Nonlinear Differential Semblance: Concept and Implementation

Dong Sun

The Rice Inversion Project

Annual Review Meeting

Dec 9, 2010
Problem: produce well-focused subsurface image from reflection seismic data

Method: combine MVA and WI (WWS 08, ‘MVA and WI’)
- migration velocity analysis (MVA) – current industry approach
 ✔ provides robust estimation of large scale structure (macro model)
 ✗ relies on Born approximation and neglects non-linear effects
- least squares waveform inversion (WI) – automatic data fitting
 ✔ provides remarkably detailed structure and accounts for nonlinear effects
 ✗ not robust (depends on accurate initial guess, etc.)

Key idea: using very low data frequencies as controls in waveform inversion
(just like using macro models as controls in MVA)
Nonlinear Differential Semblance Optimization (nDSO):

- D. Sun (2008) introduced nDSO for layered media and demonstrated the smoothness and convexity of its objective
- Towards generalizing and implementing nDSO (D. Sun’s Ph.D. project)
 - formed nDSO in a general form via Extended Modeling Concept
 - derived and constructed the gradient computation
 - implementing inversion framework (IWAVE++)
 - done: provided a platform for various imaging/inversion applications (RTM, standard LS waveform inversion, etc.)
 - to do: complement extended inversion block, documentation, ...
Agenda

1. Motivation of nDSO

2. Nonlinear Differential Semblance (nDS) Strategy
 - Reformulate WI as DSO
 - Implementation

3. Summary and Future Work
Waveform Inversion (WI)

WI: model-based data-fitting procedure often formulated as **least squares** inversion/minimization

\[
\min_{m \in \mathcal{M}} J_{LS} := \frac{1}{2} \| \mathcal{F}[m] - d_o \|_{D}^2 + \mathcal{R}(m)
\]

- \(\mathcal{F} : \mathcal{M} \to \mathcal{D} \): Forward Operator (defined via Wave Equation(s))
- \(\mathcal{M} \): Model Space \(\{ m(x) \} \): set of models of substructure, e.g., velocity
- \(\mathcal{D} \): Data Space \(\{ d(x_r, t; x_s) \} \): set of traces
- \(d_o \in \mathcal{D} \): observed data, **highly redundant & band-limited**
- \(\mathcal{R}(m) \): Regularization (e.g., TV, Tikhonov, ...)
Waveform Inversion (WI)

WI basic facts:

- large scale, nonlinear least-squares optimization driven by expensive simulation
- only gradient-related methods (local methods) computationally feasible (adjoint state method for gradient computation)
- hard for reflection data, easier for transmission but nontrivial
- key issue: interaction of spectral data incompleteness with strong nonlinearity (local minima issue)
How to address local minima issue?

- solve LS inversion with specific procedures
 - multiscale inversion (Bunks 95, etc.)
 - continuation in depth, time, frequency (Kolb et al 86, etc.)
 — major observation: with very low frequencies, LS inversion is solvable

- update background model and model perturbation alternatively - MVA - solution approach to Born FWI (lots of DS variants)
 — can MVA’s concepts (image gathering, semblance measuring) be imported into FWI?
 ⇒ Nonlinear Differential Semblance Optimization — doing inversion over new control space with “convexified” objective
Agenda

1. **Motivation of nDSO**

2. **Nonlinear Differential Semblance (nDS) Strategy**
 - Reformulate WI as DSO
 - Implementation

3. **Summary and Future Work**
Reformulate WI as DSO

Linearized Case based on Born assumption \(m := m_b + \delta m \)

- data decomposition \(D = \prod_s D_s \) (\(s \), shot position, slowness, ...)

 \(D \): primary reflections (without multiple)

- migration/linearized inversion \(d_s \rightarrow \delta m_s \) via \(D\mathcal{F}[m_b]^T (d_s - \mathcal{F}[m_b]) \) or \(D\mathcal{F}[m_b]^\dagger (d_s - \mathcal{F}[m_b]) \)

- adjust \(m_b \) to reduce incoherence of \(\delta \bar{m}(.,s)(:= \delta m_s) \) along \(s \)

- automatic MVA process – DSO, updating \(m_b \) to minimize perturbation incoherence

\[
\min_{m_b} \quad J_{DS}[m_b] := \frac{1}{2} \left\| \frac{\partial \delta \bar{m}[m_b]}{\partial s} \right\|^2 \\
\text{s.t.} \quad \delta \bar{m}[m_b] = D\mathcal{F}[m_b]^T (d_s - \mathcal{F}[m_b]) \\
\text{or} \quad D\mathcal{F}[m_b]^\dagger (d_s - \mathcal{F}[m_b])
\]

Lots of successful applications; but, nonlinear effects not included
Reformulate WI as DSO

Nonlinear Case

- data decomposition $\mathcal{D} = \prod_s \mathcal{D}_s$ (s, shot position, slowness, ...)
 \mathcal{D}: contains all info

- nonlinear inversion $d_o \rightarrow \bar{m}(., s)$ ($:= m_s$ redundant models) via

$$\min_{\bar{m} \in \mathcal{M}} \frac{1}{2} \sum_s \| \mathcal{F}[\bar{m}(., s)] - (d_o)_s \|^2$$

- measure incoherence of $\bar{m}(., s)$ along s via **DS functional**, e.g.,

$$J_{DS}[\bar{m}] := \frac{1}{2} \left\| \frac{\partial}{\partial s} \bar{m} \right\|^2$$

Note: $\bar{m}(x, s) := m_s(x)$ v.s. $m(x)$ ($\mathcal{M} \subset \mathcal{M}$)
Reformulate WI as nonlinear DSO

\[
\min_{\bar{m} \in \mathcal{M}} J_{DS}[\bar{m}] := \frac{1}{2} \left\| \frac{\partial}{\partial s} \bar{m} \right\|^2 \quad \text{(coherency)}
\]

s.t. \[\left\| \mathcal{F}[\bar{m}] - d_o \right\|^2 \approx 0 \quad \text{(data-fitting)} \]

\[
\left\| \mathcal{F}[\bar{m}] - d_o \right\|^2 := \sum_s \left\| \mathcal{F}[\bar{m}(., s)] - (d_o)_s \right\|^2
\]

Key: need a proper **control parameter** (as \(m_b \) in linearized case), via updating which to navigate through the feasible model set

\[
\left\{ \bar{m} \in \mathcal{M} : E[\bar{m}] = \left\| \mathcal{F}[\bar{m}] - d_o \right\|^2 \approx 0 \right\}
\]
Formulate nDSO over Low-freq Control

Need new control, analogous to m_b (long-scale/low-frequency model structure) (DS 08, DS & WWS 09):
- main observation: the solvability of the impulsive inverse problem:
 for source and data with full bandwidth down to 0 Hz (impulsive),
 least-squares inversion leads to “unique” model
 (WWS 86, Bunks et al 95, Shin & Min 2006, ...)

- Key: use low-frequency data components as control

Nonlinear DSO:

$$\min_{d_l \in \mathcal{D}_l} J_{DS}[\bar{m}[d_l]] := \frac{1}{2} \left\| \frac{\partial}{\partial s} \bar{m}[d_l] \right\|^2$$

s.t. $\bar{m}[d_l] = \arg\min_{\bar{m} \in \mathcal{M}} \mathcal{E}[\bar{m}]$, \hspace{1cm} $\mathcal{E}[\bar{m}] = \frac{1}{2} \left\| \bar{F}[\bar{m}] - (d_o + d_l) \right\|^2 + \mathcal{R}(\bar{m})$
Scan J_{OLS} along: \[c_\mu(z) = (1 - \mu) c_{\text{hom}} + \mu c^*(z) \quad (\mu \in [0, 1.5]) \]

Scan J_{DS} along: \[d_l(\mu) = (1 - \mu) d_{l,\text{pert}} + \mu d^*_l \quad (\mu \in [0, 1.5]) \]

Favorable properties of the nDS Objective (Sun, 2008):
- convex
- continuously differentiable ...
nDSO flow

1. Initialization
 - Prepare m^0, d^0, $tol1$, $tol2$, etc.

2. LS minimization
 - Update model to match data
 - Compute DS functional J_{DS}
 - Compute gradient of J_{DS}
 - Direction in which control parameter’s change effectively reduces model incoherence
 - Check $|J_{DS}| < tol1$
 - Yes: Stop
 - No: Update control parameter
 - Check $\nabla J_{DS} < tol2$
 - Yes: Stop
 - No: Go back to update model

3. Data = observed data + low frequency add-in
 - Model inconsistency

Dong Sun, Nonlinear Differential Semblance: Concept and Implementation
Implementation

Main blocks:

- **Sub-LS Minimization (Inversion):**

 \[
 \min_{\bar{m} \in \mathcal{M}} \mathcal{E}[\bar{m}] = \frac{1}{2} \| \bar{F}[\bar{m}] - (d_l + d_o) \|^2 + \mathcal{R}(\bar{m})
 \]

 Gradient and Gauss-Newton Hessian:

 \[
 \nabla \mathcal{E}[\bar{m}] = D\bar{F}[\bar{m}]^T (\bar{F}[\bar{m}] - (d_o + d_l)) + \nabla \mathcal{R}(\bar{m})
 \]

 \[
 H[\bar{m}] = D\bar{F}[\bar{m}]^T D\bar{F}[\bar{m}] + D^2 \mathcal{R}(m)
 \]

- **nDSO Gradient:**

 \[
 \nabla J_{DS}[d_l] = \Pi \left[D\bar{F}[\bar{m}[d_l]] \cdot H[\bar{m}[d_l]]^{-1} \left(\frac{\partial}{\partial s} \right)^T \frac{\partial}{\partial s} \bar{m}[d_l] \right]
 \]

 \[
 \Pi : \overline{\mathcal{D}} \rightarrow \mathcal{D}_l \text{ be the orthogonal projector (low-pass filter)}
 \]
A framework implementation of inversion (IWAVE++) based on IWAVE, RVL, TSOPT, UMIN:

- **Modeling operator (IWaveOp)**, with methods to compute
 - forward modeling $F[m]$
 - derivative (action of Born Map $DF[m]$)
 - adjoint derivative (adjoint action of Born Map $DF[m]^T$)

makes IWAVE capabilities - large-scale, parallel, extensible FD modeling - available for inversion/migration applications

- **Inversion operator (IWaveInvOp)**, with methods to
 - maps d to m via optimization process
 - apply derivative map ($\delta d \rightarrow \delta m$)
 - apply adjoint derivative ($\lambda m \rightarrow \lambda d$)

wraps inversion procedure and accommodates various performance-improving techniques

- **Annihilator**, e.g., differentiation operator (GridDiffOp)
Numerical Experiments — Inversion Operator

Dome Model:

- 1 km \times 3 km domain
- background: $v = 2$ km/s, $\rho = 1$ g/cm3
- plane-wave src (0 - 30 Hz)
- 10 m grid \sim 7 gridpts / (minimum) wavelength
- absorbing BCs on all sides
- src depth 10 m
- receiver locations $(i \times 20, 30)$ m, $i = 0, \ldots, 150$
Inversion — 3 sub-runs with increasing freq bands – each with 10 LBFGS iter

Initial RMS resid = 5.5×10^8; Final RMS resid = 7.9×10^7
Numerical Experiments — layered test with absorbing surface

Layered Model:

- 0.6 km × 3 km domain
- \(v = 1.5, 2.5, 2 \) km/s, \(\rho = 1 \) g/cm\(^3\)
- plane-wave src (0 - 30 Hz)
- slowness 0, 0.15, 0.21, 0.26, 0.3
- absorbing (next test with free surface) BCs
Numerical Experiments — layered test with absorbing surface

Inversion for data with correct low-frequency components
Numerical Experiments — layered test with absorbing surface

Initial RMS resid = $4.9 \times 10^9; \ 6.2 \times 10^9; \ 8.0 \times 10^9; \ 1.1 \times 10^{10}; \ 1.5 \times 10^{10}$;
Final RMS resid = $4.1 \times 10^8; \ 3.7 \times 10^8; \ 6.6 \times 10^8; \ 5.0 \times 10^8; \ 9.1 \times 10^8$
Numerical Experiments — layered test with absorbing surface

Inversion for data with wrong low-frequency components (driven from homogeneous model)
Numerical Experiments — layered test with absorbing surface

Initial RMS resid $= 3.4 \times 10^9; 4.2 \times 10^9; 5.3 \times 10^9; 7.0 \times 10^9; 9.4 \times 10^9;

Final RMS resid $= 2.0 \times 10^8; 3.1 \times 10^8; 4.5 \times 10^8; 4.3 \times 10^8; 7.9 \times 10^8$
Numerical Experiments — layered test with absorbing surface

Inversion gathers
Numerical Experiments — layered tests with free surface

Inversion for data with correct low-frequency components
Numerical Experiments — layered tests with free surface

Initial RMS resid = 1.1×10^{11}; 1.2×10^{11}; 1.5×10^{11}; 2.2×10^{11}; 3.8×10^{11};
Final RMS resid = 7.9×10^9; 8.8×10^9; 9.8×10^9; 1.7×10^{10}; 2.8×10^{10}
Numerical Experiments — layered tests with free surface

Inversion for data with wrong low-frequency components (driven from homogeneous model)
Numerical Experiments — layered tests with free surface

Initial RMS resid $= 6.6 \times 10^{10}; 7.1 \times 10^{10}; 7.8 \times 10^{10}; 1.1 \times 10^{11}; 2.1 \times 10^{11};$

Final RMS resid $= 5.8 \times 10^{9}; 6.1 \times 10^{9}; 9.6 \times 10^{9}; 1.3 \times 10^{10}; 2.4 \times 10^{10}$
Numerical Experiments — layered tests with free surface

Inversion gathers

![Graphs showing layered tests with free surface](image)
Agenda

1 Motivation of nDSO

2 Nonlinear Differential Semblance (nDS) Strategy
 - Reformulate WI as DSO
 - Implementation

3 Summary and Future Work
Summary and Future Work

nDS:
- imports the concepts from MVA into FWI (nonlinear MVA for FWI)
- fits into a general inversion framework
- addresses the spectral data incompleteness and local-minima
 - more feasible to gradient-related approaches
 - at least a good strategy to find initial model for FWI

Future Work:
- add extended inversion functionality to IWave++ (variants of DS)
- explore techniques to improve the effectiveness of nDS
- explore efficient solution to normal equation
- explore different optimization methods
Future Work:

- add extended inversion functionality to IWave++ (variants of DS)

Extended least-squares inversion:

$$\min_{\bar{m} \in \mathcal{M}} E[\bar{m}] = \frac{1}{2} \left\| \mathcal{F}[\bar{m}] - \bar{d}_o \right\|^2 + \mathcal{R}(\bar{m})$$

Standard least-squares inversion:

$$\min_{m \in \mathcal{M}} J_{LS} := \frac{1}{2} \left\| \mathcal{F}[m] - d_o \right\|^2 + \mathcal{R}(m)$$

$$\bar{m}(x, s) := m_s(x) \quad \text{v.s.} \quad m(x) \quad (\mathcal{M} \subset \overline{\mathcal{M}})$$
Summary and Future Work

Future Work:

- explore techniques to improve the effectiveness of nDS
 - add extra pre-ops to DS operator (tapering op, weighting ops to emphasize moveouts, ...)
 - understand effects of acquisition parameter range and sampling, ...
 - understand how iteratively solving LS and computing gradient affects DSO
 - improve LS inversion via regularization (DS-type), adaptive scaling, ...

\[
\min_{\bar{m} \in \mathcal{M}} E[\bar{m}] = \frac{1}{2} \| \mathcal{F}[\bar{m}] - \bar{d}_o \|^2 + \frac{1}{2\alpha^2} \left\| \frac{\partial}{\partial s} \bar{m} \right\|^2 + \mathcal{R}(\bar{m})
\]
Acknowledgements

Great thanks to

- my Ph.D. committee: William Symes, Matthias Heinkenschloss, Yin Zhang, Colin Zelt
- Present and former TRIP team members
- ExxonMobil URC FWI team especially Dave Hinkley, Jerry Krebs
- Sponsors of The Rice Inversion Project
- NSF DMS 0620821

Thank you!