Differential semblance MVA via RTM

William Symes

TRIP Annual Review, 2010

Agenda

Background

Theory

Implementation

Space-shift differential semblance

Space-shift gather / HOCIG via shot record migration:(IEI, Biondi, Sava, Fomel,...)

$$
I(x, z, h)=\sum_{x_{s}} \int d t S\left(x-h, z, t ; x_{s}\right) R\left(x+h, z, t ; x_{s}\right)
$$

$S=$ source wavefield, $R=$ receiver wavefield - computed anyhow (depth extrapolation, two-way plus time reversal,...)

2D for convenience only!

Space-shift differential semblance

$I(x, z, h)$ implicitly dependent on migration velocity v - minimize

$$
J[v]=\sum_{x, z, h}|h l(x, z, h)|^{2}
$$

Concept: small \Rightarrow energy in I focused near $h=0$ - Claerbout's coincident sunken source and receiver principle.

Leads to optimization method for velocity - space-shift differential semblance MVA

First implementation - Shen's thesis (2005) (many others since)

Space-shift differential semblance

Reverse-time method for computing $I(x, z, h)$ - Biondi \& Shan 2002, S. 2002, generalizes RTM.

Claerbout, Tarantola: image formation \sim application of adjoint modeling operator to data.

Q: what is the linear modeling operator whose adjoint outputs $I(x, z, h)$? Is this linear op the derivative of a full waveform modeling op?

Interest:

- positive answers \Rightarrow another approach to FWI (S. 2008)
- facilitates implementation - IWAVE++

Agenda: identify modeling complex related to space-shift MVA, propose IWAVE++ implementation, resolve computational complexity issue

Agenda

Background

Theory

Implementation

From Image to Model

"Source wavefield" and "receiver wavefield" are a bit vague...
Source field: $S=\partial p / \partial t$ (time derivative for dimensional reasons)

$$
\begin{aligned}
\frac{\partial p}{\partial t}+\kappa \nabla \cdot \mathbf{v} & =f \\
\rho \frac{\partial \mathbf{v}}{\partial t}+\nabla p & =0
\end{aligned}
$$

causal: $p, \mathbf{v}=0$ for $t \ll 0$

From Image to Model

Sampling operator G extracts traces $\left\{d\left(x_{r}, t ; x_{s}\right)\right\}$ from pressure field $p\left(x, z, t ; x_{s}\right)$

Adjoint sampling operator G^{T} inserts traces into field.
Receiver field: $R=q=$ backpropagated pressure field,

$$
\begin{aligned}
\frac{\partial q}{\partial t}+\kappa \nabla \cdot \mathbf{w} & =G^{T} d \\
\rho \frac{\partial \mathbf{w}}{\partial t}+\nabla \boldsymbol{q} & =0
\end{aligned}
$$

anticausal: $q, \mathbf{w}=0$ for $t \gg 0$.

From Image to Model

What data is d ?
Recall lesson of Claerbout, Tarantola, Lailly: imaging is dual to Born modeling.
$\Rightarrow d$ is (treated as) Born data, that is, $d=G \delta p$, where

$$
\begin{aligned}
\frac{\partial \delta p}{\partial t}+\kappa \nabla \cdot \delta \mathbf{v}+\text { Born Source } & =0 \\
\rho \frac{\partial \delta \mathbf{v}}{\partial t}+\delta \rho \frac{\partial \mathbf{v}}{\partial t}+\nabla \delta p & =0
\end{aligned}
$$

causal: $\delta p, \delta \mathbf{v}=0$ for $t \ll 0$; for convenience only, $\delta \rho=0$.

From Image to Model

Modeling op: $F[$ Born Source params $]=d$, then $F^{T} d=I$.
Notation: Born Source params $=K=$ input of $F \sim$ output of F^{T}

- must be image-like: $K(x, z, h)$.

Idealize to continuous sampling: image space dot product is

$$
\langle K, I\rangle_{I}=\iiint d x d z d h K(x, z, h) I(x, z, h)
$$

The adjoint relation is

$$
\langle F K, d\rangle_{D}=\left\langle K, F^{T} d\right\rangle_{I}
$$

$\left(\langle\cdot, \cdot\rangle_{D}=\right.$ data space dot product $)$

From Image to Model

$$
\begin{gathered}
\langle K, I\rangle_{I}=\iiint d x d z d h K(x, z, h) \\
\times \int d t \int d x_{s} \frac{\partial p}{\partial t}\left(x-h, z, t ; x_{s}\right) q\left(x+h, z, t ; x_{s}\right) \\
=\iiint \int d x d z d t d x_{s} q\left(x, z, t ; x_{s}\right) \\
\times\left[\int d h K(x-h, z, h) \frac{\partial p}{\partial t}\left(x-2 h, z, t ; x_{s}\right)\right]
\end{gathered}
$$

From Image to Model

Inspiration (pattern recognition!): suppose quantity in square brackets is Born source:

$$
\begin{gathered}
\left(\frac{\partial \delta p}{\partial t}+\kappa \nabla \cdot \delta \mathbf{v}\right)\left(x, z, t ; x_{s}\right) \\
+\int d h K(x-h, z, h) \frac{\partial p}{\partial t}\left(x-2 h, z, t ; x_{s}\right)=0 \\
\rho \frac{\partial \delta \mathbf{v}}{\partial t}+\nabla \delta p=0
\end{gathered}
$$

From Image to Model

Substitute LHS of 1st (pressure) eqn in dot product:

$$
\begin{gathered}
\langle K, I\rangle_{I}=\iiint d x d z d t d x_{s}\left(\frac{\partial \delta p}{\partial t}+\kappa \nabla \cdot \delta \mathbf{v}\right) q \\
=\ldots=\langle G \delta p, d\rangle_{D}
\end{gathered}
$$

(standard computation - see Sun \& S TR 10-06, or Gauthier et al Geophys. 1986) - so $F K=G \delta p$ and

$$
\langle K, I\rangle_{I}=\left\langle K, F^{T} d\right\rangle_{I}=\langle F K, d\rangle_{D}
$$

From Image to Model

Physical significance of space-shift Born Source term:

$$
\int d h K(x-h, z, h) \frac{\partial p}{\partial t}\left(x-2 h, z, t ; x_{s}\right)
$$

- $h=$ subsurface half-offset (space shift)
- $x=$ "sunken receiver" position
- $x-2 h=$ "sunken source" position
- $x-h=$ "sunken midpoint"
- $K=$ perturbational bulk modulus acting over distance $2 h$
- physical perturbation: $K(x, z, h)=\delta \kappa(x, z) \delta(h)$ - applied to I $=$ Claerbout's focusing principle

From Image to Model

Shift the shift: write K in terms of sunken receiver x, source $x-2 h$, rather than midpoint \& offset: Born source term is

$$
\int d h K(x, z, h) \frac{\partial p}{\partial t}\left(x-2 h, z, t ; x_{s}\right)
$$

Corresponding change in imaging principle: produces sunken receiver gather

$$
I(x, z, h)=\int d t \int d x_{s} \frac{\partial p}{\partial t}\left(x-2 h, z, t ; x_{s}\right) q\left(x, z, t ; x_{s}\right)
$$

From Image to Model

Another question: what is "space shift model" leading to space shift Born model? [Other wise put: what is F the derivative of?]

Needed for (1) nonlinear space-shift DS, (2) IWAVE++ procedure: start with model in IWAVE

Answer: acoustic extended model with nonlocal bulk modulus \mathcal{K}

$$
\begin{aligned}
\frac{\partial p}{\partial t}\left(x, z, t: x_{s}\right)+\int d o \mathcal{K}(x, z, o) \nabla \cdot \mathbf{v}\left(x-o, z, t ; x_{s}\right) & =f \\
\rho \frac{\partial \mathbf{v}}{\partial t}+\nabla p & =0
\end{aligned}
$$

causal: $p, \mathbf{v}=0$ for $t \ll 0 ; o=2 h$

From Image to Model

(Nonlinear) forward map: $\mathcal{F}[\mathcal{K}]=G p$
Relation with Born calculation $=$ linearization at physical model:
$F=D \mathcal{F}$, with identifications

$$
\begin{aligned}
\mathcal{K}(x, z, o) & =\kappa(x, z) \delta(o) \\
\delta \mathcal{K}(x, z, o) & =K(x, z, o / 2) \kappa(x-o, z)
\end{aligned}
$$

NB: $D \mathcal{F}[\mathcal{K}]^{T} d$ is a sunken receiver, rather than midpoint gather focusing principle still holds

Agenda

Background

Theory

Implementation

Implementation in IWAVE++

Discretized pressure equation for $p_{j, k}^{n} \simeq p\left(j \Delta x, k \Delta z, n \Delta t ; x_{s}\right)$:

$$
p_{j, k}^{n+1}=p_{j, k}^{n}+\Delta t \sum_{o_{\min }}^{o_{\max }} K_{j, k, o} D \cdot \mathbf{v}_{j-o, k}^{n+\frac{1}{2}}
$$

BIG problem: involves dense matrix multiply at every space-time gridpoint

Solution, motivated by typical imaging practice (how adjoint is used): retain sparse (sunken) receiver grid for $o \neq 0$, spacing $\Delta r \gg \Delta x$:

$$
K_{j, k, o}=\frac{1}{\Delta o} \delta_{o 0} \kappa_{j, k} \text { if }\left(j-j_{\min }\right) \%[\Delta r / \Delta x] \neq 0
$$

Implementation in IWAVE++

Store $K_{j, k, o}$ using sparse matrix compression: for each sunken receiver position (j, k) ("row"),

- number $n(j, k)$ of nonzero values of $K(j, k, o)$,
- offset index $m(j, k)$ of first nonzero
- array K of nonzeros
- size_t workspace ia for array position of first nonzero
(band matrix variant of compressed row storage). Both n and p are int arrays even for 3D analog.

Then (linear indexing) constitutive law term in pressure update is

$$
\sum_{i=0}^{n(j, k)-1} K(i a+i) * \nabla \cdot \mathbf{v}\left(j-i+m(j, k)+n_{x} * k\right), i a+=n(j, k)
$$

Implementation in IWAVE++

Similarly, (per source, per time) imaging condition is: for $i=0$ to $n(j, k)-1$,

$$
I(i+i a)+=\nabla \cdot \mathbf{v}\left(j-i+m(j, k)+n_{x} * k\right) * q\left(j+n_{x} * k\right)
$$

Gather sparsity: $n(j, k)>1$ for (very) few j (x index)
Overlapping code: initialization of n, m arrays flags diag op timestep rules, much faster as no innermost loop over offset.

Needs: modification of IWAVE internals, i/o, timestepping functions fwd/adj, extraction utilities for visualization

Status: implementation in progress - stay tuned!

