightarrow x-Fourier components of $\nabla J[v]$ must be large (Plancherel)

 \Rightarrow gradient must generally (square-integrable r) oscillate in near-horizontal directions, as observed

Finer analysis; if reflectivity $r(x_d, z_d)$ is smooth in x_d , then can integrate by parts to absorb growth - however at x-direction singularities this is impossible, leading to vertical diffraction side-lobes observed in numerics (Biondi 08, Fei 10, Vyas 10).

Mathematical expression: for general (non-smooth) *r*, band-unlimited data, *gradient does not exist!*

Background

Ray Theory

The Fix

Proposed Remedy

Conventionally: "The Gradient" = Riesz representer of derivative via L^2 inner product ("continuous dot product") and discrete approximations

Non-existence of gradient not a new phenomenon - conventional reflection traveltime tomography gradient does not exist, either! (Delprat-Jannaud & Lailly, GJR 1993).

Morally: rate of change of objective (traveltime misfit, DS,...) depends on *derivatives* of velocity perturbation, really only makes sense for *smooth* v, δv

 \Rightarrow must use inner product / norm that controls derivatives

Proposed Remedy

Natural family of norms for this application: L^2 Sobolev family

$$\|\delta \mathbf{v}\|_k^2 = \int d\mathbf{x} \left[\delta \mathbf{v} (I - \sigma^2 \nabla^2)^k \delta \mathbf{v} \right]$$

Comparison: "ordinary" gradient $\nabla_0 J$, Sobolev k-norm gradient $\nabla_k J$

$$\nabla_k J = (I - \sigma^2 \nabla^2)^{-k} \nabla_0 J$$

obtain *k* gradient from ordinary gradient by application of *smoothing* operator - large horizontal oscillations suppressed - isotropic smoothing applies also to VOCIG-based DS

Program:

- ► construct DS ("ordinary") gradient computation via RTM
- implement Helmholtz operators powers in rect. geom. using FFTs, sparse matrix methods
- compute k-norm gradient, use in optimization (for 2D, k=2)

