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Abstract

The Effects of Coupling Adaptive Time-Stepping and Adjoint-State Methods for

Optimal Control Problems

by

Marco U. Enriquez

The adjoint-state method is widely used for computing gradients in simulation-

driven optimization problems. The adjoint-state evolution equation requires access to

the entire history of the system states. However, problems arise when adaptive time-

stepping schemes are used to perform the reference and adjoint simulation. Though

we gain control over the accuracy of the time-stepping scheme, the forward and ad-

joint time grids become mismatched. Despite this fact, I claim using adaptive time-

stepping for optimal control problems is advantageous for two reasons. First, taking

variable time-steps potentially reduces the computational cost and improves accuracy

of the forward and adjoint equations’ numerical solution. Second, by appropriately

adjusting the tolerances of the time-stepping scheme, convergence of the optimal

control problem can be theoretically guaranteed. This proposal highlights the work

completed to justify my claim. I discuss preliminary theoretical and computational

results. The computational results feature an implementation of a reservoir simulator

using TSOpt, a time-stepping library for simulation-driven optimization algorithms.
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Chapter 1

Introduction

In its simplest form, an optimal control problem can be written as

min
y,u

f(y, u) =

∫ T

0

J(y(t), u)dt (1.1)

s.t.
d

dt
y(t)−H(y(t), u) = 0 , t ∈ [0, T ] (1.2)

H, y ≡ 0 for t < 0 (1.3)

where the control u ∈ Rn, the state y ∈ C1([0, T ], Y ) for a state Hilbert space Y ,

J is a functional, and H : Rn × Y → Y is some nonlinear dynamic operator. The

equations (1.2) - (1.3) are often referred to as the “state equation”. Throughout this

proposal, numerical solution of the differential equation (1.2) will be referred to as

a forward simulation. A forward simulation generates the solution at different time-

levels, called the (forward) states. The collection of all the forward states, in turn,

will be referred to as the state vector.
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In order to use Newton-based optimization algorithms to solve the problem (1.1),

it is necessary to calculate the gradient of the objective function J(c) with respect to

the controls, c. A common method to calculate the gradient of the objective function

(1.1) is through the algorithm called the adjoint-state method [Lions, 1971].

Adjoint-state methods incur a cost roughly equivalent to the cost of numerically

solving the differential equation (1.2) [Brouwer and Jansen, 2004, Sarma and Aziz,

2005]. Despite this cost, adjoint-state methods are efficient because they are not af-

fected by the size of the control parameter. Adjoint-state methods involve solving a

massive linear system, derived from linearizing the state equations over the simula-

tion time range, then transposing the resulting matrix. For computational efficiency,

instead of solving this large linear system directly, a back-substitution strategy is

employed, resulting in a backward-in-time evolution. Due to the linearization step,

the adjoint state method requires access to the simulation state history.

This dependence, however, poses a question for computational implementations

of adjoint-state methods: what happens if we solve the state equations using an

adaptive time-stepping algorithm ? Adaptive time-stepping is a reasonable approach

if the state equations have “stiff” regions. Lambert [2000] defines stiffness to be the

following:

If a numerical method with a finite region of absolute stability, applied to a

system with any initial conditions, is forced to use in a certain interval of inte-

gration a steplength which is excessively small in relation to the smoothness of
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the exact solution in that interval, then the system is said to be stiff in that

interval.

It would be ideal to take larger time-steps over the non-stiff regions, and to restrict

the time-step size over the stiff regions. Taking adaptive steps in the forward and

adjoint field, however, will cause the forward and adjoint time grids to mismatch.

Since the forward and adjoint grids do not align, the adjoint evolution scheme will

not have access to the appropriate forward state.

More importantly, how does this adaptive time-stepping approach affect the qual-

ity of the gradient, and the convergence to the solution of the optimal control problem

(1.1)? Mismatched time-grids resulting from adaptive time stepping imply that dur-

ing the adjoint evolution, an interpolation scheme must be employed to approximate

the missing forward state. In turn, this implies that an interpolation error will be

present in the adjoint state calculation. However, having a controllable tolerance in

the time-stepping algorithm means that the global error in the state equations’ nu-

merical solution can be changed. The aggregate errors from interpolation and the

time-stepping algorithm manifest themselves in the gradient in a non-trivial way, and

will hence affect convergence to the optimal control.

In this proposal, I highlight the research I have completed to answer the questions

I posed above. Chapter 2 provides a literature review of adaptive time-stepping, op-

timization in the presence of inexact information, and prior works to couple the two

concepts. Chapter 3 provides primary analysis towards a proof of how convergence to
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the solution of the optimal control problem (1.1) can be guaranteed by manipulating

the time-stepper’s algorithmic parameters. Chapter 4 discusses the software frame-

work I helped develop, called TSOpt (“Time-Stepping for Optimization”), which is

the computational tool I use to verify the theory I established. Finally, Chapter 5

discusses the Black-Oil equations, and how I have implemented the reference and ad-

joint evolution for these equations in TSOpt. I intend to use this implementation to

solve an optimal control problem whose gradients are obtained through adaptive time-

stepping and the adjoint state method. My ultimate goal is to study how adjusting

time-stepping tolerances and parameters will affect convergence to an optimal con-

trol, using optimization problems implicitly constrained by the Black-Oil equations

as my target example.
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Chapter 2

Literature Review

The goal of this proposal is to explore the effect of adaptive time stepping in simulation-

driven optimization problems. This chapter will cover three main topics related to

this goal. The first section discusses the simulation-driven optimization problem. I

cover contemporary approaches to solving simulation-driven optimization problems,

then introduce software packages developed to aid in solving such problems, including

TSOpt – the software framework for the research discussed in this proposal. I then

dissect the simulation-driven optimization problem into two separate topics: in the

second section, I discuss simulating via adaptive time-stepping methods while in the

third section, I review existing optimization methods accommodating inexact infor-

mation (e.g. inexact gradients). The second section also discusses software packages

for numerically solving ordinary differential equations, using both fixed and adaptive

time stepping methods.
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2.1 Simulation-Driven Optimization Problems

There are two main branches of strategies in solving simulation-driven optimiza-

tion problems: derivative-free algorithms and derivative-based algorithms. Famous

examples of derivative-free algorithms are stochastic algorithms, such as Genetic Al-

gorithms or Simulated Annealing. Stochastic algorithms are theoretically attractive

since they are capable of finding global minima [Sarma and Aziz, 2005]. Stochastic

algorithms, however, suffer from the drawback of requiring many evaluations with-

out the guarantee of monotonically decreasing objective function values. For further

discussion of these strategies, see Sarma and Aziz [2005].

Derivative-based algorithms (such as Newton and its variants), as opposed to

stochastic algorithms, guarantee decrease of the objective function per iteration while

usually requiring fewer forward evaluations than stochastic algorithms [Renders and

Flasse, 1996, Sarma and Aziz, 2005]. The major drawback of gradient-based algo-

rithms is that for non-convex problems, convergence to the global solution is not

guaranteed. In this proposal, I will be focusing on gradient-based algorithms, since

it is the only practical option for large-scale problems.

The two fundamental gradient-based strategies for solving simulation-driven opti-

mization problems go under the names “Optimize-then-Discretize” (OD) and “Discretize-

then-Optimize” (DO). “Optimize-then-Discretize” first applies multiplier theory to

the continuum problem, and then discretizes the resulting Lagrangian function. Hahn,

among many others, derived explicit formulas for the continuous necessary optimal-
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ity conditions for control problems [Hahn, 1996]. “Discretize-then-Optimize,” alterna-

tively, first discretizes the continuum problem, and then solves the (discrete) optimal-

ity conditions for the resulting finite dimensional problem. It should be noted that

the strategy “Discretize-then-Optimize” is fundamentally simpler than “Optimize-

then-Discretize” because it eliminates the need to analytically calculate derivatives

of the continuous Lagrangian function.

Though the OD and DO approaches eventually lead to a discretized systems of

equations, they are not always equivalent. Li and Petzold [2004] demonstrate this

fact by considering the following problem:

min
u
f(u) =

∫
Ω

g(y, u)dx (2.1)

where (y, u) solves the one dimensional heat equation:

yt = yxx , (2.2)

with boundary conditions

yx(0) = 0 y(1) = 1 . (2.3)

Note that we can use the boundary condition yx(0) = 0 along with the ghost boundary
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point y0 to deduce:

yx(0) =
y2 − y0

2h
= 0 (2.4)

Using the method of lines to solve (2.2) and using (2.4), we obtain:

ẏ1 =
2y2 − 2y1

h2
(2.5)

ẏi =
yi+1 − 2yi + yi−1

h2
, i = 2, 3, . . . N − 1 (2.6)

˙yN = 0 . (2.7)

Given the adjoint variable λ, the corresponding adjoint to this discretization takes

the following form:

˙−λ1 =
λ2 − 2λ1

h2
(2.8)

˙−λ2 =
2λ1 − 2λ2 + λ3

h2
(2.9)

˙−λi =
λi+1 − 2λi + λi−1

h2
, i = 3, 4, . . . N − 2 (2.10)

˙−λN−1 =
−2λN−1 + λN−2

h2
(2.11)

˙−λN =
λN−1

h2
. (2.12)

Now consider the continuous adjoint of the objective function f . The component of
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this adjoint that corresponds to the heat equation constraint can be written as:

−λt = λxx (2.13)

λx(0) = 0 λ(1) = 0 . (2.14)

Applying the method of lines and a central differencing scheme to (2.13) then gives:

˙−λ1 =
2λ2 − 2λ1

h2
(2.15)

˙−λi =
λi+1 − 2λi + λi−1

h2
, i = 2, 3, . . . N − 1 (2.16)

˙−λN = 0 . (2.17)

Note that the partly discretized adjoint of the DO strategy does not match the dis-

cretized adjoint of the OD strategy. One should notice, however, that this discrep-

ancy can be eliminated by performing extra manipulations. In the Li and Petzold’s

example, consistency can be achieved by making the adjoint variable substitution

w1 := λ1/2 and adding a new variable wN = 0.

Like Petzold and Li, Hager [1999] also addressed the consistency between the OD

and DO strategies. Using the continuous optimality conditions, Hager established a

relationship between the continuous optimal control problem and the discretized opti-

mal control problem. By creating a transformed adjoint system, Hager established an

equivalence between the Runge-Kutta discretization of the continuous adjoint equa-

tions and the first-order necessary conditions associated with the discrete control
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problem. Hager exploited this equivalence to derive conditions on the elements of

a Runge-Kutta scheme’s Butcher table and vector that guarantee a specific order

of convergence to the optimal control problem. Hager accomplishes this by extend-

ing Butcher’s Runge-Kutta analysis to cater to the discretization of his transformed

adjoint system. Note that Hager [1999] actually established an instance where the

strategy “Optimize-then-Discretize” is equivalent to the strategy “Discretize-then-

Optimize”.

It should also noted that it is possible to couple both “Optimize-then-Discretize”

and “Discretize-then-Optimize” approaches to solving the simulation-driven opti-

mization problem. In their work Li and Petzold [2004] use a “mixed” approach

to derive the discrete adjoint equations for an optimal control problem; they use the

“Discretize-then-Optimize” approach around the spatial domain boundary, then use

the “Optimize-then-Discretize” approach elsewhere in the domain. Li and Petzold

claim that their approach eliminates the need to formulate proper boundary condi-

tions for the adjoint of a general PDE, while still allowing adaptive grid refinements

on the interior of the domain.

A software package that accommodates the two (non-mixed) gradient-based strate-

gies is the FDTD, or “Finite Difference Time Domain” package [Gockenbach et al.,

2002]. FDTD is a C++ software package that, given a time-stepping algorithm (and

related code), creates a simulator capable of generating forward, derivative (or “sen-

sitivity”), and adjoint states. FDTD could be used to solve optimal control problems
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by providing necessary data structures and functions to an optimization algorithm,

such as the Quasi-Newton algorithm BFGS, provided that such algorithms are coded

in conformance with a certain system of interfaces.

TSOpt – the “Time Stepping for Optimization” Package – succeeded FDTD [Symes,

2006]. TSOpt is similar to FDTD in that they both exploit C++ object-oriented pro-

gramming (OOP) to solve systems of differential equations by using time stepping

methods. TSOpt, however, differs from FDTD in two fundamental ways: first, TSOpt

uses C++ templating so it can accommodate multiple data types. Second, and most

importantly, TSOpt is based on the Rice Vector Library (RVL), while FDTD is based

on the Hilbert Class Library (HCL). HCL was RVL’s predecessor; though both repre-

sented Hilbert-Space calculus objects as C++ classes, RVL improved upon HCL by

fully separating “Calculus” and “Data Storage” components [Padula et al., 2009].

TSOpt is an interface for creating simulation operators which incorporated time-

stepping algorithms. It supplies interfaces needed by Newton-based algorithms to

solve the optimization problem (1.1). Three such interfaces define the forward evo-

lution operator, the adjoint evolution operator and the derivative evolution operator.

The forward evolution operator yields forward-simulation state vectors. These for-

ward states are then used by the adjoint-state evolution operator to generate adjoint

states, which in turn can be used to construct the objective function’s gradient. The

derivative evolution operator outputs derivative states, and can be used to obtain

sensitivities or to verify the output of the adjoint-state evolution operator. The gra-
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dient of the objective function is then used in Newton or quasi-Newton methods,

which solves the simulation-driven optimization problem. Of course, how well a New-

ton (or Newton-based) method succeeds depends on the properties of the continuum

problem.

There are various other commercial and non-commercial optimal control solvers

available, such as Stanford’s General Purpose Research Simulator (GPRS). GPRS is

non-commercial, C++ simulation software for solving problems pertaining to reser-

voir engineering and management. Sarma and Aziz [2005] used GPRS to solve an

oil well related optimal control problem. Of the current software packages I exam-

ined, however, the package most similar to TSOpt is Sandia National Laboratory’s

software package Rythmos. Rythmos is a “transient integrator” of differential equa-

tions that uses time-stepping algorithms implemented in C++. Rythmos is similar

to TSOpt because it also uses advanced C++ coding techniques, such as templat-

ing and class hierarchies, to create inter-operating components to solve differential

equations [Coffey, 2009]. Currently, Rythmos is “aimed at supporting operator-split

algorithms, multi-physics applications, block linear algebra and adjoint integration”.

However, unlike TSOpt, Rythmos does not currently support gradient calculation via

adjoint-state methods.
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2.2 Adaptive Time Stepping

In simulation-driven optimization problems, the differential equation constraint (1.2)

is typically solved numerically by performing fixed-step time-stepping routines. This

could, however, be problematic when one or more regions of the differential equation

is stiff; in order to maintain accuracy of the solution, small time steps must be used.

This, in turn, leads to taking more time steps – increasing computational expense.

There are, however, two alternatives to using prohibitively small time steps: implicit

fixed step time stepping methods and adaptive time stepping methods. I examine

both approaches in this section.

Implicit methods have large stability regions, allowing bigger time steps to be

taken. In exchange for the large stability region, however, an extra system of equa-

tions must be solved at every iteration. Hence, implicit methods are generally more

difficult to implement [Lambert, 2000, Suli and Mayers, 2003, Kincaid and Cheney,

2002]. Despite its extra computational and implementation cost, implicit methods

are preferred over explicit methods for solving stiff differential equations, since it of-

ten takes less time to simulate using an implicit method with a large, fixed time step

(compared to an explicit method with an excessively small fixed time step). Some

examples of implicit methods range from the common backward Euler scheme, to

more complex k-step Backward Differentiation Formulae (BDF) schemes [Lambert,

2000].

If the differential equation’s solution has both stiff and non-stiff regions on the
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time domain of interest, it is advantageous to use adaptive time stepping methods.

Adaptive time stepping methods allow the step lengths to vary while performing the

evolution. Over the stiff regions, the algorithm can restrict the step length while in

non-stiff regions, the algorithm can take larger time steps [Lambert, 2000, Suli and

Mayers, 2003, Kincaid and Cheney, 2002]. It should be noted that both explicit and

implicit schemes can be adaptive.

Embedded explicit Runge-Kutta (RK) methods are a popular example of an adap-

tive time stepping algorithm [Lambert, 2000, Suli and Mayers, 2003, Kincaid and

Cheney, 2002]. These methods yield a local (truncation) error estimate at every step,

which can be used to alter the step length size. If the local error estimate is greater

than a user defined tolerance, then the step is rejected; the step length is reduced

and another forward step is attempted. This process is repeated until the local error

estimate is less than the given tolerance. On the other hand, if the error estimate is

significantly lower than the given tolerance, the step length can be increased [Lam-

bert, 2000, Suli and Mayers, 2003, Kincaid and Cheney, 2002].

Multi-step algorithms (as opposed to one-step algorithms, such as Runge-Kutta)

– both in explicit or implicit form – can also be used to perform adaptive time steps.

Lambert [2000] describes methods referred to as variable step, variable order (VSVO)

algorithms, such as predictor-corrector Adams methods. Popular VSVO algorithms

include DIFSUB (Gear), GEAR (Hindmarsh) and EPISODE (Byrne and Hindmarsh)

[Lambert, 2000, Jackson and Sacks-Davis, 1980]. Jackson and Sacks-Davis [1980]
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implement a variable step-size multi-step formula, which leads to efficient solution of

the system of equations arising from taking an implicit time step.

Many non-commercial time stepping software packages exist. Besides the al-

gorithms mentioned above, there are also the software packages GSL, RKSuite 90

and ODEPACK. The GNU Scientific Library (GSL) [Galassi and Theiler, 2009] in-

cludes a time-stepping framework for solving ordinary differential equations which

include adaptive time-stepping algorithms such as RKF45. Brankin et al. developed

RKSuite 90, a collection of Runge-Kutta schemes implemented in Fortran [Brankin

et al., 1993]. The Lawrence Livermore National Laboratory developed ODEPACK, a

collection of initial value ODE solvers [Hindmarsh, 1983].

2.3 Optimization Algorithms Using Inexact Infor-

mation

Through use of adaptive time stepping, we maintain accuracy of the numerical so-

lution to the differential equation without resorting to excessively small, fixed time

steps. However, there is a tradeoff: the time grids of the reference and adjoint simu-

lation will no longer align, which is problematic for the adjoint state method. When

performing adjoint simulation, one must interpolate the forward states in order to

generate an approximation at the current time level of the adjoint simulation. This

introduces an extra (interpolation) error in the adjoint states, which manifests itself
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into more inexactness of the numerical gradient. What can we expect from optimiza-

tion algorithms when given inexact information, such as the gradient? This section

reviews the previous works that attempt to answer this question.

Dembo and Steihaug [1982] used the Newton method to solve the problem F (x) =

0 (with F : Rn → Rn). Newton’s method is defined by the following numerical

scheme: xk+1 = xk + sk, where sk is the solution to the Newton linear system

F ′(xk)sk = −F (xk). Dembo argues that for large enough systems, performing Gaus-

sian elimination at every iteration can be prohibitively expensive. This leads to the

idea of coupling Newton with an iterative method to solve the Newton linear system,

which Dembo refers to as Newton-iterative methods.

Dembo answers the following question in his work: how accurately must we solve

the Newton linear system in order to maintain the convergence properties of Newton?

Defining the residual at the kth iteration as rk = F ′(xk)sk + F (xk), Dembo considers

the class of Newton methods (called inexact Newton methods) which iteratively solve

the Newton linear system while satisfying the following bound:

‖rk‖
‖F (xk)‖

≤ µk , (2.18)

for some nonnegative sequence {µk} (called the forcing sequence). Dembo’s main

results states that if µ < 1 exists, such that µk < µ for all k, then the inexact Newton

method is locally convergent.

Further analysis of the Newton algorithm using inexact information can be found
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in [Kelley and Sachs, 1999]. Kelley and Sachs examine the unconstrained optimization

problem

min
x
f(x) ,

for a function f : Rn → R, whose objective function evaluation and gradients are

given by “black-box” codes and whose absolute and relative error are controllable.

Kelley and Sachs [1999] also use Newton-iterative methods, but they do so in the

context of linear systems arising from the Conjugate-Gradient Trust Region algorithm

(CGTR). Kelley and Sachs’ CGTR algorithm also uses a finite-difference scheme to

approximate Hessian-vector computation. They note that for functions f : Rn → R,

Newton iterative methods’ inner iterations terminate when

‖∇2f(xk)sk +∇f(xk)‖ ≤ η‖∇f(xk)‖ , (2.19)

where η is the forcing term. Due to the finite difference approximation and the CG

iteration, Kelley and Sachs find that the condition (2.19) should be altered to

‖∇2f(xk)sk +∇f(xk)‖ ≤ η̄1‖∇f(xk)‖+ ξ1 , (2.20)

where the constant η̄1 = η+O(δq) and the constant ξ1 = O(τ). Note that δ represents

the finite difference increment, q represents the order of accuracy of the finite differ-

ence approximation and τ represents the error from evaluating the function value

and the gradient. Using the bound (2.20), as well as analysis of the quadratic model
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and measurement of decrease, Kelley and Sachs [1999] propose changes to the TR

algorithm that accelerate convergence.

Like Kelley and Sachs [1999], Carter [1991] also uses an unconstrained optimiza-

tion algorithm. Carter also considers solving min f(x), where f : Rn → R by using

the Trust-Region (TR) algorithm, though he does not use inexact Newton methods.

The TR update takes the form xk+1 = xk + sk, where sk solves the Trust Region

subproblem:

min
s

ψ(xk + s) (2.21)

s.t. ‖Dks‖ ≤ ∆k . (2.22)

In the subproblem above, ψk(xk + s) = f(xk) + gTk s+ 1
2
sTHks, with gk is the approx-

imate evaluation of ∇f at xk and Hk is the approximate evaluation of ∇2fk at xk.

The matrix Dk is a positive definite preconditioning matrix, which may be taken as

the identity.

Carter asserts that a suitably modified TR algorithm converges globally to a

stationary point provided that

‖gk −∇f(xk)‖(DT
k Dk)−1

‖gk‖(DT
k Dk)−1

≤ ξ , (2.23)

for some ξ ∈ [0, (1 − η)], where 0 < η < 1 is a user-chosen parameter. (Here,

‖x‖A ≡ (xTAx)
1
2 for A ∈ Rn×n symmetric positive definite.) It is worth noting that,
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like Dembo in (2.18), Carter in (2.23) imposed a bound on the relative error from

their algorithm. Carter asserts that if (2.23) is satisfied, then we have

lim
k→∞
‖∇f(xk)‖ = 0.

(Note that we are no longer considering a norm weighed by the matrix (DT
kDk)

−1.)

We can understand this assertion by demonstrating that, by enforcing Carter’s bound,

the approximated gradient will always be in the direction of the true gradient. First,

note that the rate of change of f in the direction gk at the point xk can be expressed

as ∇fTgk. Hence, we must show ∇fTgk > 0. We begin by introducing zeros to the

inner product, and simplifying:

∇fTgk = (∇f − gk + gk)
Tgk = (∇f − gk)Tgk + ‖gk‖2 .

Using the Cauchy-Schwarz inequality yields

(∇f − gk)Tgk + ‖gk‖2 ≥ −‖∇f − gk‖‖gk‖+ ‖gk‖2 .

Then using Carter’s bound, we arrive at

−‖∇f − gk‖‖gk‖+ ‖gk‖2 ≥ −(1− η)‖gk‖2 + ‖gk‖2 = η‖gk‖2 > 0 .

Carter’s TR algorithm works for a subclass of problems with the following traits:

19



first, there must be a computable error bound for each gradient approximation gk.

Second, solution accuracy must be controllable either directly (by specifying algo-

rithm tolerances), or indirectly (for example, by refining grids). Carter’s TR algo-

rithm, however, suffers from a fundamental problem: it is usually difficult to obtain

a computable error bound on the gradient error. Furthermore, in general, it is im-

possible to have a priori knowledge of how to control the solution accuracy so that

(2.23) is satisfied.

Other authors have considered the effect of inexact gradients on the trust re-

gion algorithm for unconstrained optimization problems. Moré [1982] establishes

convergence results for a modified trust region algorithm that uses scaling and pre-

conditioning in solving the TR subproblem, assuming that the approximated gradient

gk satisfies the following:

lim
k→∞
‖gk −∇f(xk)‖ = 0 , (2.24)

given a sequence {xk} that converges to a stationary point. Note that the condition

(2.24) is equivalent to Carters condition (2.23) given the sequence of iterates {xk}

converge to a stationary point. The same result can also be found in Conn et al.

[2000], who give a more detailed discussion on the global convergence of the TR

algorithm using approximated gradients, under various assumptions on the algorithm

and the problem.

In contrast to the previous authors, Heinkenschloss and Vicente [2001] considers
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nonlinear, constrained optimization problems of the form,

min f(y, u) (2.25)

s.t. C(y, u) = 0 , (2.26)

for f : Rn → R, C : Rn → Rm, the state variable y ∈ Rm, and the control variable

u ∈ Rn−m. Heinkenschloss and Vicente solve the problem above using a modified

Trust-Region SQP method which allows for inexactness in the gradient caused by

inexact linear system solves. Under the bound they propose for the gradient error,

they prove the first-order global convergence of their algorithm. It is also worth noting

that for the reduced unconstrained problem

min
u
f(y(u), u) , (2.27)

where (y(u), u) solves the constraint equation C(y, u) = 0, if the approximated gra-

dient satisfies the gradient error bound in Heinkenschloss and Vicente [2001], global

lim inf convergence of the Moré’s TR algorithm [Moré, 1982] can also be shown.

In this proposal, I will build on the mathematical and algorithmic framework

established by Heinkenschloss and Vicente. Their algorithm will be discussed in

greater detail in the next chapter.
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Chapter 3

Mathematical Background

In this chapter I discuss the mathematical background necessary for my thesis work. I

begin by discussing the adjoint state method and the optimal control problem. Since

I am interested in solving optimal control problems with inexact gradients (with

incurred from adaptive time-stepping and interpolation), I then discuss Trust-Region

(TR) algorithms for the unconstrained optimization problem that use inexact gradient

information. Heinkenschloss and Vicente [2001] derived a bound on the gradient error

that, if satisfied, guaranteed the convergence of their TR-SQP algorithm. This bound

also implies convergence of Moré’s unconstrained TR algorithm [Moré, 1982]; I give

a full proof of this result in this chapter.
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3.1 The Optimal Control Problem and The Ad-

joint State Method

I begin by defining the optimal control problem considered in this proposal, which is

of the form

min
y,u

f(y, u) =

∫ T

0

J(y(t), u)dt (3.1)

s.t.
d

dt
y(t)−H(y(t), u) = 0 , t ∈ [0, T ] (3.2)

H, y ≡ 0 for t < 0 (3.3)

where the control u ∈ Rn, the state y ∈ C1([0, T ], Y ) for a state Hilbert space Y ,

J is a functional, and H : Y × Rn → Y is some nonlinear dynamic operator that

is continuously partially differentiable. In order to simplify notation, I define the

following mapping, C : [0, T ]× Rn → Y , as:

C(y(t), u) = y(t)−
∫ t

0

H(y(s), u)ds. (3.4)

Using this notation, we then write (3.1) as

min
y,u

f(y, u) (3.5)

s.t. C(y(t), u) = 0 , t ∈ [0, T ] (3.6)
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If the following hypotheses are satisfied:

1. C(y, u) = 0 has a unique solution y for all u ∈ Rn

2. There is an open set D ⊂ Rn×Y with {(y, u) : u ∈ Rn, C(y, u) = 0} ⊂ D, such

that f and C are twice differentiable on D

3. Cy(y, u) is invertible for all pairs (y, u) ∈ {(y, u) : u ∈ Rn, C(y, u) = 0},

then we can invoke the implicit function theorem. The implicit function theorem

asserts that there exists a continuously differentiable function u 7→ y(u) that is defined

through the solution of C(y, u) = 0. Using the implicit function theorem, we reduce

(3.5) to

min f̂(u) = f(y(u), u) , (3.7)

where (y(u), u) solves the constraint equation. In order to use gradient-based opti-

mization algorithms to solve (3.7), we will need a derivative with respect to the control

parameter u; the adjoint-state method is one method to obtain this derivative.

The adjoint state method can be derived by taking the total derivative of f̂ :

∇f̂(u) = −Cu(y(u), u)TCy(y(u), u)−T∇yf(y(u), u) +∇uf(y(u), u) . (3.8)

If we introduce the adjoint variable λ(u) ∈ Rny , which solves

Cy(y(u), u)Tλ(u) = −∇yf(y(u), u) , (3.9)

24



we can rewrite (3.8) as

∇f̂(u) = ∇uf(y(u), u) + Cu(y(u), u)Tλ(u) . (3.10)

Computable approximations of (3.9) - (3.10) then take the form of

Cy(yk, uk)
Tλ = −∇yf(yk, uk) (3.11)

∇f(uk) = Cu(yk, uk)
Tλ+∇uf(yk, uk) , (3.12)

where the index k represents the iteration number.

The size of the problem, however, may prohibit us from solving the discrete ad-

joint equations (3.11) exactly; in this case, we use iterative methods to solve the

linear system to a user-specified accuracy. The error in the adjoint variable then

manifests itself in the gradient, causing derivative inaccuracy. This incurred gradient

error, if large enough in magnitude, can be problematic for gradient-based optimiza-

tion algorithms because it can lead to bad search directions. Fortunately, there are

many optimization algorithms that account for this derivative inaccuracy; one such

algorithm was developed by Heinkenschloss and Vicente.

3.2 Inexact Trust Region (TR) Algorithms

Heinkenschloss and Vicente developed a modified Trust-Region SQP method which

allows for inexactness in the gradient, caused by inexact linear system solves. Recall
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that the adjoint state method requires solution to linear systems of the form

Cy(yk, uk)
Tλ = −∇yf(yk, uk) . (3.13)

Suppose, however, that we cannot solve (3.13) exactly. In this case, we incur a residual

error e, and we introduce λ̂ that now satisfies

Cy(yk, uk)
T λ̂ = −∇yf(yk, uk)− e . (3.14)

This residual error then manifests itself (as another type of error) when we construct

the approximate gradient gk using λ̂ via the formula

gk = Cu(yk, uk)
T λ̂+∇uf(yk, uk) . (3.15)

Heinkenschloss and Vicente [2001] then show if the approximate gradient gk satisfies

the following inequality:

‖gk −∇f(xk)‖ ≤ K min{‖gk‖,∆k} , (3.16)

where K > 0 is some constant and ∆k is the Trust Region radius at the kth iteration,

their Trust-Region SQP algorithm exhibits first-order global convergence. Heinken-

schloss and Vicente, however, note that though K does not need to be less than 1, the

absolute error in the reduced gradient error must be less than ∆k and ‖gk‖. In this
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proposal, I focus on Heinkenschloss and Vicente’s result for the unconstrained TR: if

the approximate gradient satisfies (3.16), then global lim inf convergence of Moré’s

unconstrained TR algorithm (found in [Moré, 1982]) can be established. We see that

the bound (3.16) guarantees that the approximate gradient is never “too far” from

the true gradient; each approximate gradient satisfies the following two facts:

1. A poor approximation of the true gradient will lead to an inaccurate TR model

function. In turn, this will lead to poor predicted model decrease, which triggers

a shrinking of the TR radius ∆ and a retry of the optimization step. If the TR

radius shrinks enough, it follows that min{‖gk‖,∆k} = ∆k. From (3.16) we

see that a small ∆k implies that the approximated gradient is close to the true

gradient, in norm.

2. In the case that min{∆k, ‖gk‖} = ‖gk‖ and K ∈ [0, 1), we recover Carter’s

condition (2.23), which guarantees that the approximated gradient points in

the direction of the true gradient.

The remainder of this chapter is dedicated to clearly stating Moré’s algorithm, and

generalizing his convergence proof (while filling in specific details).

I begin by stating the TR algorithm in Moré’s paper, Algorithm 1. Moré makes

the following assumptions on the TR algorithm. First, Moré places a sufficient de-

crease condition on the step sk, which requires that the decrease ψk(sk) must be some

fraction of the optimal decrease in ψk along the Cauchy direction in the norm ‖Dk(·)‖.

Mathematically, we impose this condition by requiring the existence of constants β1,
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Algorithm 1: Trust Region Algorithm

Let x0 ∈ Rn and ∆0 be given. Set 0 < µ < η < 1 and γ1 < 1 < γ2.
for k = 0, 1, . . . do

a) Compute f(xk) and the model ψk
b) Determine solution sk to TR subproblem, satisfying (3.19):

min ψk(sk) = gT sk + sTkBksk (3.17)

s.t. ‖Dksk‖ ≤ ∆k (3.18)

where gk approximates ∇f(xk), Bk is the Hessian approximation, and Dk is
a scaling matrix
c) Compute ρk = f(xk+sk)−f(xk)

ψk(sk)

d) If ρk > µ then we have a successful iteration. Set xk+1 = xk + sk
Otherwise, we have an unsuccessful iteration. Set xk+1 = xk.

e) Update model ψk and scaling matrix Dk
1

f) Update TR radius ∆k:
1) if ρk ≤ µ then ∆k+1 ∈ (0, γ1∆k].
2) if ρk ∈ (µ, η) then ∆k+1 ∈ [γ1∆k,∆k]
3) if ρk ≥ η, then ∆k+1 ∈ [∆k, γ2∆k]

end

β2 and v satisfying

ψk(sk) ≤ β1 min{ψk(w) : DT
kDkw = vgk, ‖Dkw‖ ≤ ∆k} , ‖Dksk‖ ≤ β2∆k . (3.19)

Next let us define the scaled gradient approximation and the scaled approximated

Hessian as

ĝk = D−Tk gk , B̂k = D−Tk BkD
−1
k . (3.20)

1There are a variety of schemes that can be applied to update the scaling matrix Dk. For example,
given a user-chosen parameter ε, one could use the update

Dk+1(i, i) = max{0.6Dk(i, i),
√

max{|Hk(i, i)|, ε}} ,

as proposed by Moré [Conn et al., 2000].
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Then, Moré second assumption states that there are constants σ1 and σ2 such that

‖B̂k‖ ≤ σ1 , ‖D̂−1
k ‖ ≤ σ2 . (3.21)

Using these assumptions we establish the following lemma, which will be crucial in

proving convergence of the TR algorithm 1.

Lemma 1. If sk satisfies (3.19) and ‖ · ‖ is the `2 norm, then

−ψk(sk) ≥
1

2
β1‖ĝk‖min

{
∆k,
‖ĝk‖
‖B̂k‖

}
,

where the scaled gradient approximation and the scaled approximated Hessian are

defined as:

ĝk = D−Tk gk , B̂k = D−Tk BkD
−1
k . (3.22)

Proof. To begin, let us define a function ϕ : R→ R:

ϕ(τ) = ψk

[
−τD−1

k

(
ĝk
‖ĝk‖

)]
. (3.23)
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As a first step, let us rewrite the expression for ϕ(τ).

ϕ(τ) = gTk

[
−τD−1

k

(
ĝk
‖ĝk‖

)]
(3.24)

+
1

2

[
−τD−1

k

(
ĝk
‖ĝk‖

)]T
Bk

[
−τD−1

k

(
ĝk
‖ĝk‖

)]
(3.25)

= −τ‖ĝk‖+
1

2
τ 2 ĝ

T
k B̂kĝk
‖ĝk‖2

. (3.26)

We introduce the variable µk =
ĝT

k B̂k ĝk

‖ĝk‖2
to arrive at

ϕ(τ) = −τ‖ĝk‖+
1

2
τ 2µk . (3.27)

Let τ ∗k then be the minimum of ϕ on the interval [0,∆k]. We now derive bounds on

ϕ(τ ∗k ). If τ ∗k ∈ (0,∆k), then

ϕ′(τ ∗) = 0 (3.28)

⇒ −‖ĝk‖+ τ ∗µk = 0 (3.29)

⇒ τ ∗ =
‖ĝk‖
µk

, (3.30)

and hence,

ϕ(τ ∗) =
−‖ĝk‖2

2µk
≤ −‖ĝk‖

2

2‖B̂k‖
. (3.31)

If τ ∗ = ∆k, then ϕ is a monotone decreasing function over [0,∆k]. This implies that
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µk∆k ≤ ‖ĝk‖, and we have that

ϕ(τ ∗) = ϕ(∆k) ≤ −
1

2
∆k‖ĝk‖ . (3.32)

Since the sufficient decrease condition (3.19) implies that ψk(sk) ≤ β1ϕ(τ ∗k ), the two

bounds we just derived imply the lemma.

We can derive a powerful result from this lemma, which gives a lower bound on

the function value of the next successful TR iterate. Recall the definition of ρk:

ρk =
f(xk + sx)− f(xk)

ψ(sk)
, (3.33)

which we can rewrite as

−ψ(sk) =
−f(xk + sx) + f(xk)

ρk
, (3.34)

Plugging the above equation into Lemma 1, using the definition of successful iteration,

and using assumption (3.21) yields

f(xk)− f(xk+1) ≥ 1

2
β1µ‖ĝk‖min

{
∆k,
‖ĝk‖
σ1

}
. (3.35)

We will use the inequality (3.35) in proving Theorem 1.

With the assumption on the gradient behavior (3.16), algorithm behavior (3.19) -

(3.21) and Lemma 1, we can now prove the following theorem (adapted from [Moré,
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1982]):

Theorem 1. If f : Rn → R is continuously differentiable and bounded below on Rn,

then

lim inf
k→∞

‖gk‖(DT
k Dk)−1 = 0 .

Proof. Suppose, on the contrary, that there exists ε > 0 such that ‖gk‖ ≥ ε for

sufficiently large k, where ‖ · ‖ is the `2 norm. Since we will eventually establish

bounds that involve the trust region radius ∆k, as a first step let us show that

∞∑
k=1

∆k <∞ , (3.36)

which implies that in its limit, the trust region radius approaches zero. There are two

cases to consider: the case where there are a finite number of successful iterations,

and the case where there are an infinite number of successful iterations. In the first

case, we take a finite number of successful iterations to imply that we have an infinite

number of unsuccessful iterations; hence, by the TR radius update we have that

∆k+1 ≤ γ1∆k for k sufficiently large, implying (3.36). In the second case, we consider

an infinite sequence {ki} of successful iterations. Since f was assumed to be bounded

below, and a successful step satisfies the sufficient decrease condition, it follows that

{f(xki
)− f(xki+1)}i → 0 (3.37)

Due to (3.35), (3.37), and the initial assumption that there exists some ε > 0 such
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that ‖gk‖ ≥ ε, we see that {∆ki
} → 0. In turn, this implies

∞∑
i=1

∆ki
<∞ . (3.38)

The sum of the TR radii can then be decomposed into the sum of the successful

iterates and the sum of the unsuccessful iterates. Using the TR radius update rule,

the sum of all the unsuccessful iterates can be expressed as:

∞∑
i=1

ki+1−1∑
j=ki+1

∆j ≤
∞∑
i=1

γ2∆ki

ki+1−1∑
j=ki+1

γj−ki
1 ≤ γ2

1− γ1

∞∑
i=1

∆ki
(3.39)

Combining the bounds for the sum of the successful and unsuccessful iterates yields

∞∑
k=1

∆k <

(
1 +

γ2

1− γ1

) ∞∑
i=1

∆ki
, (3.40)

in turn implying (3.36). As a next step, we show that (3.36) implies that {ρk − 1}

converges to zero. We begin this step by writing down the definition of ρk:

ρk − 1 =
f(xk + sk)− f(xk)

ψk(sk)
− 1 =

f(xk + sk)− f(xk)− ψk(sk)
ψk(sk)

. (3.41)

We then examine bounds for the numerator and denominator. We then perform the
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Taylor expansion of f(xk + sk):

|f(xk + sk)− f(xk)− ψk(sk)| = |f(xk) +∇f(xk)
T sk +O(‖sk‖2)− f(xk)− ψk(sk)|

(3.42)

≤ |∇f(xk)
T sk − ψk(sk)|+O(‖sk‖2) (3.43)

Taking the scaling matrix Dk = I for simplicity, we then bound the first term above

in the following manner:

|ψk(sk)−∇f(xk)
T sk| = |gTk sk −

1

2
sTkBksk −∇f(xk)

T sk| (3.44)

≤ |gTk sk −∇f(xk)
T sk|+

1

2
|sTkBksk| (3.45)

≤ ‖gk −∇f(xk)‖‖sk‖+
1

2
‖Bk‖‖sk‖2 (3.46)

≤ ‖gk −∇f(xk)‖‖sk‖+
1

2
σ1‖sk‖2 . (3.47)

We then use Heinkenschloss et al.’s error bound on the inexact gradient:

|ψk(sk)−∇f(xk)
T sk| ≤ ‖gk −∇f(xk)‖‖sk‖+

1

2
σ1‖sk‖2 (3.48)

≤ K min{‖gk‖,∆k}β2∆k +
1

2
σ1β

2
2∆2

k (3.49)

≤
(
Kβ2 +

1

2
σ1β

2
2

)
∆2
k . (3.50)

We now bound the denominator using Lemma 1 and the original assumption that
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there exists ε > 0 such that ‖gk‖ ≥ ε for sufficiently large k.

−ψk(sk) ≥
1

2
β1‖gk‖min

{
∆k,
‖gk‖
‖Bk‖

}
(3.51)

≥ 1

2
β1εmin

{
∆k,

ε

σ1

}
(3.52)

≥ 1

2
β1ε∆k . (3.53)

Since we established that ∆k → 0, (3.43), (3.50) and (3.53) imply that {ρk − 1} →

0. However, the trust region radius update rules show that ∆k is not decreased if

ρk ≥ η. This implies that ∆k cannot converge to zero, which contradicts our original

assumption, hence proving the theorem.

We have just shown the convergence properties of the inexact TR algorithm,

using Heinkenschloss et al.’s gradient error bound. In the next section, we proceed to

examine the differential equation constraint hiding in the function C(y(t, u), u). I will

also discuss the various evolutions that is of interest in this proposal: the reference,

linearized and adjoint evolutions.
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3.3 The Adjoint State Method and Adaptive Time

Stepping

Recall that the constraint (state) equation represents a differential equation:

C(y(t), u) = y(t)−
∫ t

0

H(y(s, u), u)ds = 0 , (3.54)

from which we recover the differential equation constraint (3.2), by using the funda-

mental theorem of Calculus:

dy(t, u)

dt
= H(y(t, u), u) , t ∈ [0, T ] (3.55)

y(0, ·) = 0 . (3.56)

Together, (3.55) - (3.56) are referred to as the “reference” or “forward” equations.

We assume that the solution to the forward problem y ∈ C1([0, T ], Y ), where Y is

some Hilbert space.

Naturally, if we wish to numerically solve this system of differential equations,

we can use One-step or Multi-step Methods such as Forward Euler, Runge-Kutta, or

Leap-Frog. In its general form, a multi-step method can be written as

N∑
j=0

αj ȳn+j = h(f)
n

N∑
j=0

βjΦ
j(ȳn+j, c) , (3.57)
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where {ŷn} are the solution approximations, {h(f)
n } are the time-steps (the superscript

(f) denotes the forward grid), {αi} and {βj} are scaling parameters, and {Φj} is a

family of functions (which are typically sums of the function f evaluated at different

points). To simplify notation in (3.57), we introduce the discrete dynamic operator H

and note that multi-step methods can be written as a one-step method [Kirchgraber,

1985]. Then (3.57) can be written in the form

yn+1 = yn + h(f)
n H̄(yn, cn,∆t

(f)
n ), n = 0, 1 . . . , (N(f) − 1) , (3.58)

y0 = 0 . (3.59)

Note that the transformed states here are denoted y, whereas in (3.57) they were

denoted ŷ. Also note that in (3.58), H̄ is the discrete analogue of the dynamic

operator H and h
(f)
n =

∑n
j=1 h

(f)
j . If the constraint equation (which is also the

reference evolution) is stiff in some regions, it would be advantageous to use adaptive

time stepping to numerically compute the solution, implying that we allow {h(f)
n } to

be non-uniform.

It is also necessary to define the linearized equations (also referred to as the

“sensitivity equations”), which stems from the first term of the multi-parameter, first

order Taylor expansion of H:

0 =
dδy

dt
−DyH(y(t, u), u)δy −DuH(y(t, u), u)δu (3.60)

δu(0) ≡ 0 for t < 0 . (3.61)
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In (3.60), δy(t) refers to the state perturbation and δu refers to the control pertur-

bation. The solution to the sensitivity equation δy may be needed for the adjoint

evolution. Also, another approach of obtaining the gradient of the objective func-

tion (3.1) with respect to the control parameter is the “sensitivity method approach”

[Li and Petzold, 2004]. The sensitivity equations can then be solved discretely by

performing the following update:

δyn+1 = δyn + h(d)
n [DuH̄(yn, cn, h

n
(d))δyn +DcH̄(yn, cn, h

(d)
n )δcn] , (3.62)

n = 0, . . . , (N(d) − 1) , (3.63)

δy0 ≡ 0. (3.64)

The corresponding time levels, {h(d)
n } is referred to as the derivative grid.

Having defined the linearized evolution, we may now proceed to the adjoint evolu-

tion, which yields the adjoint states needed by the adjoint state method to construct

the gradient of the objective function. Given the adjoint state field λ ∈ C1([0, T ], Y ),

the “backward in time” adjoint evolution can be written as

0 =
dλ

dt
+ (DuH(y(t, u), u))∗λ (3.65)

λ ≡ 0 , t > T , (3.66)

where the operator ∗ denotes the adjoint. The corresponding discrete adjoint evolution
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can then be written as:

wn = wn+1 + hn+1
(a) (DuH̄[un, cn, h

(a)
n ])∗wn+1 , (3.67)

n = (N − 1), . . . , 0 , (3.68)

wn = 0 for n > (N(a) − 1) . (3.69)

Recall that we are using adaptive time stepping schemes to solve the discretized

forward, derivative and adjoint evolution problems, (3.58), (3.62) and (3.67). Using

adaptive time stepping, however, presents a dilemma: the adjoint evolution requires

access to the forward states, implying that the forward and adjoint time grids must

match. If we use adaptive time stepping schemes, however, we are no longer guaran-

teed that the forward and adjoint grids will align. We must therefore interpolate the

forward states to provide an approximation that aligns with the adjoint grid. Doing

so, however, will introduce an interpolation error. I will discuss this interpolation er-

ror in more detail in the “Future Work” chapter, as well as discuss my plans to tie the

interpolation error, truncation error into Heinkenschloss and Vicente’s TR algorithm.
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Chapter 4

TSOpt

After discussing the theoretical background of my thesis work, I now segue to the com-

putational tool that will verify the theory I had established. This chapter introduces

the “Time Stepping Package for Optimization”, or TSOpt. TSOpt is an “interface for

time-stepping simulation” written in C++ [Symes, 2006]; it encapsulates reference,

linearized and adjoint simulators in a single object.

This chapter is organized as follows: the first section will introduce RVL and

section two will then discuss the Alg framework developed by Tony Padula. RVL and

the Alg framework provides the foundation for TSOpt. The most notable features of

TSOpt include its modular code structure, due to use of the Alg framework from the

Rice Vector Library (RVL), and also accommodation of a generic data structure type

through templating. The specifics of the structure of TSOpt and its features will be

discussed in more detail in section four.
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4.1 The Rice Vector Library (RVL)

This section introduces the RVL. Understanding the the main functionality of the

Rice Vector Library is crucial to understanding the new version of TSOpt; TSOpt

interfaces with RVL (and the software frameworks that stem from RVL) in order to

numerically solve optimal control problems.

4.1.1 The Rice Vector Library (RVL) and LocalDataContainers

The Rice Vector Library is a software framework consisting of C++ abstractions of

Hilbert space components, making it an appropriate foundation for Newton-based

optimization algorithms [Padula et al., 2009]. RVL was designed to enable expres-

sion and implementation of “coordinate-free” linear algebra and optimization algo-

rithms. Further, RVL promotes creation of reusable algorithms, to accommodate

“different application, data storage models and execution strategies” [Padula et al.,

2009]. RVL’s components can be grouped into two categories: the calculus classes

and data management classes. The calculus classes include abstractions of “a vector

space, a vector, a vector-valued function and a Linear Operator.” The data manage-

ment classes include “Data Containers and encapsulated functions”.

RVL data management classes to provide workspace for its simulations. An exam-

ple of a data management class is the concrete data storage class called LocalDataContainer.

In an algorithmic context, it is useful to think of a LocalDataContainer object as a

specialized array that has functions to relay information about itself, such as size and
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data. LocalDataContainer objects also have the ability to manipulate the data they

store through FunctionObjects, which are interfaces “behind which to hide data

manipulations of all sorts” [Padula et al., 2009]. The code below shows all essential

functions in the LocalDataContainer class. The comments above each function dec-

laration explain what each function does. Note the template argument at the top of

the class, which dictates the type of data the LocalDataContainer holds.

template<class DataType>

class LocalDataContainer: public DataContainer {

public:

/** return size of local data container */

virtual int getSize() const = 0;

/** return address of writable data array */

virtual DataType * getData() = 0;

/** return address of read-only data array */

virtual DataType const * getData() const = 0;

/** local evaluation: defined at this level so that subtypes do not

need to re-implement.

*/

void eval(FunctionObject & f,

vector<DataContainer const *> & x) { ... }

/** Similar evaluation method for FORs. */

void eval(FunctionObjectRedn & f,

vector<DataContainer const *> & x) const { ... }

};

One of the fundamental software frameworks that stem from RVL is called the

Alg framework, which provides a computational abstraction of all algorithms. The
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Alg framework, for example, is the base for a suite of linear algebra and optimiza-

tion solvers in RVL. The Alg framework will also be the foundation for the TSOpt

framework; it is imperative, hence, that we discuss the Alg framework in more detail.

4.2 RVL and the Alg Framework

Padula et al. explored what it means for a program to be an algorithm in [Padula

et al., 2009]. The answer was simple: an algorithm is a program that runs in a finite

amount of time (i.e., it stops). Ideally, it should also be able to relay information if

its execution was successful or not. This definition easily lends itself to the following

C++ implementation of a base class:

class Algorithm {

public:

virtual bool run() = 0;

};

The class Algorithm became the foundation of the Alg framework. Using the base

class Algorithm, a variety of subclasses can be defined as well – allowing us to abstract

the functionality of different types of numerical algorithms, such as optimization and

simulation algorithms [Padula et al., 2009]. This led to the insight that, since all

time-stepping schemes are algorithms, TSOpt’s components can be implemented as

Algorithm objects. In fact, three subclasses of Algorithm serve as the foundation

of TSOpt. These subclasses are called the StateAlg, the LoopAlg and the ListAlg
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classes. Since it is crucial that we understand their functionality, they are discussed

in detail in the following subsections.

4.2.1 The StateAlg Class

A StateAlg is an Algorithm that has an explicit state variable. This abstraction

is useful in a variety of mathematical algorithms, such as a Newton method where

the internal state is the current value of the optimization variable. A StateAlg must

provide methods to assign and retrieve values from its state. The following is the

implementation for the StateAlg base class:

template<class T>

class StateAlg: public Algorithm {

public:

virtual void setState(const T & x) = 0;

virtual const T & getState() const = 0;

virtual T & getState() = 0;

};

Also note that the state type is templated, meaning that this concrete subclasses

of StateAlg can use other objects as its internal state.

4.2.2 The LoopAlg and terminator Classes

The Alg Framework also has a class capable of abstracting looping algorithms, such

as GMRES. This class, which derives from Algorithm is called LoopAlg. A LoopAlg

object’s job is to repeat execution of an Algorithm object (through the run() method)
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until some criteria is met. This criteria is encapsulated in something called a Terminator

object. The Terminator base class is implemented the following way:

class Terminator {

public:

virtual ~Terminator() {}

virtual bool query() = 0;

};

All subclasses of Terminator must provide a query() method that either returns

true or false. The LoopAlg object will then use this query() function to determine

whether to stop the loop or not. The following implements the LoopAlg class.

class LoopAlg: public Algorithm {

public:

LoopAlg(Algorithm & alg, Terminator & stop) : inside(alg), term(stop) {}

virtual bool run() {

bool t1 = true;

while( (!term.query()) && t1 )

t1 = inside.run();

return t1;

}

protected:

Algorithm & inside;

Terminator & term;

};

Note that the LoopAlg also needs to ensure that its Algorithm object completed

it’s job successfully (i.e., it returned true).
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4.2.3 The ListAlg Class

The ListAlg class is just an Algorithm that is composed of two other Algorithms.

This particular Algorithm’s run() command executes the two Algorithms in order,

one after another. The following is the implementation of the ListAlg class:

class ListAlg: public Algorithm {

public:

ListAlg(Algorithm & first): one(first), islist(false), two(*this) {}

ListAlg(Algorithm & first, Algorithm & next)

: one(first), islist(true), two(next) {}

virtual bool run() {

bool t1 = true, t2 = true;

t1 = one.run();

if( islist )

t2 = two.run();

return (t1 && t2);

}

protected:

bool islist;

Algorithm & one;

Algorithm & two;

};

4.3 The Software Framework of TSOpt

After discussing RVL and the Alg framework, we can now discuss TSOpt. TSOpt is a

software package that encapsulates reference, linearized and adjoint simulations in a

single object. As mentioned in earlier sections, TSOpt uses RVL and the Alg package
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as the foundation of its framework. This section presents the main components of

the TSOpt framework, which consist of the time, state, timestep, sim, terminator

and jet classes.

4.3.1 The time Hierarchy

The time class is perhaps the most fundamental class in TSOpt. This base class

Time is an abstraction of the simulation times. A time object only knows the current

simulation time; it does not know extra information about the simulation, such as the

final simulation time or the step length. All subclasses of time must provide methods

for assignment of simulation time, as well as the comparison operators for “less than”

(<) and “greater than” (>). There are two current concrete subclasses of time: the

DiscreteTime object and the RealTime object.

The DiscreteTime object is used for simulations of fixed time steps; it uses a

time index (in the form of an int) to keep track of the simulation time. Hence, by

altering this time index, we can change the simulation time. The RealTime object,

on the other hand, allows for variable time steps. It does not have an internal time

index; it only holds a double to represent the current simulation time, which can be

accessed and altered directly.
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4.3.2 The State Class

The State class is not, strictly speaking, a part of TSOpt – though a couple of

different concrete State classes have been implemented in TSOpt. Users of TSOpt

can implement their own State class to act as an interface between their preferred

simulator data structure and TSOpt. A State object is composed of two objects:

a data structure to hold data (e.g., an array) and a time object, which holds the

current simulation time associated with the data. This relationship can be seen in

the UML diagram, figure (4.1). All State classes must implement methods to get

and set the time object, and methods to access and alter its internal data structure.

Figure 4.1: The State class and its components
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There are two example of State subclasses that have been implemented in TSOpt,

to accompany the two different time types: RnState and RealRnState. The RnState

class contains a DiscreteTime object, and is used for fixed time step simulations.

(The “Rn” refers to the vector space Rn.). The RnState class is actually a wrapper

class for the rn struct, defined with the following components:

typedef struct {

/** time index */

int it;

/** state dim */

int nu;

/** control dim */

int nc;

/** state samples */

float * u;

/** control samples */

float * c;

} rn;

The RealRnState, in turn, contains a RealTime object and is used for adaptive

time step simulations. Like RnState, RealRnState is a wrapper class for the realrn

setruct, defined as:

typedef struct {

/** current time */

double time;

/** state dim */

int nu;

/** control dim */

int nc;

/** state samples */
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double * u;

/** control samples */

double * c;

} realrn;

There are two differences worth noting between the RnState and RealRnState

classes. First, note that RealRnState’s internal data type double, while RnState’s

inner data type is float. Also, since it is not relevant in adaptive time stepping, the

realrn struct does not contain a time index component.

4.3.3 The TimeStep Class

The TimeStep class is the base class for all time stepping methods in TSOpt. The

TimeStep class is implemented as follows:

class TimeStep: public StateAlg<TimeState>, public Writeable {

public:

virtual ~TimeStep() {}

void setTime(Time const & t) { (this->getState()).setTime(t); }

Time const & getTime() const { return (this->getState()).getTime(); }

virtual Time const & getNextTime() const = 0;

};

Note that the TimeStep class derives from StateAlg. On top of StateAlg’s

functionality, however, TimeStep adds the functions setTime() and getTime() for

reading and changing the simulation time. Furthermore, TimeStep subclasses must

provide a read-only method to get the next simulation time, which will be suitable
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for adaptive time-stepping schemes. TSOpt requires that the user define a single

forward, linearized and adjoint step as (inherited) TimeStep objects.

4.3.4 The Sim Hierarchy

The Sim class, as its name implies, is a simulator class. It orchestrates a StateAlg

object, a Terminator object and a Time object in order to perform the simulation.

Concrete subclasses of Sim also implement different simulation/memory managing

schemes for use in either the linearized or adjoint computations.

For example, the subclass StdSim is a “forgetful” simulator; to provide the appro-

priate reference state during the adjoint evolution, the StdSim will run the reference

simulator from the initial time until the desired time (which is taken to be the next

time level in the adjoint computation). This Sim subclass does not require the stor-

age of the simulation state history. The StdSim class is implemented in the following

manner:

template<typename State>

class StdSim: public Sim<State> {

private:

StdSim();

public:

/** main constructor */

StdSim(TimeStep<State> & step,

TimeTerm & term,

Algorithm &initstep)

: Sim<State>(step, term, initstep) {}
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/** use arg struct - for generic policy */

StdSim(StdSimData<State> const & d)

: Sim<State>(d.getStep(),d.getTerm(),d.getInit()) {}

StdSim(StdSim<State> const & s)

: Sim<State>(s) {}

virtual ~StdSim() {}

bool run() {

try {

LoopAlg a(this->step, this->term);

ListAlg aa(this->initstep, a);

aa.run();

}

catch (RVLException & e) {

e<<"\ncalled from StdSim::run\n";

throw e;

}

return true;

}

};

Note that there is an Algorithm called initstep that is required for the construc-

tion of the StdSim object; this allows users to write custom initialization schemes for

their simulator. One example use of the initstep class is to reset the simulation

state to its initial values.

In contrast, the subclass RASim is a “remember-all” simulator. As it runs the

reference simulation, it saves all the simulation states into a user-defined stack –

eliminating the need to run the reference simulation more than once. The values in

the stack are then appropriately accessed during the adjoint evolution. The user-

defined stack is a template argument to RASim, as well as other Sim subclasses that
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need to store parts of the simulation state history. The concrete stack stdVector

highlights the necessary interfaces the stack classes require in order to operate with

TSOpt:

/** StdVector -- a wrapper class around the STD vector class */

template<typename State, typename Alloc>

class StdVector {

private:

std::vector<State*> _ldclist;

public:

StdVector() : _ldclist() {}

StdVector(StdVector<State, Alloc> const & s): _ldclist(s._ldclist)

{}

~StdVector() {

for (int i=0; i<_ldclist.size(); ++i) {

delete _ldclist.at(i);

}

_ldclist.clear();

}

/** Place state element at the back of the stack */

void push_back(State const & t ) {

State * tmp;

tmp = new State(t);

_ldclist.push_back(tmp);

}

/** Pop the state element at the top of the stack */

void pop_back() {

delete _ldclist.back();

_ldclist.pop_back();
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}

/** Returns stack size */

int size() { return _ldclist.size(); }

/** Allows access to a specific state at index idx */

State & at(int idx) { return *(_ldclist.at(idx)); }

State const & at(int idx) const { return *(_ldclist.at(idx)); }

/** Returns reference at the head of the stack */

State & front() { return *(_ldclist.front()); }

State const & front() const { return *(_ldclist.front()); }

/** Returns reference at the tail of the stack */

State & back() { return *(_ldclist.back()); }

State const & back() const { return *(_ldclist.back()); }

};

Other Sim subclasses exist in TSOpt; of note is the CPSim class, which uses

Griewank’s optimal checkpointing scheme [Griewank and Walther, 2000]. Checkpoint-

ing is the “middle ground” between the two aforementioned strategies of a “forgetful”

simulator and a “remember-all’ simulator; it allows access to the forward simulation

state history for a logarithmic forward recomputation and storage cost (with respect

to the total number of time steps taken). Two types of checkpointing exist in TSOpt:

offline mode for fixed time step simulations, and online mode for adaptive simulations.

A more thorough discussion of optimal checkpointing (both online and offline modes)

can be found in [Griewank and Walther, 2000] and [Hinze and Sternberg, 2005].
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4.3.5 The Time Terminator Hierarchy

Recall that the Sim subclasses requires a Terminator class, which it queries when the

simulation should stop. The main criterion for when the simulation should stop is

when the simulation time has reached its intended target time. To this end, TSOpt has

a Terminator subclass, TimeTerminator, that is aware of the the simulation time.

Like all Terminator objects, it has a query() function; this particular base class just

allows the query()’s output to rely on the simulation time.

The TimeTerminator class has a variety of useful subclasses: a FwdTimeTerminator

(a time terminator for forward time-marching schemes), a BwdTimeTerminator (a

time terminator for backward time marching schemes), an AndTerminator and an

OrTerminator. The AndTerminator and OrTerminator have query() functions that

output the result of the logical operation of two terminators’ query() function.

4.3.6 The jet Hierarchy

The term “jet”, in applied mathematics, refers to a collection of a function, its deriva-

tive and its adjoint. True to this definition, the jet class is meant to hold the refer-

ence, linearized and adjoint simulators, and is at the highest level of TSOpt hierarchy.

The jet subclasses require a Sim object for the forward evolution, and two triples

of timestep, stateAlg and timeTerminator objects for both the linearized and ad-

joint evolution. This class assumes that the collection of objects pertaining to the

forward, linearized and adjoint evolution are related in the appropriate sense. The
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following figure is a UML diagram showing the relationship between the jet class

and its components.

Figure 4.2: The jet class and its components.
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The jet objects provide three very important functions that return the forward

evolution Sim object or create a linearized and adjoint evolutionSim objects, respec-

tively called getFwd(), getLin(), and getAdj(). It is worth noting how this simpli-

fies coding at the top (user) level; in order to run the forward, linearized and adjoint

simulations, one would only need to code the following lines in main():

// Construct various objects that jet needs

// Create jet object

jet j(...);

// Run forward sim

j.getFwd().run();

// Run lin. sim

j.getLin().run();

// Run adj. sim

j.getAdj().run();

4.4 TSOpt and Optimization

Recall that TSOpt provides various simulation operators whose output can be used in

conjunction with optimization algorithms. Since TSOpt was created from subclassed

Alg components, it is natural that we use an optimization package also created from

the Alg framework. Such an optimization package exists for unconstrained optimiza-

tion, called the umin package [Padula et al., 2009]. We choose the unconstrained

optimization package umin since we are considering the “black-box” approach to

57



solving the simulation driven optimization problem. Currently, only the LBFGS and

Newton optimization algorithms are available in umin.
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Chapter 5

The Black Oil Equations

In this chapter, I discuss the Black-Oil Equations, which are equations used to model

fluid flow in reservoirs. The Black-Oil Equations stem from the phase continuity

equations, which capture simultaneous, physical fluid flow behavior of up to three

immiscible phases (namely: water, oil and gas). The Black-Oil Equations assumes

that no mass transfer behavior between the water phase and the other phases occur,

and is often used to model low-volatility oil systems [Peaceman, 1977]. As part of

my proposal, I implement a Black-Oil reservoir simulator in the TSOpt framework.

This establishes the necessary code for my dissertation, in which I will use adaptive

time-stepping algorithms to solve these partial differential equations in time.

I begin by introducing the mathematical equation, and by explaining the physical

significance of its components. Let Ω ∈ R2 be an open set, let x ∈ Ω and let

t ∈ [0, T ]. Considering aqueous and liquid (oil with possible solution gas) phases the

phase continuity equations which the Black Oil Equations stem from can be written
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as:

∇·
[
ρl(t,x)K(x)krl(t,x)

µl(t,x)
(∇pl(t, x))

]
− ql(t, x)− ∂(φ(t,x)ρl(t,x)Sl(t,x))

∂t
= 0 (5.1)

∇·
[
ρa(t,x)K(x)kra(t,x)

µa(t,x)
(∇pa(t, x))

]
− qa(t, x)− ∂(φ(t,x)ρa(t,x)Sa(t,x))

∂t
= 0 , (5.2)

where the subscripts a and l respectively refer to the aqueous and liquid phase, ρ

is the fluid density, K is the absolute permeability of the medium, kr is the relative

permeability, µ is the fluid viscosity, p is the pressure, q is taken to be the mass rate

of production (if it is negative) or injection (if it is positive) per unit volume of the

reservoir, φ is the rock porosity, and S denotes the saturation (on a scale from 0 to 1).

Since we consider two phase flow, the liquid and aqueous saturation must together

fill the reservoir, hence implying:

Sl + Sa = 1 . (5.3)

We can further simplify the phase continuity equations (5.1) using Darcy’s velocity

approximation, which is an empirical law describing low to moderate flow of fluids

through porous media. Darcy’s law can be written as:

vθ(t, x) = −K(x)
krθ(t, x)

µθ(t, x)
∇pθ(t, x) = −K(t, x)λθ(t, x)∇pθ(t, x) , (5.4)

where θ denotes a fluid phase and λ denotes the phase mobility. Substituting (5.4)
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into the phase continuity equations (5.1) yields:

∇ · vl(t, x) −ql(t, x)− ∂(φ(t,x)ρl(t,x)Sl(t,x))
∂t

= 0 (5.5)

∇ · va(t, x) −qa(t, x)− ∂(φ(t,x)ρa(t,x)Sa(t,x))
∂t

= 0 . (5.6)

Further, assuming the rock porosity φ and the density ρ is time-invariant (i.e., the

rock and fluid are incompressible), and normalizing the phase density yields:

∇ · vl(t, x) −ql(t, x)− φ∂Sl(t,x)
∂t

= 0 (5.7)

∇ · va(t, x) −qa(t, x)− φ∂Sa(t,x)
∂t

= 0 , (5.8)

which we consider as the incompressible two-phase Black-Oil equations.

5.1 Solving the Black Oil Equations

Wiegand et al. [2008] solve equations (5.7) - (5.8) using the finite volume method.

Using finite volume analysis, they derive two equations: the pressure equation and

the saturation equation. Denoting the disjoint, compact subdomains of Ω as Ωi, each

with its own boundary ∂Ωi, we can express the pressure equation as:

−
∫
∂Ωi

K(λl + λa)∇p · ndS =

∫
Ωi

ql + qadv . (5.9)
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The saturation equation can be written as:

(
φ
∂sa
∂t

)
i

· |Ωi| −
∫
∂Ωi

Kλa∇p · ndS =

∫
Ωi

qadV . (5.10)

The next two sections are reveal the discretization of the pressure and saturation

equations in space, and in time. Wiegand et al. [2008] give a thorough treatment of

the derivation, as well as a discussion of the solution properties of the pressure and

saturation equations. They are presented here to clarify design decisions I make in

implementing a Black-Oil simulator in TSOpt.

5.1.1 Discretizing the Pressure Equation

The discrete form of the pressure residual equation takes following form:

∑
j∈neighbor(i)

Ki,jλti,j
∆pi,j
li,j

Ai,j =

∫
Ωi

qt dv = qi , (5.11)

where j being a neighbor of i implies that the volumes Ωj are adjacent to the volume

Ωi, the total phase mobility λt = λa + λl, the change in pressure ∆pi,j = pi − pj, the

length between the barycenter of the cells i and j are denoted as li,j and the area of

the face between two cells are denoted as Ai,j. Defining the transmissibility as

Ti,j =
Ki,jAi,j
li,j

, (5.12)
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we may simplify the discretized pressure residual equation as

g(t, sa(t), p(t), q(t))i =
∑

j∈neighbor(i)

(Ti,jλti,j ∆pi,j)− qi , (5.13)

which we put into matrix form as

g(t, sa(t), p(t), q(t)) = q − Ap . (5.14)

In (5.14), the matrix A is constructed in the following manner:

Ai,j = −Ti,jλti,j Ai,i =
∑
j

Ti,jλti,j . (5.15)

5.1.2 Discretizing the Saturation Equation

The discrete form of the saturation equation can be written as the following:

1

φi · |Ωi|

qai
−

∑
j∈neighbor(i)

Ti,jλti,j ∆pi,j

 ≈ (∂sa
∂t

)
i

. (5.16)

We can express the equation above as:

f(t, sa(t), p(t), q(t)) = D−1(q − Ãp) =
∂sa
∂t

, (5.17)
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where the matrices D and Ã are defined in the following manner:

Di,i = φi · |Ωi| (5.18)

Ãi,j = −Ti,jλai,j
Ãi,i =

∑
j

Ti,jλai,j
. (5.19)

Note that (5.17) is an ordinary differential equation, and we may choose a variety of

schemes to solve it. However, it is most common in industry to use the backward

Euler scheme – an implicit one-step scheme – due to its stability properties and its

low computational cost.

5.2 Solving the Discretized Pressure and Satura-

tion Equations

There are also many possible approaches to solving the discretized pressure and sat-

uration equations. Peaceman in [Peaceman, 1977] offers a more detailed survey of

solution strategies for the saturation and pressure equations. In this proposal, we

only focus on the so-called coupled-implicit approach, which implies solving (5.14)

and (5.17) simultaneously. This approach, though incurring a larger computational

cost, is preferred due to its numerical stability. Using the coupled-implicit approach

manifests itself as a nonlinear system of equations, with primary variables as the
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pressure pk+1 and the aqueous saturation sk+1
a :

 qk+1 − Apk+1

D−1(qk+1 − Ãpk+1)

 =

 0

sk+1
a −sk

a

∆t

 . (5.20)

We must solve (5.20) at every time step (i.e. for k = 0, 1, ...N , where N = T/∆t).

5.3 Implementation in TSOpt

Solving the Black-Oil equations using TSOpt requires three things:

• a state type that is capable of holding the primary variables (aqueous pressure

and saturation)

• a “stack” class that handles storage of the state history, if we choose to use a

checkpointing scheme for the adjoint computation

• Step classes that define one step of the forward and the adjoint evolution .

Hence, I have implemented a state class called BOState that holds a pressure field,

a saturation field (both as vectors from the standard library), and a DiscreteTime

object to keep track of the time. There is also a stack class called BOStack that saves

and accesses the pressure and saturation histories to file.

There is a Fwd BO Dyn class which encapsulates the forward evolution. Since

we consider the coupled implicit formulation only, calling the run() method of a
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Fwd BO Dyn objects solves the discretized pressure residual equation and the satura-

tion equation using the backward Euler time-stepping scheme simultaneously. Fur-

ther, since backward Euler is an implicit scheme, we use the Newton algorithm to

solve the nonlinear equations. We must, hence, solve multiple linear systems (un-

til convergence) at every time step in the forward evolution. Similarly, there is a

Adj BO Dyn class whose run() function runs one step of the adjoint evolution.

I then created a Sim object, which is composed of an appropriate Terminator

object and an Fwd BO Dyn object. In turn, this Sim object, along with an Adj BO Dyn

class object, was used to create a jet object. After construction, we may test the

forward evolution and the adjoint evolution by issuing the following commands:

jet<...> myJet(...);

myJet.getFwd().run();

myJet.getAdj().run();

Currently, the three types of Sim classes I mentioned, which handled storage strategy

of the simulation states (the “forgetful”, “remember-all” and checkpointing Sim),

work with the Black-Oil simulator.
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5.4 Numerical Results

5.4.1 Checking the Forward Simulation

This section provides numerical results from the Black Oil simulator implemented

in TSOpt. Namely, in this section I show results for the forward simulator, and I

highlight gradient convergence for a sample objective function constrained by the

Black Oil equations.

The first set up results is for a 100-day simulation, with 25-day time steps. I use

the porosity and permeability data from the top layer of the SPE10 model in the

simulation.

Figure 5.1: Porosity and permeability plot of the SPE10 model, top layer.
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The source and sink terms (which correspond to injecting and producing wells in

this example) are configured in the following manner in the domain:

Figure 5.2: Placement of injector (I) and producer (P) wells in the domain.
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Given the porosity, permeability, and source/sink data, the results of the 100-day

simulation can be seen in figure (5.3). Note how the water saturation is high where

Figure 5.3: Plot of Aqueous Saturation at t = 100 days, with dt = 25.

the injectors are located, hence the higher water saturation around the corners of the

above figure. It should be noted that these figures were generated using MATLAB,

using the simulation data obtained from the C++ simulation.

5.4.2 Checking the Adjoint States and Gradient Formulation

We can test the quality of the adjoint states by considering the quality of the deriva-

tive of an objective function with respect to its controls. We first define an opti-

mization problem with the reservoir simulation constraints. Consider the following

optimization problem, posed by Wiegand et al. [2008], that finds the optimal well

rate that will maximize revenue from oil production, while penalizing water injection
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and production:

min
qi i∈I∪P

J(q) =

∫ T

0

dt

(∑
i∈P

α(1− sa)qi(t) +
∑
i∈P

β

2
saq

2
i (t) +

∑
i∈I

γqi(t)

)
, (5.21)

where α, β and γ are scalar variables and the aqueous pressure p and aqueous satu-

ration sa solve:

−∇(K(x)λtot(sw(x, t)∇p(x, t)) =
∑
i∈P

(1− sa)qi(t)δ(x− xi) (5.22)

+
∑
i∈P∪I

saqi(t)δ(x− xi) (5.23)

φ(x)
∂

∂t
sa(x, t)−∇ · (K(x)λa(sa(x, t))∇p(x, t)) =

∑
i∈P∪I

saqi(t)δ(x− xi) . (5.24)

We use the “discretize-then-optimize” approach to obtaining the derivative of the

optimization problem (5.21). Further, we incorporate explicit equality and inequality

constraints on the well rates to model the physical limitation of the wells. The fully

discretized optimal control problem then takes the form of:

min J∆t(q) = ∆t
N∑
k=1

l(tk, sk, qk) (5.25)

s.t. eT qk = 0 (5.26)

qmin ≤ qk ≤ qmax , (5.27)
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where sk+1 and pk+1 solve:

f(tk+1, sk+1
a , pk+1, qk+1)

g(tk+1, sk+1
a , pk+1, qk+1)

 =

 q − Apk+1

D−1(qa − Ãpk+1)

 =

 0

sk+1
a −sk

a

∆t

 . (5.28)

Wiegand et al. [2008] derive the adjoint equations from the optimality conditions, and

arrive at the following adjoint evolution scheme. For k = N−1, . . . , 1, simultaneously

solve for the adjoint variables λks and λkp in the following equation:

−λ
k+1
s − λks

∆t
= Dsf(. . .k)Tλks −Dsg(. . .k)Tλkp −∇sl(. . .

k) (5.29)

0 = −Dpf(. . .k)Tλks +Dpg(. . .k)Tλkp . (5.30)

The directional derivative can then be obtained from the following expression:

∇J(q)δq =
N∑
k=1

∆t[∇ql(·k)−Dqkf(. . .k)Tλks +Dqkg(. . .k)Tλkp]
T δqk) . (5.31)

We check the quality of∇J(q) by using the mathematical definition of a directional

derivative: for f : Rn → R and a direction δx, the directional derivative f ′(x)[·] must

satisfy

lim
h→0

f(x+ hδx)− f(x)− hf ′(x)[δx]

h
= 0 . (5.32)
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Suppose rewrite (5.32) as:

lim
h→0

f(x+ hδx)− f(x)

h
− f ′(x)[δx] = 0 . (5.33)

We note that the first component resembles a finite difference approximation to the

derivative. From this observation, we can test the gradient from the adjoint-state

method by subtracting it from the finite different approximation, for decreasing values

of h. Wiegand et. al divides this difference by the value of the objective function,

to produce the relative gradient error. The following graph shows the results of this

test:

Figure 5.4: Plot of the difference between the computed gradient via the adjoint-state
method, and the finite difference approximation.
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We see that the difference between the computed gradient and the finite difference

approximation gets closer as h gets smaller, which is the behavior we expect to see.

A natural next step, since we have a verified gradient, is to couple the simulation

results with an optimization framework.

This was actually the topic of one of my internships at ExxonMobil, for which I got

great results. Though the specific data associated with these results are proprietary,

there was a very intuitive logic behind the results. If one looks at the plot of producers

and injectors, figure (5.2), we see that producing well 4 and injecting well 4 are deemed

“too close” to one another. After some time, the water that placed into the reservoir

by injector 4 will immediately be ejected by producer 4, implying a waste of resources.

Since we still need injector 4 to push the oil out of the reservoir, however, we expect

to see the optimizer close producing well 4. My initial goal would then to match this

result using Moré’s unconstrained TR algorithm, enforcing the explicit constraints

with a barrier method. This will be discussed in more detail in next chapter, “Future

Work”.
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Chapter 6

Proposed Future Work

This chapter discusses the work I have, and plan to, complete for my dissertation.

The first section discusses what I need to do in order to establish a convergence

proof for an optimal control problem whose simulation constraint is solved by an

adaptive time-stepping algorithm. The second section highlights my plans to add

adaptive time-stepping logic to the fixed-step Black-Oil simulator I presented in the

previous chapter. This second section also discuses the research and implementation

work I have completed towards an adaptive Black-Oil simulator. In the third and

sections, I talk about software I intend to implement for my dissertation; in the

third section, I list algorithms I will add to the optimization framework in RVL, while

in the fourth section, I discuss my plans to incorporate a testing framework within

TSOpt. The final section of this chapter then explains my plans for the adaptive

Black-Oil simulator, once it is completed: namely, to study the quality of gradients

generated via the adjoint-state method and adaptive time-stepping, and its effects on
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the convergence of optimization algorithms.

6.1 Convergence Theory

First and foremost, I wish to establish a convergence theorem for the optimal control

problem:

min f(y(t), u) =

∫ T

0

J(y(t), u)dt (6.1)

s.t.
d

dt
y(t)−H(y(t), u) = 0 , t ∈ [0, T ] (6.2)

H, y ≡ 0 for t < 0 , (6.3)

when the differential equation constraint is solved via adaptive time-stepping meth-

ods, and the gradient of the objective function with respect to the controls is obtained

via the adjoint state method. Since I intend to use the TR optimization algorithm

with inexact gradients, I must figure out how to compute (and enforce) Heinkenschloss

and Vicente’s bound on the approximated gradient error

‖gk −∇f(xk)‖ ≤ K min{‖gk‖,∆k} . (6.4)

The hardest quantity to compute in the bound above is the gradient error ‖gk −

∇f(xk)‖, since in general, we do not have access to the true gradient ∇f . We can,

however, use an approximation of the gradient error, which can be obtained through
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an a-posteriori error estimate. There are numerous ways to estimate the global error

a-posteriori, as noted by Skeel [1986]. In his survey paper, Skeel had mentioned a

simple, yet popular, method of error estimation that involves computing solutions

at different tolerances – something that is directly applicable to the adaptive time-

stepping schemes I consider for this proposal. Let gτ be an approximate gradient

computed with tolerance τ , and let gRτ be the approximate gradient computed at

a cruder tolerance Rτ . We can then extrapolate and use the following as an error

estimate for y:

gτ − gRτ

R− 1
. (6.5)

Skeel, however, noted that this error estimate is not recommended. Skeel [1986]

suggested that the error estimate |gτ − gRτ | is safer to use.

Further, we must ensure that computing the approximate gradient with a lower

tolerance results in a “better” approximate gradient. Since the key components of

gradient construction via the adjoint state method are the adjoint states, I must

ensure that lowering algorithmic tolerances imply a decrease in the global error in

the adjoint evolution. My initial analysis highly suggests that the global error of the

adjoint-state method (when using adaptive time stepping, coupled with interpolation)

is not only bounded, but also controllable through algorithmic parameters. The main

ideas that justify this claim are the following: first, by definition, adaptive time

stepping algorithm’s tolerance is the maximum allowable truncation error per time
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step. It follows that the truncation error can be lowered by adjusting the adaptive

time stepper’s tolerance. Second, we know that interpolation error is bounded (for

both polynomials and splines), given that the function whose points we sample has

(n+ 1) bounded derivatives, where n is the order of interpolation. The interpolation

error can be lowered in two ways. First, we indirectly lower the interpolation error

by lowering the time-stepping tolerance, since this means we have more nodes to use

as interpolation data points. Second, we can directly lower the interpolation error

by adjusting the maximum allowable time-step of the adaptive time-stepper. Finally,

I would like to note that careful observation of these errors should dictate how one

should choose the constant K in Heinkenschloss and Vicente’s error bound.

As a next step, I plan to extend Heinkenschloss and Vicente’s theoretical frame-

work, so that it may accommodate solving the state equations with adaptive time

stepping. What mathematical space should the state y belong to if adaptivity is

allowed? How does this affect what kind of functions space the dynamic operator H

belongs to? These are some of the questions I need to research and answer, in order

to come up with a rigorous convergence theory for this problem.

With these components in place, we can enforce Heinkenschloss and Vicente’s

bound on the approximated gradient error

‖gk −∇f(xk)‖ ≤ K min{‖gk‖,∆k} , (6.6)

by modifying the TR algorithm in the following manner:
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Algorithm 2: Modified TR, With Added Control Logic

A. Define initial tolerances for adaptive time stepper. Also assign initial
algorithmic parameters to TR algorithm, including ∆0.
B. Compute approximate gradient given initial tolerances
C. Set k = 0
while TR != CONVERGED do

1. Set flag = false
while flag == false do

2. Calculate a-posteriori error estimate
if error estimate ≤ min{‖gk‖,∆k} then

3a. Set flag = true;
end
else

3b. Halve the tolerances
3c. Compute approximate gradient with new tolerances

end

end
4. Carry on with TR step
5. Equate the global error bound (which is a function of the algorithmic
parameters) to min{‖gk‖,∆k}, and find tolerances that satisfy such an
equation
6. Calculate the approximate gradient with the tolerances obtained in (5)
7. Set k = k + 1

end

This algorithm ensures that Heinkenschloss and Vicente’s error bound is always

satisfied, hence guaranteeing global lim inf convergence per Moré’s theorem on the

convergence of the TR algorithm with inexact gradient information.

6.2 Adding Adaptive Logic to the Black-Oil Sim-

ulator

Typically, adaptive time-stepping algorithm have two phases: the “trial-step” phase

and the “correction” phase. In the trial-step phase, some a-posteriori error estimate
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is established. If this error is greater than the user-specified tolerance, we restrict the

size of the time-step and reject the step. In the correction phase, the step is tried

again at the smaller step length. If the error estimate, on the other hand, is much less

than the user-specified tolerance, we accept the step and increase the size of the step

length. One of the popular adaptive time-stepping algorithms are based on embedded

Runge-Kutta schemes.

Reservoir engineers, however, have adopted a different way for changing time steps

in the Black-Oil simulation. M.R. Todd [1972a,b] first proposed using the change in

pressure and aqueous saturation (between two consecutive time steps) as a criterion

for changing the step length. Before describing Todd’s time-step selection logic, we

introduce the following terms:

plim = Maximum pressure changes desired

slim = Maximum saturation changes desired

pmax = Maximum pressure change calculated during previous time-step

smax = Maximum saturation change calculated during previous time-step
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The scheme can be described as the following:

∆tp = ∆tn
plim
pmax

(6.7)

∆ts = ∆tn
slim
smax

(6.8)

∆tn+1 = min(∆tp,∆ts) . (6.9)

It is clear that controlling plim and slim affects the truncation error of the time stepping

scheme, since plim → 0 and/or slim → 0 implies ∆t → 0. Given this plan for

adaptive time-stepping for the Black-Oil equations, I now segue to its implementation

in TSOpt.

6.2.1 Implementation of an Adaptive Black-Oil Simulator

As a preliminary step to adding adaptive time-stepping logic to TSOpt’s Black-Oil

Simulator, let us examine and analyze the algorithm for the fixed-step simulation.

Recall that we solve the discretized Black-Oil equations using the IMPSAT approach:

for k = 0, 1, . . . N − 1 we solve

 qk+1 − Apk+1

∆tD−1(qk+1 − Ãpk+1)− (sk+1
a − ska)

 =

0

0

 (6.10)

using a Newton scheme.

If we consider performing adaptive time-steps for the scheme (6.11), we need
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not change much. In the problem formulation I consider, the control parameter is

time-independent. This implies that we require a mapping that takes the non-time-

dependent controls q ∈ Rn to q̃, which I define to be the control at time t. This may

or may not necessitate use of interpolation schemes, depending on how the control

parameter is interpreted. The algorithm for the reference simulation is presented

below:

Algorithm 3: Adaptive Reference Black-Oil Equation Simulation (IMPSAT
Formulation)

Let ∆t0, plim and slim be given.
Also, let the controls q ∈ Rn be defined
Set k = 0, t = 0.0.
while t < T do

a) Use function ϕ(t, q), which takes a the control q and a time t,
to create a control q̃ that corresponds to time t
b) Define q̃ = ϕ(t+ ∆tk, q)
c) Obtain pk+1 and sk+1 by solving the following, using Newton’s
Algorithm: [

q̃ − Apk+1

∆tkD−1(q̃ − Ãpk+1)− (sk+1
a − ska)

]
=

[
0
0

]
(6.11)

d) Set t = t+ ∆tk

e) Compute pmax = ‖pk+1 − pk‖∞ and smax = ‖sk+1 − sk‖∞
f) Calculate ∆tp and ∆ts:

∆tp = ∆tn
plim
pmax

(6.12)

∆ts = ∆tn
slim
smax

(6.13)

(6.14)

g) Set ∆tk+1 = min(∆tp,∆ts)
h) Set k = k + 1

end
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Next, I present the algorithm for the adaptive adjoint evolution for the Black-Oil

equations. We now face a dilemma: the adjoint evolution requires a reference state

that is defined at the same adjoint time level. Due to adaptive time stepping, however,

it is likely that the reference and adjoint time grids become mismatched. Hence, we

must be able to interpolate the reference states. The interpolation scheme we use,

however, depends on how the reference simulation states were stored. Recall there

were three strategies for handling the reference states during the forward simulation.

The first strategy is to save none of the reference states during the forward sim-

ulation. Hence, we rely solely on evolution to access the proper simulation state for

the adjoint evolution. In this case, the forward evolution must always simulate to the

next time level in the adjoint simulation. This removes the need for interpolating the

reference states, though this incurs a large computational cost.

The second strategy is to save all of the reference states, and use them as necessary

during the adjoint evolution. If we use this approach, we must choose all (or a subset)

of the reference states as interpolation nodes. The resulting interpolating function is

then evaluated at the time needed by the adjoint evolution. This approach incurs a

huge storage cost for large problems, and it also introduces an interpolation error in

the computation of the reference states.

The third strategy is to use checkpointing, which requires saving a subset of ref-

erence states. (A variant of checkpointing that handles adaptive simulations was

already developed by Hinze et al. in [Hinze and Sternberg, 2005].) It may even be
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possible to combine the algorithm for adaptive checkpointing with the first strategy.

We use the saved subset of the reference states as starting points for evolution, but we

only evolve up to the time level needed by the adjoint evolution. This will have the

benefit of balancing computational and storage cost, while not incurring interpolation

error.

I present the adjoint Black-Oil algorithm below, which is compatible with the

reference state storage strategies I discussed above:
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Algorithm 4: Adaptive Adjoint Black-Oil Equation Simulation (IMPSAT For-
mulation)

Let ∆t0, λplim
and λslim

be given.
Also, let the controls q ∈ Rn be defined
Set k = 0, t = T .
while t > 0 do

a) Use function ϕ(t, q), which takes a the control q and a time t,
to create a control q̃ that corresponds to time t
b) Define q̃ = ϕ(t−∆tk, q)
c) Compute p∗ and s∗, which approximate the pressure and saturation at
time t−∆tk

d) Obtain λk+1
p and λk+1

s by solving the following linear system:[
Dsf(q̃, p∗, s∗)T −Dsg(q̃, p∗, s∗)T

−Dpf(q̃, p∗, s∗)T Dpg(q̃, p∗, s∗)T

] [
λk+1
s

λk+1
p

]
=

[
λk

s−λ
k+1
s

∆t
+∇sl(q̃, p

∗, s∗)
0

]

e) Set t = t−∆tk

f) Compute λpmax = ‖λk+1
p − λkp‖∞ and λsmax = ‖λk+1

s − λks‖∞
g) Calculate ∆tλp and ∆tλs :

∆tλp = ∆tn
λplim

λpmax

∆tλs = ∆tn
λslim

λsmax

h) Set ∆tk+1 = min(∆tλp ,∆tλs)
i) Set k = k + 1

end

TSOpt Implementation

As I discussed in the fourth chapter, TSOpt has the components to accommodate

adaptive time-stepping. Since this framework for adaptive time-stepping exists, I

was able to implement a significant portion of algorithms 2 and 3. This required the

following components:

• a state type that is capable of holding the primary variables (aqueous pressure
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and saturation), that uses the RealTime class to store the time

• a “stack” class that handles storage of the state history, if we choose to use a

checkpointing scheme for the adjoint computation

• Step classes, capable of internally changing its steplength parameter, that define

one step of the forward and the adjoint evolution

• A software package for interpolation. Currently, TSOpt uses the Spline pack-

age, a collection of C++ functions that implement various approximation algo-

rithms – such as divided differences and various splines [Burkardt, 2007].

Though the basic foundation of the adaptive simulators exists, there are still com-

ponents I need to implement or integrate with one another. Currently, I need to

integrate the Spline package with the state storage class, to allow sampling of the

reference states at any time, as needed by my proposed algorithms above. Also, I

intend to examine the feasibility of creating an algorithm that allows adaptive check-

pointing’s forward evolution component to stop at the time level dictated by the

adjoint evolution.

6.3 A Testing Framework for TSOpt

The convergence theory I had established in this proposal would not mean much

if the forward, the derivative and the adjoint simulators used to numerically solve

the optimal control problem exhibited undesirable properties or incorrect behavior.
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We are primarily concerned with the following: will the solutions of the discretized

(reference, linearized and adjoint) equations converge to the solution of the continuous

equations? By the equivalence theorem, consistency and stability is equivalent to

convergence for finite difference schemes. One type of incorrect behavior, hence,

could mean inconsistency with the continuum differential equation. If we refine the

time grid enough, using a uniform mesh, could we reduce the local truncation error

effectively? Also, how could we ensure the stability of the finite difference scheme

used to solve the evolution equations?

Another type of incorrect behavior could mean an incorrect relationship between

the different simulators (e.g., the derivative evolution does not stem from linearization

of the forward evolution, etc.). If these relationships are not upheld, it does not make

sense to attempt solving the optimal control problem since the adjoint evolution

would yield incorrect adjoint states, which in turn yields an incorrect derivative of

the objective function. We hence require a test to verify these relationships, and this

test should be computationally efficient. It would suffice to apply this verification to

one step of the forward, adjoint and sensitivity evolution. Luckily, utilities to verify

adjoint and derivative relationships have been built in to RVL [Padula et al., 2009]. The

remaining challenge then is to create a wrapper that makes a user-specified simulation

compatible with RVL – creating a mapping between the user’s data containers to

elements living in mathematical spaces, represented in RVL.

Part of my proposal would be to incorporate a testing framework for TSOpt that
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performs these checks on the simulators. The idea would be that, if the user-supplied

simulators pass these tests, we can guarantee that we have a convergent Jet. (Recall

that a “Jet” is a collection of the reference, linearized and adjoint simulations.) This

would imply that the base classes for the user-supplied simulator must enforce some

attributes, so that executing the test is always possible. Which attributes should be

incorporated into TSOpt, and which attributes should be expected from the user-

specified simulators, deserves more thought.

6.4 Towards an Optimization Framework

All this proposed work, of course, assumes that the unconstrained and constrained

optimization algorithms are available to TSOpt. (Recall that the convergence proof

presented in this proposal concerned Moré’s unconstrained TR algorithm.) My future

work, hence, will involve contributing to (and restructuring) RVL’s software packages

for unconstrained and constrained optimization, respectively called umin and cmin

[Padula et al., 2009].

Currently in the umin package, we have a robust implementation of the LBFGS

algorithm. I plan to implement Moré’s TR algorithm to add to umin’s framework.

Once this is accomplished, I can attempt to solve the optimal control problem con-

strained by the Black-Oil equations (5.21), using a barrier method to enforce the

explicit constraints. I intend to match the overall behavior I observed when I had

solved the same problem at ExxonMobil. To obtain a more robust solver for the opti-
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mal control problem, however, I cannot solely depend on penalty and barrier methods

as a means of handling explicit optimization constraints. It is also necessary to con-

sider building a framework for constrained optimization. I intend to, hence, create a

SQP optimization framework in RVL, using the Alg framework as the base. (This will

be implemented in the cmin framework.) Some possible algorithms of interest are

the linesearch SQP algorithm, and possibly Heinkenschloss and Vicente’s TR-SQP

algorithm [Heinkenschloss and Vicente, 2001].

6.5 Putting it All Together

After I create the adaptive forward and adjoint Black-Oil simulator, implement Moré’s

TR algorithm (in umin) and create the SQP framework in cmin, there are a variety

of interesting problems that I wish to explore. First, I wish to study the relationship

between the adaptive time stepper’s tolerance parameter and the quality of the gra-

dient adaptive evolution schemes produce, via the adjoint-state method. From the

initial analysis I have showed, we expect that lowering the tolerance will increase the

quality of the gradient. Also, suppose we used an iterative linear solver instead of

a sparse-direct solver. How would the associated parameters in the iterative linear

solver affect the quality of the gradient? This is another question I wish to answer

using the code I will establish in TSOpt.

Ultimately, however, I intend to address the following question with my disserta-

tion: can we guarantee convergence of the optimal control problem by tuning various
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algorithmic tolerances? Again, my preliminary analysis shows that the theoretical

answer is yes. In my dissertation, I wish to show numerical results that support my

claim.
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