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Space-shift differential semblance

Space-shift gather / HOCIG via shot record migration:(IEI, Biondi,
Sava, Fomel,...)

I (x , z , h) =
∑
xs

∫
dt S(x − h, z , t; xs)R(x + h, z , t; xs)

S = source wavefield, R = receiver wavefield - computed anyhow
(depth extrapolation, two-way plus time reversal,...)

2D for convenience only!



Space-shift differential semblance

I (x , z , h) implicitly dependent on migration velocity v - minimize

J[v ] =
∑
x ,z,h

|hI (x , z , h)|2

Concept: small ⇒ energy in I focused near h = 0 - Claerbout’s
coincident sunken source and receiver principle.

Leads to optimization method for velocity - space-shift differential
semblance MVA

First implementation - Shen’s thesis (2005) (many others since)



Space-shift differential semblance

Reverse-time method for computing I (x , z , h) - Biondi & Shan
2002, S. 2002, generalizes RTM.

Claerbout, Tarantola: image formation ∼ application of adjoint
modeling operator to data.

Q: what is the linear modeling operator whose adjoint outputs
I (x , z , h)? Is this linear op the derivative of a full waveform
modeling op?

Interest:

I positive answers ⇒ another approach to FWI (S. 2008)

I facilitates implementation - IWAVE++

Agenda: identify modeling complex related to space-shift MVA,
propose IWAVE++ implementation, resolve computational
complexity issue
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From Image to Model

“Source wavefield” and “receiver wavefield” are a bit vague...

Source field: S = ∂p/∂t (time derivative for dimensional reasons)

∂p

∂t
+ κ∇ · v = f

ρ
∂v

∂t
+∇p = 0

causal: p, v = 0 for t << 0



From Image to Model

Sampling operator G extracts traces {d(xr , t; xs)} from pressure
field p(x , z , t; xs)

Adjoint sampling operator GT inserts traces into field.

Receiver field: R = q = backpropagated pressure field,

∂q

∂t
+ κ∇ ·w = GTd

ρ
∂w

∂t
+∇q = 0

anticausal: q,w = 0 for t >> 0.



From Image to Model

What data is d?

Recall lesson of Claerbout, Tarantola, Lailly: imaging is dual to
Born modeling.

⇒ d is (treated as) Born data, that is, d = Gδp, where

∂δp

∂t
+ κ∇ · δv + Born Source = 0

ρ
∂δv

∂t
+ δρ

∂v

∂t
+∇δp = 0

causal: δp, δv = 0 for t << 0; for convenience only, δρ = 0.



From Image to Model

Modeling op: F [Born Source params] = d , then FTd = I .

Notation: Born Source params = K = input of F ∼ output of FT

- must be image-like: K (x , z , h).

Idealize to continuous sampling: image space dot product is

〈K , I 〉I =

∫ ∫ ∫
dx dz dh K (x , z , h)I (x , z , h)

The adjoint relation is

〈FK , d〉D = 〈K ,FTd〉I

(〈·, ·〉D = data space dot product)



From Image to Model

〈K , I 〉I =

∫ ∫ ∫
dx dz dh K (x , z , h)

×
∫

dt

∫
dxs

∂p

∂t
(x − h, z , t; xs)q(x + h, z , t; xs)

=

∫ ∫ ∫ ∫
dx dz dt dxsq(x , z , t; xs)

×
[∫

dh K (x − h, z , h)
∂p

∂t
(x − 2h, z , t; xs)

]



From Image to Model

Inspiration (pattern recognition!): suppose quantity in square
brackets is Born source:(

∂δp

∂t
+ κ∇ · δv

)
(x , z , t; xs)

+

∫
dh K (x − h, z , h)

∂p

∂t
(x − 2h, z , t; xs) = 0,

ρ
∂δv

∂t
+∇δp = 0



From Image to Model

Substitute LHS of 1st (pressure) eqn in dot product:

〈K , I 〉I =

∫ ∫ ∫
dx dz dt dxs

(
∂δp

∂t
+ κ∇ · δv

)
q

= ... = 〈Gδp, d〉D

(standard computation - see Sun & S TR 10-06, or Gauthier et al
Geophys. 1986) - so FK = Gδp and

〈K , I 〉I = 〈K ,FTd〉I = 〈FK , d〉D



From Image to Model

Physical significance of space-shift Born Source term:∫
dh K (x − h, z , h)

∂p

∂t
(x − 2h, z , t; xs)

I h = subsurface half-offset (space shift)

I x =“sunken receiver” position

I x − 2h = “sunken source” position

I x − h = “sunken midpoint”

I K = perturbational bulk modulus acting over distance 2h

I physical perturbation: K (x , z , h) = δκ(x , z)δ(h) - applied to I
= Claerbout’s focusing principle



From Image to Model

Shift the shift: write K in terms of sunken receiver x , source
x − 2h, rather than midpoint & offset: Born source term is∫

dh K (x , z , h)
∂p

∂t
(x − 2h, z , t; xs)

Corresponding change in imaging principle: produces sunken
receiver gather

I (x , z , h) =

∫
dt

∫
dxs

∂p

∂t
(x − 2h, z , t; xs)q(x , z , t; xs)



From Image to Model

Another question: what is “space shift model” leading to space
shift Born model? [Other wise put: what is F the derivative of?]

Needed for (1) nonlinear space-shift DS, (2) IWAVE++ procedure:
start with model in IWAVE

Answer: acoustic extended model with nonlocal bulk modulus K

∂p

∂t
(x , z , t : xs) +

∫
do K(x , z , o)∇ · v(x − o, z , t; xs) = f

ρ
∂v

∂t
+∇p = 0

causal: p, v = 0 for t << 0; o = 2h



From Image to Model

(Nonlinear) forward map: F [K] = Gp

Relation with Born calculation = linearization at physical model:
F = DF , with identifications

K(x , z , o) = κ(x , z)δ(o)

δK(x , z , o) = K (x , z , o/2)κ(x − o, z)

NB: DF [K]Td is a sunken receiver, rather than midpoint gather -
focusing principle still holds



Agenda

Background

Theory

Implementation



Implementation in IWAVE++

Discretized pressure equation for pn
j ,k ' p(j∆x , k∆z , n∆t; xs):

pn+1
j ,k = pn

j ,k + ∆t
omax∑
omin

Kj ,k,oD · vn+
1
2

j−o,k

BIG problem: involves dense matrix multiply at every space-time
gridpoint

Solution, motivated by typical imaging practice (how adjoint is
used): retain sparse (sunken) receiver grid for o 6= 0, spacing
∆r >> ∆x :

Kj ,k,o =
1

∆o
δo0κj ,k if (j − jmin)%[∆r/∆x ] 6= 0



Implementation in IWAVE++

Store Kj ,k,o using sparse matrix compression: for each sunken
receiver position (j , k) (“row”),

I number n(j , k) of nonzero values of K (j , k , o),

I offset index m(j , k) of first nonzero

I array K of nonzeros

I size t workspace ia for array position of first nonzero

(band matrix variant of compressed row storage). Both n and p
are int arrays even for 3D analog.

Then (linear indexing) constitutive law term in pressure update is

n(j ,k)−1∑
i=0

K (ia + i) ∗ ∇ · v(j − i + m(j , k) + nx ∗ k), ia += n(j , k)



Implementation in IWAVE++

Similarly, (per source, per time) imaging condition is: for i = 0 to
n(j , k)− 1,

I (i + ia) += ∇ · v(j − i + m(j , k) + nx ∗ k) ∗ q(j + nx ∗ k)

Gather sparsity: n(j , k) > 1 for (very) few j (x index)

Overlapping code: initialization of n,m arrays flags diag op
timestep rules, much faster as no innermost loop over offset.

Needs: modification of IWAVE internals, i/o, timestepping
functions fwd/adj, extraction utilities for visualization

Status: implementation in progress - stay tuned!
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