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Abstract

An Alternative Approach to Differential
Semblance Velocity Analysis

via Normal Moveout Correction

by

Chao Wang

This thesis develops a new computation of the objective function and gradient for nor-

mal moveout-based differential semblance (DS). The DS principle underlies a class

of algorithms for seismic velocity analysis. The simplest variant of DS is based on a

drastic approximation to the scattering of waves, called “normal moveout” (NMO) in

the seismic literature. This simple NMO-driven DS algorithm is very fast relative to

other variants based on more faithful approximations to wave physics, but nonethe-

less accurate enough to be used to process field data. A recent implementation of

NMO-based DS demonstrated these capabilities, but it also exhibited numerical irreg-

ularity which may have affected the stability of its velocity estimates. My alternative

approach avoids interpolation noise that existed in previous work and so results in

more stable numerical optimization.
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Chapter 1

Introduction

Seismic data typically consist of recordings of waves that are generated by a controlled

source at the surface and propagate through the subsurface of the earth. Reflected

waves are recorded by seismic recording equipment at the surface and converted to

digital signals. Various parameters describing the rock properties are sought from

these recorded data. One particularly critical parameter is the velocity at which the

waves propagate through a medium. Velocity analysis is the process of estimating

wave velocity from the recorded seismic data. Successful seismic data analysis requires

accurate knowledge of the velocity.

Velocity analysis can be considered as an inverse problem. The aim is to automat-

ically reconstruct the velocity model of the earth from seismic data recorded at the

surface. The most straightforward strategy is data-fitting inversion. It can be con-

sidered as an optimization problem in the form of a misfit function to be minimized.

1
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It involves matching of recorded and simulated seismic data using an approximated

velocity. However, this problem is highly nonlinear and thus is difficult to solve, par-

ticularly the existence of many spurious local minima. Another strategy is migration

velocity analysis. Migration is a generic name for velocity-dependent process which

maps recorded seismic data to a seismic image, given a suitable velocity. A seismic

image is a representation that depicts the detail of subsurface structure. Migration

velocity analysis exploits the redundancy in the data. If the redundant data is sorted

into ”smaller” data sets, each of these data sets can form a subsurface image inde-

pendent of the other subsets, even though all the subsets represent the same part

of the earth. Thus seismic data contains enough information to produce multiple

independent images. Migration velocity analysis involves measuring and correcting

inconsistencies between redundant images that indicate velocity inaccuracies. Dif-

ferential semblance, which is an operator used to evaluate the image consistency,

is required for differential semblance migration velocity analysis, which have been

studied extensively [Symes, 2008].

Among many variants of differential semblance, differential semblance via normal

moveout correction is the simplest form. Normal moveout (NMO) is defined as the

difference in reflected wave traveltimes from a horizontal reflecting surface due to

variations in the source-receiver distance. NMO correction is a function of traveltime

(the elapsed time for wave to travel from its source to a given reflector and return

to a receiver) and half offset (i.e. half of the distance from source to receiver) that
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can be used to compensate the delay in traveltime when sources and receivers are

offset from each other. The seismic data is gridded in the traveltime - half offset

domain and the image is in the domain of traveltime at zero-offset and half offset.

NMO correction maps the seismic data to an image by velocity-dependent change of

variables. Therefore it is inevitable to involve numerical interpolation.

Previous numerical implementation of objective function is based on this change

of variables, so I name this previous DS approach DS-CV [Li and Symes, 2007]. Large

interpolation error of the oscillatory seismic data, which may lead to the wrong ve-

locity estimation, is inevitable in the numerical implementation if the time sampling

intervals are too far apart. DS-CV objective function exhibits spurious local minima

in my numerical examples. In order to avoid the error caused by the interpolation

of the oscillatory seismic data, I proposed a new discretization method to approxi-

mate the same continuous DS objective function as DS-CV. This new approach of

the implementation is based on the chain rule, so I name my DS approach DS-CR.

My claim is that DS-CR only involves interpolation of the smooth function by

applying the chain rule to compute the objective function. DS-CR objective function

does not exhibit local minimum, which enables DS-CR to be an effective and accurate

approach to estimate the velocity if the seismic data has small offset sampling rate or

contains low frequency data. Furthermore, DS-CR brings in other numerical issue.

If the offset sampling rate is too big or the data with low frequency are missing,

DS-CR will have large discretization error to approximate partial derivative with
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respect to half offset and lead to premature termination during optimization. My

numerical results show that, unlike DS-CV, DS-CR objective function always has

one global minimum (no local minimum). I also test for different offset intervals and

frequencies, and conclude that DS-CR should be effective if the sufficient conditions,

which I computed in chapter 3, are satisfied. From the numerical experiments of

synthetic and real data, I can conclude that DS-CR will be effective if and only if

the seismic data has small offset sampling rate or contains low frequency data. A

better algorithm should be employed to compute the offset derivative. I propose an

alternative option in numerical implementation which combines DS-CV and DS-CR

in the end.

In chapter 2, I provide the theory and some background knowledge for differential

semblance. In chapter 3, I compare the advantages and disadvantages of different

approaches to differential semblance. I also derive the numerical methods used to

implement DS-CR and estimate the error bound for the numerical computation of

the objective function. The implementation is done within the framework of the Rice

Vector Library (RVL) and the Seismic Unix (SU) packages. RVL is a mathematical

library which provides simple access to some very powerful optimization algorithms.

I employ the Limited Memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton al-

gorithm (LBFGS) using the RVL framework to solve the optimization problem. SU is

intended as an extension of the Unix operating system. This package is not restricted

to seismic processing task. A broad suite of wave-related processing can be done with
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SU. In my thesis, SU provides me a powerful tool to generate, analyze and process

seismic data.

Chapter 4 and chapter 5 present the applications of my technique to the synthetic

and real data. I outline the results from the experiments performed. The data sets

on which I perform DS-CR are 2D synthetic data generated by Seismic Unix and 2D

marine data from the North Sea. I also compare my results with the results produced

by DS-CV in order to demonstrate pros and cons of both approaches.

In chapter 6, I discuss of the difficulties encountered in the numerical tests and

suggestion future the future development. This thesis ends with conclusions of my

achievement and discussions of the pros and cons of DS-CR compared to DS-CV.



Chapter 2

Theory

Differential semblance (DS) via normal moveout correction (NMO) is the simplest

form among all variants of differential semblance approaches. This simplest variant

of differential semblance is based on drastic assumptions and approximations to the

scattering of waves. Model assumptions include that the medium, through which the

wave propagates, is assumed to be acoustic layered medium with constant density,

and the energy source is assumed to have compact support at a single point. The the-

oretical foundations of DS via NMO are three approximations: partial linearization,

high frequency asymptotics, and hyperbolic moveout approximations, which will be

explained in detail in this chapter.

6
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2.1 Geophysical Terminology

This thesis uses some geophysical terms because this subject is also a topic in ex-

ploration geophysics. I provide these definitions for all the geophysical terms used in

this thesis for people who are not familiar with geophysics. Some of the definitions

below come from Schlumberger online oilfield glossary. It is easy to understand these

terminology by referring to Figure 2.1, together with the definitions.

CMP: Common midpoint which is the point on the surface halfway between the

source and the receiver that may be shared by numerous source-receiver pairs.

Common midpoint is shown as the point M in Figure 2.1.

Offset: The horizontal distance from source to receiver in the surface seismic acqui-

sition. Half offset is denoted by h. In Figure 2.1, offset is the distance between

source S2 and receiver (geophone) R1 and half offset is the distance between

common midpoint M and receiver (geophone) R1.

Trace: A recording of the earth’s response to seismic energy passing from the source,

through subsurface layers, and back to the receiver.

Ray: Geometric optics describes wave propagation in terms of rays. The ray can be

used to predict the wave path and is perpendicular to the wavefront. The ray

bends when it reaches the reflector, which is the interface between two different

media. It is shown in Figure 2.1 that the ray (wave path) starts from source
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S2, reflects at depth point O on the interface between medium 1 and medium

2, and is received by receiver R1.

Event: An appearance of seismic data as a reflection, diffraction, refraction or other

similar feature produced by an arrival of seismic energy. This thesis focuses

on the reflection event. An event can be a single wiggle within a trace, or

a consistent lining up of several wiggles over several traces. An event in a

seismic section can represent a geological interface, such as a fault, or change

in lithology.

Primary reflection: Seismic events whose energy has been reflected once. In Figure

2.1, primary reflection occurs when the ray reaches the reflector, which is the

interface between medium 1 and medium 2. It satisfies the reflection law, which

says that the incident angle θ1 equals to the reflected angle θ2. Multiples, in

contrast, are events whose energy has been reflected more than once.

Traveltime: The duration of the passage of a primary reflection signal from the

source through the earth and back to the receivers. Also called two-way travel-

time which is denoted by t. In Figure 2.1, t is the time when waves travel along

the raypath from source S2 to depth point O then back to receiver R1. Zero-

offset two-way traveltime is that of a normal-incidence wave with zero offset

which is denoted by t0.

Moveout: The difference in the traveltimes of a reflected wave measured by receivers
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at two different offset locations.

NMO: Normal moveout which is the moveout caused by the separation between a

source and a receiver in the case of a flat reflector. NMO can be considered as

two-way traveltime delay relative to the zero-offset two-way traveltime.

Gather: Display of seismic traces that share an acquisition parameter, such as com-

mon midpoint gather, which contains traces having a common midpoint.

Image: A representation that depicts the detail of subsurface structure of the earth.

Migration: A velocity dependent imaging process which maps recorded seismic data

to a seismic image.

Isotropic medium: A medium in which the waves travel at equal speed indepen-

dently of which direction they travel.

2.2 Acoustic Model of Seismic Reflection

Seismic survey is performed to gather the information about the geology of an oil

or gas field. Figure 2.1 shows the geometry of a simple seismic survey. A controlled

seismic source of energy f(x, t;xs), such as dynamite on land and airgun in water,

generates the waves. The waves propagate away from the source and travel through

the subsurface medium of the earth. The reflected waves are recorded using seis-

mometers, such as geophone on land and hydrophone in water. Those instruments
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convert the pressure changes into electrical signals.

Body waves are the waves that travel through the interior of the Earth. There are

two types of body waves: P-waves and S-waves. P-waves (primary waves) are longi-

tudinal waves, which means that the particles in the medium have vibrations along

or parallel to the direction of wave propagation. S-waves (shear waves) are transverse

waves, which means that the particles vibrate perpendicularly to the direction of wave

propagation. The acoustic wave equation governs the motion of P-waves through a

material medium resulting from an energy source, while the elastic wave equation

governs the motion of P-waves and S-waves through the medium. The acoustic wave

equation, based on the acoustic assumption (S-wave velocity equals zero), is much

simpler to solve than elastic wave equation. This assumption is physically reasonable

since the water layer is free of S-waves in marine survey, though it is not true for the

layers of sedimentary rocks under the water layer. The acoustic wave equation yields

good kinematic approximation to the wave propagation in the real physical models.

The form of acoustic wave equation is a second order partial differential equation. I

assume that the density is constant (equal to one), and the source has point support

for simplification. The assumption that density is invariant with depth simplifies

the model representation, but is not always valid. The reason that I can neglect the

density variation is that the density gradient usually has the same sign as the velocity

gradient and density variation usually much smaller than velocity variation, thus it
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Figure 2.1: Geometry of a simple seismic survey. Two sources S1,S2 and two receivers

(geophones) R1,R2. Common midpoint (CMP) M . Incident angle θ1 and θ2. Medium

1 and medium 2 with two different velocities. Surface reflection is the interface

between medium 1 and medium 2. Depth point O is the reflection point of the

ray paths.
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still provides an useful wave equation. The point source can be written as

f(x, t;xs) = ω(t)δ(x− xs),

where t ∈ R is time, x ∈ R3 is the position vector, xs ∈ R3 is the position of the

point source, and ω(t) is the source time function. This point source assumption is

reasonable when the spatial extend of the source is much smaller than a typical data

wavelength. Under these assumptions, the acoustic wave equation can be written as

1

c2(x)

∂2p

∂t2
(x, t;xs) −∇2p(x, t;xs) = ω(t)δ(x − xs), (2.1)

with initial and boundary conditions. Here t ∈ R is time, x ∈ R3 is the position

vector, xs ∈ R3 is the position of the point source, ω(t) is the source time function,

c(x) is the P-wave velocity, and p(x, t;xs) is the acoustic pressure. I also assume that

the medium is in its equilibrium state (of zero pressure) for negative time,

p(x, t;xs) ≡ 0, t < 0.

Physical boundaries may imply boundary conditions. But I will ignore these since

they do not alter the general principles presented below.

Forward map:

The Green’s function G(x, t;xs), which is observed at x subject to source located

at xs, is given by changing ω(t) to δ(t). Then the Green’s function G(x, t;xs) satisfies

(
1

c2(x)

∂2

∂t2
−∇2

)
G(x, t;xs) = δ(t)δ(x − xs), (2.2)

G(x, t;xs) ≡ 0, t < 0. (2.3)
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Convolve the above equation 2.2 with the source time function ω(t), it yields

∫
ω(t − t̂)

(
1

c2(x)

∂2

∂t̂2
−∇2

)
G(x, t̂;xs) dt̂ =

∫
ω(t − t̂)δ(t̂)δ(x − xs) dt̂.

Since

∂

∂t
(ω ∗t G) =

∂ω

∂t
∗t G = ω ∗t

∂G

∂t
,

apply the property of the delta function and get

(
1

c2(x)

∂2

∂t2
−∇2

) ∫
ω(t− t̂)G(x, t̂;xs) dt̂ = ω(t)δ(x− xs). (2.4)

This means that the solution to the equation 2.1, which is the pressure field, is the

source convolved with the Green’s function

p(x, t;xs) = ω(t) ∗t G(x, t;xs).

It allows us to define the forward mapping operator S. Operator S depends on

velocity c(x) and can be computed from the acoustic wave equation 2.1. It maps

velocity c into pressure field at a number of receiver locations xr and times t. The

pressure field can be regarded as the predicted data

S[c] = p|Y ={(xr,t;xs)}.

Seismic inverse problem:

Given observed seismic data Sobs, find velocity c so that

S[c] & Sobs.

Even with all the modeling assumptions I made for simplification, this seismic

inverse problem is still very difficult to solve due to three major obstacles. The first
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one is computational intensity at industrial or scientific scale. Wavefields modeling

and other related computational tasks are required by inversion. The computational

scale is as large as up to Tbytes, Pflops. But this computational obstacle is gradually

resolved by improvements in computer performance and algorithm efficiency. The

convolutional model is one way to reduce the computation cost (to be explained in

the next section).

The second obstacle is that the seismic inverse problem is usually ill-posed. A

mathematical problem is called well-posed if it satisfies three conditions: existence,

uniqueness, and stability. If one of these properties is violated, the problem is called

ill-posed. Seismic inverse problem usually has non-unique solutions and/or is ill-

conditioned. In practical applications, algorithms for well-posed problem may fail if

the problem is ill-conditioned, since noisy data as well as round-off errors may cause

large variation in solution. In order to overcome the instability problem one has to

use regularization methods, which in general terms replace an ill-posed problem by a

family of nearby well-posed problems.

The other obstacle is nonlinearity. Since the relation c → p is nonlinear, the

seismic inverse problem p → c is nonlinear as well. The nonlinear problems are

intrinsically more difficult to solve than linear problems. Due to the complexity of the

problem, complicated computational schemes is required and related computational

cost is rapidly increased by applying these approaches to solve the nonlinear problem.
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2.3 Partial Linearization

Even with all the simplifying assumptions stated in section 2.2, the recovery of c(x)

from seismic data is still extremely difficult mainly due to the nonlinear relation

between the velocity coefficients c and the solution p of the acoustic wave equation.

Then my first step is the linearization of c and p relation. We can decompose c as a

background velocity v and its first order velocity perturbation δv. Write

c(x) = v(x) + δv(x), (2.5)

and relative velocity perturbation (reflectivity) r(x) = δv(x)
v(x) . My partial linearization

is valid so long as the background velocity v is slowly-varying (smooth) relative to a

typical data wavelength and its relative velocity perturbation r is oscillatory (rough)

[Symes, 1998a]. There is no strict mathematical criteria for these arguments so far.

Substitute equation 2.5 into equation 2.1 and replace p by p + δp. It yields

(
1

(v + δv)2(x)

∂2

∂t2
−∇2

)
(p + δp)(x, t;xs) = ω(t)δ(x− xs), (2.6)

where p satisfies

(
1

v2(x)

∂2

∂t2
−∇2

)
p(x, t;xs) = ω(t)δ(x− xs). (2.7)

Multiply both sides of equation 2.6 by (v + δv)2(x)

(
∂2p

∂t2
+

∂2δp

∂t2
− (v + δv)2(x)∇2p − (v + δv)2(x)∇2δp

)
(x, t;xs) = (v+δv)2(x)ω(t)δ(x−xs).

(2.8)
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Multiply both sides of equation 2.7 by v2(x)

(
∂2p

∂t2
− v2(x)∇2p

)
(x, t;xs) = v2(x)ω(t)δ(x − xs). (2.9)

Subtracting equation 2.9 from equation 2.8, and keep the first order terms (neglect

the terms having δv2 or δv∇2δp). It yields

(
1

v2(x)

∂2

∂t2
−∇2

)
δp(x, t;xs) =

2δv(x)

v3(x)

∂2p

∂t2
(x, t;xs). (2.10)

The linear approximation leads to

(
1

v2(x)

∂2

∂t2
−∇2

)
δp(x, t;xs) =

2r(x)

v2(x)

∂2p

∂t2
(x, t;xs). (2.11)

Based on this linearized acoustic wave equation, I can define the partially linearized

forward map F as below.

Partially Linearized forward map:

F̂ [v]r = δp|Y ={(xr,t;xs)}.

Partial linearization means that operator F depends nonlinearly on the smooth back-

ground velocity v and linearly on the oscillatory relative velocity perturbation r.

Partially linearized inverse problem (Velocity Analysis problem):

Given observed seismic data Sobs, find smooth background velocity v and its os-

cillatory relative velocity perturbation r so that

S[v] + F̂ [v]r & Sobs.
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2.4 Convolutional Model

Partially linearized inverse problem using the linearized acoustic wave equation is still

computational expensive. Convolutional model provides a computational cheaper

way to approximate the linearized acoustic wave equation 2.11. Since high frequency

asymptotics and hyperbolic moveout approximation are good approximations only

for layered medium i.e. the Earth is made of horizontal layers of constant velocity,

I need to assume that the acoustic medium is horizontally layered. The principle of

original horizontality says that rock layers were originally deposited close to horizontal

and continues laterally unless there is a structure or change to prevent its extension

[Lyell, 1830]. The layered medium is realistic since much of the Earth’s geology

consists of successional layers of different rocks, known as “strata”.

The horizontally layered medium allows me to write the background velocity as a

function of depth

v = v̂(z),

and write its first order relative perturbation as

r = r̂(z).

Recalling the medium is horizontally layered, the change of variables

z =

∫ t0
2

0

v(τ) dτ ,

allows me to write depth as a function of zero-offset two-way traveltime t0

z = z(t0).
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Then I am able to write background velocity as a function of zero-offset two-way

traveltime

v = v̂(z) = v(t0),

and to write its relative perturbation as a function of zero-offset two-way traveltime

as well

r = r̂(z) = r(t0).

Notice that in a layered medium with the source and receiver located on the same

horizontal plane, there is horizontally translation invariance in the pressure pertur-

bation field. This means that the pressure perturbation field can also be considered

as a function of offset (the distance from the source to receiver) or half offset h. I can

define another partial linearized forward map

F [v]r(t, h)
.
= F̂ [v]r(xr, t;xs),

where h = |xr−xs|
2 . The most important part of the theory, which is called convo-

lutional model, can be derived based on the high frequency approximation to the

linearized acoustic wave equation 2.11 for layered medium. Assuming no noise and

primary reflection only, the seismic reflection data can be expressed as the convolu-

tional model for layered medium [Yilmaz, 1987]. As a result of reflection at a single

reflector (interface of layers), the source wavelet replicates itself such that it is scaled

by the amplitude scaling factor at the reflectors. If there are a number of reflectors,

then the source wavelet replicates itself at those reflectors in the same manner. The

convolutional model shows that the seismic reflection data (recorded seismogram)
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can be predicted by convolving source time function with an amplitude scaling fac-

tor. Careful derivation of the convolutional model can be found in Winslow’s MA

thesis [Winslow, 2000]:

F [v]r(t, h) & ω(t) ∗t {a(T0(t, h), h)r(T0(t, h))} . (2.12)

Here t is the two-way traveltime, t0 is the zero-offset two-way traveltime, h is half

offset defined by

h =
| xr − xs |

2
,

T0(t, h) is a change of variables function, which is the inverse function of the hyper-

bolic moveout approximation to two-way traveltime T (t0, h) (to be shown in the next

section), ω(t) is the source time function, v(t0) is the background velocity, r(t0) is the

relative velocity perturbation with respect to the traveltime at zero offset indicating

where are the reflectors, and a(t0, h) is the amplitude function. Amplitude function

can be considered a constant and equal to 1. In the ideal case, I also assume that the

point source time function ω(t) = δ(t). Since the principle concern of this thesis is

kinematic relationship between data and image, the effective replacements of ampli-

tude scaling function by 1 and source time function by a delta function do not seem

to invalidate the prediction of the theory. Hence, the simplified convolutional model

indicates that seismic reflection data can be approximated by the following formula:

F [v]r(t, h) & r(T0(t, h)). (2.13)

This convolutional model is the most important theoretical foundation of DSVA via
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NMO. Together with hyperbolic moveout approximation which will be discussed next,

convolutional model inversion will be derived in the end of this chapter.

2.5 Hyperbolic Moveout Approximation

Traveltime approximations plays an important role in the processing of seismic reflec-

tion data. Figure 2.1 shows the simple case of a single horizontal layer. At a given

common midpoint M , the reflection traveltime t is to compute the time when waves

travel along the raypath from source S2 to depth point O then back to receiver R1.

Using the Pythagorean theorem, the two-way traveltime t as a function of zero-offset

traveltime t0 and half offset h can be computed from

t2 = t20 +
4h2

v2
,

where t0 is twice the traveltime along the vertical path OM , h is half the distance

between source and receiver, and v is the velocity of the medium 1 above the reflecting

interface (reflector).

Similar to the above simple case, the most employed traveltime approximation is

the NMO hyperbola [Dix, 1955]:

t2 & t20 +
4h2

v2
RMS

,

where RMS (root mean squared) velocity vRMS(t0) =
√

1
t0

∫ t0
0 v2. This hyperbolic

moveout approximation is a good approximation to the two-way traveltime T (t0, h)
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for layered medium and small offset-to-depth ratio. In order to see how to approximate

two-way traveltime, I need to start from the Eikonal equation. It has the form

(
∂τ

∂x

)2

+

(
∂τ

∂z

)2

=
1

v̂2(z)
, (2.14)

which describes the one-way traveltime propagation from (0,0) to (x, z) in 2D isotropic

medium, in which the waves travel at equal speed independently of which direction

they travel. In a layered medium with the source and receiver located on the same

horizontal plane, there is a horizontally translation invariance in the two-way travel-

time. If τ2(x, z) is the time of a signal which travels from the source (0,0), reflects at

(x
2 , z), and back to the receiver (x, 0). The analytical two-way traveltime function

T (t0, h) = τ2(x, z),

where x = 2h and z =
∫ t0

2
0 v. This two-way traveltime T (t0, h) = τ2(x, z) is related

to the solution of Eikonal equation with point source at (0,0) by

τ2(x, z) = 2τ(
x

2
, z).

Thus
(
∂τ2

∂x

)2

+
1

4

(
∂τ2

∂z

)2

=
1

v̂2(z)
.

The hyperbolic moveout approximation to the two-way traveltime is just the second

order Taylor expansion of T (t0, h) in h. Detail of the continuum derivation of the

Dix’s hyperbolic moveout approximation can be found from CAAM Technical Report

[Symes, 1999]. To good approximation to the two-way traveltime, for layered medium
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and ”small” offset to depth ratio.

T (t0, h) &

√

t20 +
4h2

v2
RMS(t0)

, (2.15)

T0(T (t0, h), h) = t0,

where the Root Mean Squared (RMS) velocity is

vRMS(t0) =

√
1

t0

∫ t0

0

v2.

In order to eliminate confusion with RMS velocity, velocity v(t0) is called interval

velocity in the geophysical literature. The accuracy of the hyperbolic moveout ap-

proximation decreases with increasing offset-to-depth ratio. From the approximation

shown above, it can be noticed that the two-way traveltime T (t0, h) explicitly depends

on the interval velocity v and the change of variables function T0(t, h) in 2.13 is the

inverse function of the two-way traveltime function T (t0, h).

2.6 Convolutional Model Inversion

Combining the convolutional model 2.13 with this hyperbolic moveout approximation,

the convolutional model inversion is:

Given observed seismic reflection data d, find smooth background velocity v so

that

r(T0(t, h)) & d(t, h).

Applying a velocity-dependent change of variables T (t0, h), it maps seismic reflection

data d(t, h) from t− h domain to t0 − h domain and forms redundant seismic images
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(NMO corrected traces) defined by d(T (t0, h), h). This procedure is called NMO

correction in the geophysical literatures, which maps events (consistent lining ups of

several wiggles over several traces) in the seismic reflection data to where they come

from. One NMO corrected trace corresponds to one offset. NMO corrected traces

can be considered as zero-offset recording of reflection data, which means that the

sources are placed at each h and the primary reflection signals are received at the

same locations as their sources. Since it is assumed that the medium is horizontally

layered, the NMO corrected traces using the accurate velocity should be horizontally

invariant. It means that the NMO corrected traces using the accurate velocity should

be the same, independent of offset. Hence, consistency of redundant NMO corrected

traces can be evaluated by the flatness or alignment of same events between different

traces.



Chapter 3

Methods

This chapter introduces the motivation for differential semblance which opens up a

new approach to velocity analysis, reviews previous approaches to differential sem-

blance, and analyzes the advantages and disadvantages of the previous implementa-

tion. DS-CR is shown in detail following the review. Four fundamental stages are

involved in the last section of implementation: data preparation; velocity representa-

tion; numerical computation; numerical optimization.

3.1 Motivation for Differential Semblance

Some researchers considered velocity analysis, the process of estimating seismic ve-

locity, as an optimization problem in the form of a misfit function to be minimized

[Kolb et al., 1986]. The Least-Squares method is among the most widely investi-

gated one. Least-Squares approach is to find the optimal velocity such that the sum

24
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of squared residuals, which is the difference between observed and predicted data,

has its least value. However this method may fail if the starting velocity model is far

enough from the true velocity model, because of the existence of the secondary solu-

tions [Kolb et al., 1986] [Gauthier et al., 1986]. If a gradient method is used to solve

the optimization problem, the iteration process may stop at a local minimum that may

be far from the global minimum. To avoid this, global optimization methods such

as simulated annealing or genetic algorithms can be used [Kirkpatrick et al., 1983]

[Sen and Stoffa, 1991b] [Sen and Stoffa, 1991a]. However, the associated computa-

tional cost of global search methods is too high to be suitable for industrial scale

velocity estimation.

Another strategy of velocity analysis is migration velocity analysis as mentioned

in the chapter 1. The idea of migration velocity analysis is that redundant images are

consistent when the velocity is correct. Most of the objective functions used in the lit-

erature of migration velocity analysis are called semblance [Neidell and Taner, 1971].

Semblance is a coherency measurement for the recorded seismic data. The data can

be sorted by common midpoint (CMP), which is is the point on the surface halfway

between the source and the receiver. A CMP gather is a gather of seismic traces that

share the same CMP. The idea of classical semblance was first introduced by Toldi

[Toldi, 1989]. The Classical Semblance (CS) function provides normalized measure-

ment of the stack power of CMP gathers and defined as

JCS[v] =

∑
t0
(
∑

h d(T (t0, h), h))2

∑
t0

∑
h d(T (t0, h), h)2

. (3.1)
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where h is the half offset, t0 is zero-offset traveltime, T (t0, h) is the two-way traveltime

function. The sums over all t0 and h in the above discrete form of CS objective func-

tion are approximations of the numerical integration using the composite trapezoidal

rule in order to get the L2 norms in the continuous form of the CS objective function.

As explained in section 2.6, d(T (t0, h), h) is the image after NMO correction which

can be tested for consistency by evaluating the alignments of the same event between

different traces in zero-offset traveltime and half offset domain for layered medium.

∑
h d(T (t0, h), h) represents that the traces are added together (stack) to form a new

single stacked trace. The stack power is to the sum of the squared value along the

new single stacked trace, written as

JSP [v] =
∑

t0

(
∑

h

d(T (t0, h), h))2, (3.2)

The stack power is one way to evaluate the alignment since the maximum stack

power can be achieved if the velocity is correct. The classical semblance shown in 3.1,

which is normalized measurement of the stack power, has the same behavior as stack

power shown in 3.2. Unfortunately, Chauris and Noble showed the examples that the

classical semblance has similar defect as Least Squares [Chauris and Noble, 2001]. A

discussion, which shows that Classical Semblance is equivalent to Least Squares, can

be found in the Appendix A. Classical Semblance is highly non-convex with many

local maxima and cannot be applied with a local optimization process.

An alternative is differential semblance velocity analysis (DSVA), proposed by

Symes [Symes and Carazzone, 1991] [Symes, 1999], which opens up a new approach
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to velocity analysis due to its global convexity and asymptotic stability [Symes, 1999].

DSVA is able to provide good results even when the initial velocity model is not close

to the true velocity model. Considered as a convex optimization problem, DSVA can

be carried out by means of a gradient-based method, thereby avoiding a costly global

search method. For migration velocity analysis, DSVA is the only approach so far

that allows automatic velocity computation by means of local optimization process.

DSVA via NMO correction is the simplest form of DS and can be defined as

JDS[v] =
∑

t0

∑

h

(
∂

∂h
d(T (t0, h), h)

)2

. (3.3)

As explained in section 2.6, the NMO corrected traces using the accurate velocity

should be horizontally invariant and DSVA via NMO correction evaluates the consis-

tency of redundant NMO corrected traces by the flatness of the same event between

different traces. It is easy to see from the above formula that DS measures the flat-

ness of the same events by computing derivatives with respect to half offset. The

comparison between CS and DS in chapter 4 will show that DS exhibits much better

properties in terms of global convexity than CS as illustrated in Figure 5.9 and 5.10.

3.2 Approaches to Differential Semblance

There are many different approaches to DS which can be divided as two classes.

The first class is DS variants based on surface oriented extension. Surface oriented

extension is usually carried out via a ray-based method. Ray-based methods consist
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of wide-band rays (based on high frequency asymptotics) which are traced by solving

the traveltime equation. The other one is variants based on depth oriented extension.

Depth oriented extension is wave-based method. Wave-based methods consist of

band-limited wavefields which are constructed by solving the wave equation for all

depth. Since the method I developed is based on surface oriented extension, I only

discuss DS variants based on surface oriented extension in this section.

Convolutional model simulation of plane wave data

The early approach to DS has been formulated in detail for the convolutional approx-

imation to the layered constant-density acoustic model and was appropriate to plane-

wave seismograms [Symes and Carazzone, 1991] [Minkoff and Symes, 1997]. The im-

age in τ − p domain (intercept time - slowness domain) was transformed from t − x

domain (time - offset domain) through a Radon transform. This τ − p section was

flattened by updating the velocity automatically. They compared semblance between

neighboring traces and measured the deviation from flatness. Theoretical and nu-

merical analysis of this version of DS indicated that stable and reasonably accurate

estimates of velocity can be derived.

Convolutional model simulation of common midpoint data

Symes concluded that a local gradient based optimization method can be used to min-

imize the DS objective function based on convolutional model typically by using com-
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mon midpoint data [Symes, 1993] [Symes and Gockenbach, 1995] [Symes, 1998b]. A

recent implementation of this method was developed by Li and Symes [Li and Symes, 2007].

Their approach, using hyperbolic normal moveout correction, is effective within the

limits that the medium is mild lateral heterogeneous (velocity does not variate much

in the horizontal direction) and the data are dominated by primary events. They

also combined DS via NMO correction with the multiple filter suggested in Mulder’s

paper [Mulder and ten Kroode, 2002] to decrease the effect of multiple reflections on

the velocity estimate. This NMO-driven DS algorithm is very simple and fast rel-

ative to other variants based on more faithful approximations to wave physics, but

nonetheless is accurate enough to be used to process seismic data with some success.

Therefore I focus on this simplest form of DS in this thesis.

Generalized Radon transform simulation of acoustic scattering

Chauris and Noble demonstrated the efficiency and accuracy of the DS method for

velocity model estimation which simulated acoustic scattering by generalized Radon

transform [Chauris and Noble, 2001]. While convolutional model is based on layered

media, generalized Radon transform simulation can deal with laterally heterogeneous

media. The linearized description of seismic scattering which they used approximates

only primary reflection. It neglects multiple reflections, so that multiple energy in the

data appears as coherent noise. Thus their success has a prerequisite that a careful

pre-processing has to be applied before the inversion in order to eliminate multiple
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and other coherent noise. But they did not propose any effective way to suppress the

multiple reflections apart from the classical pre-processing.

Mulder and ten Kroode suggested a new way to deal with these multiple reflections

[Mulder and ten Kroode, 2002]. Their objective function mimics Symes’s differential

semblance objective function [Symes, 1998b]. Their method was able to handle the

multiples effectively by incorporating a multiple filter inside the differential semblance

objective function.

Generalized Radon transform simulation of anisotropic elastic

scattering

The DS variants in the preceding paragraphs showed that DS methods are able to

deal with isotropic acoustic scattering. In this paragraph, I want to show that DS

can be used as an approach to simulate the anisotropic elastic scattering as well.

This approach involved an extension of DS to converted waves [de Hoop et al., 2005].

When a P (primary) wavefront from a source strikes an interface in the elastic scat-

tering, the reflected energy is partitioned into P (primary) and S (shear) waves. This

approach demonstrated the use of MVA on joint PP and PS reflection seismic data

while the DS variants shown in the previous paragraphs only dealt with PP reflection

seismic data. This method was based on the DS objective function parameterized by

scattering angle and azimuth to find fitting velocity model and showed the potential

of DS to deal with multiple wave speeds.
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3.3 A New Formula of Differential Semblance

Recall the convolutional model inversion shown in section 2.6:

given observed seismic reflection data d, find smooth background velocity v so

that

r(T0(t, h)) & d(t, h).

I introduce the nonphysical reflectivity model r(t0, h) by extending the definition of

reflectivity to depend on more spatial degree of freedom. Convolutional model can

be recovered if and only if the extra degree of freedom are present in some specific

way, satisfying the constraint ∂r
∂h = 0. The inverse problem is

min
v,r

J [v, r] =
1

2
‖r − d ◦ T‖2

2 (3.4)

s.t.

∥∥∥∥
∂r

∂h

∥∥∥∥
2

2

= 0 (3.5)

The operator d ◦ T is defined as d ◦ T (t0, h) = d(T (t0, h), h), which is the image

after NMO correction. The objective function of this optimization problem is easy

to minimize without constraint. The optimal solution is [v, r] such that for any

background velocity model v, let the nonphysical reflectivity model r be the NMO

corrected image

r[v](t0, h) = d(T [v](t0, h), h).

Then for noise-free data, the optimization problem 3.4 and 3.5 has same solution as
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the following problem

min
v,r

J [v, r] =
1

2

∥∥∥∥
∂r

∂h

∥∥∥∥
2

2

(3.6)

s.t. ‖r − d ◦ T‖2
2 = 0 (3.7)

Notice that for noisy data, those two problem are different with different solutions.

Therefore the NMO-based DS objective function becomes

J [v] =
1

2

∥∥∥∥
∂

∂h
d ◦ T

∥∥∥∥
2

2

, (3.8)

when the constraint 3.7 is eliminated.

The NMO-based DS objective function in the previous implementation for a single

CMP gather is

JDS−CV [v] =
1

2

∫
dh

∫
dt0

∂T

∂t0
(t0, h)

∣∣∣∣
∂

∂h
d(T (t0, h), h)

∣∣∣∣
2

. (3.9)

This objective function was optimized by DS-CV approach [Li and Symes, 2007]. The

factor ∂T
∂t0

is to make the gradient computation easier, not effecting the stationary

points since it has to be always greater than 0 (see 3.12). This means that the global

minimizer of DS-CV objective function is also the optimal velocity that minimizes the

general DS objective function (3.8). DS-CV was accurate enough to be used to process

seismic data with some success. But the seismic data d(t, h) is not sampled on the

point (T (t0, h), h) so that this approach involved the interpolation of the oscillatory

seismic data. Spurious local minima of DS-CV objective function are shown in my

numerical experiments due to the large interpolation error. In order to avoid the
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interpolation of the oscillatory seismic data, I employs a new discretization method

(DS-CR) to approximate the same continuous DS objective function as DS-CV by

using the chain rule, which is the first advantage of DS-CR over DS-CV.

At first, I apply the chain rule,

∂

∂h
d(T (t0, h), h) =

(
∂d

∂h
+

∂T

∂h

∂d

∂t

)
(T (t0, h), h)

=

(
∂d

∂h
+ p

∂d

∂t

)
(t, h).

Here p is the ray parameter or slowness, defined by

p(t, h) =
∂T

∂h
(t0, h)|t0=T0(t,h).

The two-way traveltime function T (t0, h) is computed by

T (t0, h) =
√

t20 + 4u(t0)h2,

where RMS square slowness u(t0) = t0R t0
0 v2

under the assumption that the offset is

small compared to depth. Computing the partial derivative

∂T

∂h
(t0, h) =

4h

T (t0, h)
u(t0)

leads to

p(t, h) =
∂T

∂h
(t0, h)|t0=T0(t,h) =

4h

t
u(T0(t, h)).

DS-CR objective function, equivalent to DS-CV objective function JDS−CV [v] with

an alternative form in the continuous sense, is written as

JDS−CR[v] =
1

2

∫
dh

∫
dt

∣∣∣∣

(
p
∂d

∂t
+

∂d

∂h

)
(t, h)

∣∣∣∣
2

, (3.10)
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where the slowness p(t, h) = 4h
t u(T0(t, h)) and RMS square slowness u(t0) = t0R t0

0 v2
.

Since the calculation takes the same form for all CMP gathers, I extend the

dependence on midpoint and consider all the CMP gathers in the final result.

Suppose shot and receiver coordinates are denoted xs, ys and xr, yr respectively

and they are located on the surface. Data trace d(t, h, x, y) are sorted by CMP

coordinates

x =
xr + xs

2
, y =

yr + ys

2
.

Here t is the two-way traveltime and h is the half offset defined by

h =

√
(xr − xs)2 + (yr − ys)2

2
.

The RMS square slowness u(t0, x, y) is defined by

u(t0, x, y) =
t0∫ t0

0 v(τ, x, y)2 dτ
.

The hyperbolic traveltime approximation is

T (t0, h, x, y) =
√

t20 + 4u(t0, x, y)h2. (3.11)

The function T0(t, h, x, y) is the inverse function of T (t0, h, x, y). The function T0(t, h, x, y)

is well defined where

0 <
∂T

∂t0
(t0, h, x, y) =

t0 + 2 ∂u
∂t0

(t0, x, y)h2

T (t0, h, x, y)
(3.12)

[Symes, 1999]. The interval velocities v(t0, x, y) are bounded by the velocity envelopes

vmax(t0, x, y) and vmin(t0, x, y).
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With all the CMP gathers, the objective function is

JDS−CR[v] =
1

2

∫
dx

∫
dy

∫
dh

∫ tmax

0

dt

∣∣∣∣

(
p
∂d

∂t
+

∂d

∂h

)
(t, h, x, y)

∣∣∣∣
2

. (3.13)

Since JDS−CR[v] has no spurious local minimizers, I use a Newton-like, gradient-based

optimization method to minimize the DS-CR objective function. It is necessary to

compute the gradient of JDS−CR with respect to v. The expression for the gradient is

∇JDS−CR[v](τ, x, y) = −
∫

dh v(τ, x, y)

∫ tmax

T (τ,h,x,y)

dt

{
∂T0

∂t
(t, h, x, y)

p2(t, h, x, y)

2h

∂d

∂t
(t, h, x, y)

(
p
∂d

∂t
+

∂d

∂h

)
(t, h, x, y)

}
.

(3.14)

A derivation of this formula is given in the Appendix B. Another simpler way to

derive this gradient formula is based on DS-CV gradient [Li and Symes, 2007]

∇JDS−CV [v](τ, x, y) = −
∫

dh v(τ, x, y)

∫ t0max

τ

dt0

{
u2(τ, x, y)

8h

T (t0, h, x, y)2

(
∂d

∂t
(T (t0, h, x, y), h, x, y)

)(
∂

∂h
d(T (t0, h, x, y), h, x, y)

)}
,

(3.15)

and apply change of variables t0 → T0(t, h), which is the inverse of the two-way

traveltime function. After comparing the gradients of DS-CV (3.15) and DS-CR

(3.14), it can be noticed that DS-CV involves interpolation of oscillatory integrand,

which affects every term in the integral. However, DS-CR only involve interpolation

of oscillatory integrand on the lower boundary terms in the integral with respect to t.

Since there are thousands of time samples, DS-CR should have much less interpolation

error in the computation of gradient as well, which is another advantage of DS-CR

over DS-CV.
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3.4 Implementation

The implementation is done with the C++/RVL framework [Padula et al., 2004] and

SU package [Stockwell and Cohen, 2004]. RVL is a mathematical library which pro-

vides simple access to some very powerful optimization algorithms which helps me

optimize the objective function. SU is a powerful tool to generate, analyze and process

seismic data which I use in this thesis.

Referring to equations 3.11, 3.13 and 3.14, the implementation involves four fun-

damental stages: data preparation; velocity representation; numerical computation

of the integrals, derivatives, and interpolations; numerical optimization.

3.4.1 Data Format and Velocity Representation

The SU data format is based on the SEG-Y format [Barry and Kneale, 1980]. The SU

format consists of data traces each of which has a header. Both the header and the

trace data are written in the binary format. The SU header contains every attributes

I need to analyze and process the data such as offset(offset), dt(time sampling rate),

sx(X source coordinate), sy(Y source coordinate), gx(X receiver coordinate), gy(Y

receiver coordinate), and etc. The data to be processed is sorted by CMP gathers

and can be read and written by the SU package. SU commands can be also used to

generate the synthetic seismogram for linear velocity function by using susynlv and to

view the seismic data set, to apply a zero-phase, sine-squared tapered filter, or to view

the frequency spectrum of the data by using suximage, sufilter, suspecfx,...
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The data in equation 3.13 and 3.14 is gridded at the level which is adequate to

represent the oscillatory seismic data. Theory developed in the preceding chapter

presumes that the velocity must be smooth on the wavelength scale. The success of

iterative methods for my differential semblance might depend on the velocity encoun-

tered during the iteration remaining similarly smooth. Hence, the gridding for the

oscillatory data gives too many degrees of freedom for the velocity. To control the

smoothness of velocity updates, it is necessary to reduce the number of degrees of

freedom for velocity so that the method is effective. In order to reduce the number of

degrees of freedom in the velocity model, I employ a fixed nodal structure for velocity

representation to produce relatively smooth velocity model. This nodal placement is

static, nodal values should be bounded by the nodal values of upper and lower enve-

lope velocities. The simplest velocity representation meet those requirements is the

piecewise linear interpolation. The velocity data structure is obtained by piecewise

linear interpolation of the nodal values and sampled on the (t0, x, y) grid.

3.4.2 Numerical Computation

The numerical computation in this thesis involves computation of the integrals,

derivatives, and interpolations. The integrals in equations 3.11, 3.13 and 3.14 can

be replaced by composite trapezoidal rule and have second-order accuracy. The de-

tail of the cubic interpolation and the computation of the derivative are given below.
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3.4.2.1 Computation of t0 and p

For a single CMP gather, the traveltime table T (t0, h) is an important tool for doing

the change of variables of t to t0 conversion. This mapping is computed using a

numerical scheme that is governed by equation 2.15. Since the RMS square slowness

is defined as

u(t0) =
t0∫ t0

0 v(t0)2
,

for a single CMP gather, uk = u(t0[k]) for k = 1, ..., n can be computed using the

composite trapezoid rule:

uk & t0[k]
∑k−1

i=0 ∆t × v(t0[i])2
,

for k = 1, ..., n. Here ∆t is the time sampling rate, ot0 is the first point of t0,

considered as 0th sample, and t0[k] is the kth sample of t0 which can be computed

by t0[k] = ot0 + k∆t.

Time traces are discretized and have n+1 samples from ot to tmax with sample rate

∆t. The ith sample occurs at t[i] = ot + i∆t for i = 0, 1, ..., n. Two-way traveltime t

has the same discretization as two-way traveltime at zero offset t0. But T (t0, h) is very

unlikely to coincide with one of the sample time t[i]. Thus the implementation of the

RMS square slowness involving T0(t, h) inevitably requires interpolation, which is not

smooth with respect to velocity parametrization. In order to minimize this difficulty, I

adopt the local cubic Lagrangian interpolation to compute the RMS square slowness.

Define uk = u(t0[k]) for k = 1, ..., n and Ui = u(T0(t[i], h)) for i = m, ..., n where

m = +T (0,h)
∆t ,.
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How to compute Ui which is u at time t = t[i]?

First finding out the index k of t0 for which T (t0[k − 1], h) < t < T (t0[k], h) using

the traveltime table, I can compute uk−1, uk, uk+1, uk+2.

Let tc = T (t0[k], h), t−1 = tc −∆t, t1 = tc +∆t, and t2 = tc + 2∆t.

I obtain Ui using the cubic Lagrangian interpolation:

l−1 =
(t − tc)(t − t1)(t − t2)

(t−1 − tc)(t−1 − t1)(t−1 − t2)

l0 =
(t − t−1)(t − t1)(t − t2)

(tc − t−1)(tc − t1)(tc − t2)

l1 =
(t − t−1)(t − tc)(t − t2)

(t1 − t−1)(t1 − tc)(t1 − t2)

l2 =
(t − t−1)(t − tc)(t − t1)

(t2 − t−1)(t2 − tc)(t2 − t1)

Ui & l−1uk−1 + l0uk + l1uk+1 + l2uk+2.

Hence slowness pi = p(t[i], h) can be obtained by

pi =
4h

t[i]
Ui,

for i = m, .., n. This Lagrangian interpolation has fourth order accuracy.

3.4.2.2 Computation of ∂d
∂t and ∂d

∂h

I use cell centered difference to approximate ∂d
∂t and ∂d

∂h . Since the data are ordered

by increasing offset within each CMP gather, this cell difference requires only one

additional trace buffer.
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Write ti = ot + i∆t, hj = oh + j∆h, and dij = d(ti, hj). Centered difference

approximation can be expressed by

∂d

∂t
(ti+ 1

2
, hj+ 1

2
) & 1

2
× (

di+1,j − di,j

∆t
+

di+1,j+1 − di,j+1

∆t
),

∂d

∂h
(ti+ 1

2
, hj+ 1

2
) & 1

2
× (

di,j+1 − di,j

∆h
+

di+1,j+1 − di+1,j

∆h
).

This is a second-order accurate method.

3.4.3 Error Estimation

One advantage of using DS-CR over DS-CV is that DS-CR objective function only

involves interpolation of smooth function instead of interpolating of oscillatory seismic

data. The error in the computation of DS-CR objective function is mainly created by

approximation to the partial derivatives. This section provides sufficient conditions

for a good approximation to the partial derivatives, furthermore to the objective

function. The Fourier expansion of the seismic data in the frequency domain with

single reflector at zero offset traveltime t0 can be written as,

d̂(ω, h) =
∞∑

n=−∞

Cne
−iωT (t0,h),

where Cn are the corresponding Fourier coefficients, ω is the angular frequency, h is

the half offset, T (t0, h) is the two-way traveltime function, and d̂(ω, h) is the seismic

data. For simplification, I only consider single angular frequency ω, single reflector

at zero offset traveltime t0, amplitude A, and true velocity model v. The data in the
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traveltime domain (only consider the real part) can be written as

d(t, h) = A sinω

(
t −

√
t20 + 4h2u(t0)

)
,

where t is the traveltime, h is the half offset, and RMS square slowness u(t0) =

t0R t0
0 v(τ)2 dτ

.

Let d1 = di,j+ 1
2

= d(ti, hj + 1
2∆h), d2 = di+1,j+ 1

2
= d(ti + ∆t, hj + 1

2∆h), dξ1 =

d(ti, ξ1) for some ξ1 ∈ (hj , hj+ 1
2
), dξ2 = d(ti, ξ2) for some ξ2 ∈ (hj+ 1

2
, hj+1), dξ3 =

d(ti+1, ξ3) for some ξ3 ∈ (hj, hj+ 1
2
), and dξ4 = d(ti+1, ξ4) for some ξ4 ∈ (hj+ 1

2
, hj+1).

di,j = d1 −
∆h

2

∂d1

∂h
+

1

2

(
∆h

2

)2 ∂2d1

∂h2
− 1

6

(
∆h

2

)3 ∂3dξ1
∂h3

(3.16)

di,j+1 = d1 +
∆h

2

∂d1

∂h
+

1

2

(
∆h

2

)2 ∂2d1

∂h2
+

1

6

(
∆h

2

)3 ∂3dξ2
∂h3

(3.17)

di+1,j = d2 −
∆h

2

∂d2

∂h
+

1

2

(
∆h

2

)2 ∂2d2

∂h2
− 1

6

(
∆h

2

)3 ∂3dξ3
∂h3

(3.18)

di+1,j+1 = d2 +
∆h

2

∂d2

∂h
+

1

2

(
∆h

2

)2 ∂2d2

∂h2
+

1

6

(
∆h

2

)3 ∂3dξ4
∂h3

(3.19)

Centered difference approximation to h partial derivative is

∂d

∂h
(ti+ 1

2
, hj+ 1

2
) & 1

2
×

(
di,j+1 − di, j

∆h
+

di+1,j+1 − di+1,j

∆h

)
!

(
∂d

∂h

)

N

.

Using the continuous property of the data with respect to h, compute the numerical

approximation to the h derivative

(
∂d

∂h

)

N

=
∂d1
∂h + ∂d2

∂h

2
+
∆h2

24

∂3dξ5

∂h3 +
∂3dξ6

∂h3

2

=
∂d

∂h
(ti+ 1

2
, hj+ 1

2
) +

∆t2

8

∂

∂t2

(
∂dξ7
∂h

)
+
∆h2

24

∂3dξ8
∂h3

,
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where dξ5 = d(ti, ξ5) for some ξ5 ∈ (hj , hj+1), dξ6 = d(ti+1, ξ6) for some ξ6 ∈ (hi, hj+1),

dξ7 = d(ξ7, hj+ 1
2
) for some ξ7 ∈ (ti, ti+1), and dξ8 = d(ti+ 1

2
, ξ8) for some ξ8 ∈ (hj, hj+1).

Then approximation error is

∣∣∣∣

(
∂d

∂h

)

N

− ∂d

∂h

∣∣∣∣ =

∣∣∣∣
∆h2

24

∂3dξ8
∂h3

+
∆t2

8

∂

∂t2

(
∂dξ7
∂h

)∣∣∣∣ ,

where
(
∂d
∂h

)
N

denotes the numerical approximation to ∂d
∂h . Since

d(t, h) = A sinω(t −
√

t20 + 4h2u),

then

∂d

∂h
(t, h) = −

4uAωh cosω
(
t −

√
t20 + 4h2u(t0)

)

√
t20 + 4h2u(t0)

.

∂2d

∂h2
(t, h) = 4uAω sinω

(
t −

√
t20 + 4h2u

)
−4h2uω

t20 + 4h2u
−

−4uAω cosω

(
t −

√
t20 + 4h2u

) √
t20 + 4h2u − h ∂

∂h

√
t20 + 4h2u

t20 + 4h2u

= 4uAω sinω

(
t −

√
t20 + 4h2u

)
−4h2uω

t20 + 4h2u
−

−4uAω cosω

(
t −

√
t20 + 4h2u

)
t20

(t20 + 4h2u)
3
2

.

Write S = sinω
(
t −

√
t20 + 4h2u

)
, C = cosω

(
t −

√
t20 + 4h2u

)
, and T = T (t0, h) =

√
t20 + 4h2u.

∂2d

∂h2
(t, h) = −(4uω)2A

Sh2

T 2
− 4uωAt20

C

T 3
.

∂3d

∂h3
(t, h) = −(4uω)2A

(
−C

4h3uω

T 3
+ S

2ht20
T 4

)
− 4uωAt20

(
S

4huω

T 4
− 3C

4hu

T 5

)
.

∂2

∂t2

(
∂d

∂h

)
(t, h) = −4uω3AhC

T
.
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Notice that

∂d

∂h
(t, h) = −4uωAhC

T
.

The relative error bound is

∣∣∣∣∣

(
∂d
∂h

)
N
− ∂d

∂h
∂d
∂h

∣∣∣∣∣ ≤ max
∆h,h,∆t,ω

∣∣∣∣
∆h2

24

(
−16h2u2ω2

T 2
+

12uωt20
T 3

S

C
− 12ut20

T 4

)
+
∆t2

8
ω2

∣∣∣∣ .

Consider t ∼
√

t20 + 4h2u and angular frequency ω is actually 2π times frequency

f , I can get sufficient conditions for a good centered difference approximation to h:

∆t2

2
π2f 2 ≤ ε (3.20)

∆h2

6

(
16π2h2u2f 2

T 2
+

6πt20uf

T 3
+

3t20u

T 4

)
≤ ε. (3.21)

Similarly, the centered difference approximation to t derivatives is

∂d

∂t
(ti+ 1

2
, hj+ 1

2
) & 1

2
×

(
di+1,j − di, j

∆t
+

di+1,j+1 − di,j+1

∆t

)
.

∂d

∂t
= AωC.

∂2d

∂t2
= −Aω2S.

∂3d

∂t3
= −Aω3C.

∂2

∂h2

(
∂d

∂t

)
= 4Auω2

(
−C

4h2uω

T 2
+ S

t20
T 3

)
.

The relative error bound is

∣∣∣∣∣

(
∂d
∂t

)
N
− ∂d

∂t
∂d
∂t

∣∣∣∣∣ ≤ max
∆h,h,∆t,ω

∣∣∣∣
∆h2

8

(
−16h2u2ω2

T 2
+

4uωt20
T 3

S

C

)
− ∆t2

24
ω2

∣∣∣∣ .
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Constraints 3.20 and 3.21 are also sufficient conditions for a good centered difference

approximation to t. Now suppose I have

∣∣∣∣∣

(
∂d
∂h

)
N
− ∂d

∂h
∂d
∂h

∣∣∣∣∣ ≤ ε, (3.22)

∣∣∣∣∣

(
∂d
∂t

)
N
− ∂d

∂t
∂d
∂t

∣∣∣∣∣ ≤
ε

2
, (3.23)

and fouth order Lagrangian interpolation allows relative slowness error
∣∣∣pN−p

p

∣∣∣ ≤ ε
4 .

Next I want to compute the numerical approximation error of
(
p∂d
∂t

)
N

, where p is the

slowness and PN is the numerical approximation to p.

(
p∂d
∂t

)
N
− p∂d

∂t

p∂d
∂t

=
pN

(
∂d
∂t

)
N
− p

(
∂d
∂t

)
N

p∂d
∂t

+
p
(
∂d
∂t

)
N
− p∂d

∂t

p∂d
∂t

The absolute value of the second term is smaller than ε
2 by 3.23. First term is

(
pN − p

p

)
×

((
∂d
∂t

)
N

∂d
∂t

)
.

From 3.23, it is known that ∣∣∣∣∣

(
∂d
∂t

)
N

∂d
∂t

∣∣∣∣∣ ≤ 1 +
ε

2
.

Since
∣∣∣pN−p

p

∣∣∣ ≤ ε
4 , ∣∣∣∣∣

(
p∂d
∂t

)
N
− p∂d

∂t

p∂d
∂t

∣∣∣∣∣ ≤ ε.

Denote Iij = I(ti, hj) =
(
∂d
∂h + p∂d

∂t

)
(ti, hj) and (Iij)N is the numerical approximation

to Iij , then

|(Iij)N − Iij| =

∣∣∣∣

(
∂d

∂h

)

N

− ∂d

∂h
+

(
p
∂d

∂t

)

N

− p
∂d

∂t

∣∣∣∣

≤ ε

(∣∣∣∣
∂d

∂h

∣∣∣∣ +

∣∣∣∣p
∂d

∂t

∣∣∣∣

)
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Since I only consider t ∼
√

t20 + 4h2u and notice that p = 4h
t u, then |

∑
Iij | = o(1).

Hence,
∣∣∣
∑

(Iij)N −
∑

Iij

∣∣∣ = o(1).

Thus 3.20 and 3.21 are the sufficient conditions to get a good approximation to the

objective function for mono frequency and single reflector. Since seismic data is

band-limited and layered medium has a certain number of reflectors, the numerical

approximation is effective if the maximum frequency, zero-offset traveltime related to

the shallowest reflector, the largest half offset, the largest half offset sampling rate,

and traveltime sampling rate satisfy conditions 3.20 and 3.21.

3.4.4 Numerical Optimization

I employ the Limited Memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton al-

gorithm (LBFGS) which is considered the most effective unconstrained optimization

algorithm under many circumstances [Nodedal and Wright, 1999]. This algorithm

is implemented with the Rice Vector Library (RVL) framework. The algorithm is

coded in C/C++ with RVL-defined interfaces. The implementation sweeps through

all the traces sequentially in the gather for each LBFGS iteration. The convergence

of LGFGS iteration for DS-CR is reasonably fast (O(10) iterations) on a 2.4 GHz

Macbook using gcc compiler suite.



Chapter 4

Results for Synthetic Data

I provide two examples illustrating the performance of DS-CR algorithm. The data

processed in the first example is a 2D synthetic seismogram shown in Chapter 4. The

second example is a 2D real seismic data shown in Chapter 5. The first example

compared DS-CR with DS-CV objective functions and also illustrated the impacts

of frequency and offset increment on DS-CR for synthetic data. The second example

showed the ability and deficiency of DS-CR to deal with real seismic data.

4.1 DS-CR and DS-CV

The true background velocity I used to generate this single synthetic CMP gather is

constant and equal to 2000 m/s. There are eight reflectors locating at 1200m, 1600m,

2000m, 2400m, 2800m, 3200m, 3600m, and 4000m depth shown as r(t0) in Figure 4.2.

Source function is synthetic Ricker wavelet with 80Hz peak frequency shown as ω(t)

46
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in Figure 4.1. The synthetic data can be computed by convolving source function ω(t)

with reflectivity r(T0(t, h)), which is shown in equation 2.11. The single CMP gather

contains traces which are synthetic seismic signals recorded from multiple receivers

displayed in Figure 4.3. 311 traces have been recorded and offset ranges from 0m

to 2015m. Offset increment is 6.5m. Each vertical trace represents one receiver’s

response. Every trace is a timing line at 2ms intervals and has 1301 timing samples.

In this example, I compared the DS-CR and DS-CV objective functions described in

the preceding section, using this synthetic CMP gather and different velocities.

To illustrate that my objective function is a smooth function with respect to

background velocity and has less noise, I use velocity displayed in Figure 4.2 as the

reference velocity v0 and constant true velocity as the target velocity v1. Velocity vk

is the convex combination of v0 and v

vk = v0 + k × (v1 − v0),

where k ranges from 0.94 to 1.1 and ∆k is 0.005. Left figure in 4.4 is DS-CR objective

function JDS−CR[v] with respect to convex combination coefficient k. It is a smooth

curve with only one global minimizer where k = 1, i.e. vk = v1. Right figure

in 4.4 shows that there exists local minimizers in DS-CV approach. The objective

function of DS-CV has more noise than my approach. As explained in the previous

chapter, the reason for this error to occur is that DS-CV approach inevitably involves

interpolation of oscillatory seismic data, while the numerical approximation to the

objective function for DS-CR only involves interpolation of smooth function. It can
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be noticed in the two figures that DS-CR objective function values are always larger

than DS-CV. This result is caused by discretization error, which will be explained in

detail in the next chapter.

4.2 Impacts of Frequency and Offset Increment on

DS-CR Accuracy

This example shows that what impacts of frequency and offset increment have on

DS-CR accuracy. The data is generated with the same constant velocity model (2000

m/s) and eight reflectors displayed in Figure 4.2. For different frequencies and off-

set increments, I compared the data flatness after NMO correction using velocity

estimated by DS-CR. Since ∆t = 2ms and maximum frequency is 40Hz, then

max
∆t,f

(
∆t2

2
π2f 2

)
= 0.0316.

If I choose any ε ≥ 0.0316, then first condition 3.20 will be satisfied. I choose ε = 0.05.

Since maximum half offset hmax = 1000m, minimum zero-offset traveltime t0min =

0.6s, maximum frequency fmax = 40Hz, RMS square slowness u = 2.5 × 10−7s2/m2

and error bound ε = 0.05, then I have error estimated by 3.21

max
h,∆h,f,t0

(
∆h2

6

(
16π2h2u2f 2

T 2
+

6πt20uf

T 3
+

3t20u

T 4

))

=
(
800π2 + 30

√
2π + 0.75

) ∆h2

24
≤ ε.
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Sufficient condition for discretization error smaller than 0.05 is ∆h ≤ 5.1m, i.e. if

offset sampling interval is less than 10.2m, I should be able to get relatively good

NMO correction. In this numerical example, I use eight different offset sampling

intervals which are 40m, 30m, 20m, 15m, 13m, 12m, 11m, and 10m. The peak

frequency of synthetic source Ricker wavelet is 20Hz. The synthetic CMP gathers are

shown in Figure 4.5 and 4.6. I computed the final velocities using DS-CR and apply

NMO correction to the original seismic data with those final velocities. From NMO

corrected data shown in Figure 4.7 and 4.8, it is required that offset interval ∆x has

to be smaller than 11m in order to get a flat NMO correction which is consistent with

the sufficient condition. For this experiment, the data can be flattened if and only if

the offset sampling interval is smaller than 11m.

Since maximum half offset hmax = 1000m, minimum zero-offset traveltime t0min =

0.6s, half offset sampling interval ∆h = 20m, RMS square slowness u = 2.5 ×

10−7s2/m2 and error bound ε = 0.05, then condition 3.21 is

max
h,∆h,f,t0

(
∆h2

6

(
16π2h2u2f 2

B2
+

6πt20uf

B3
+

3t20u

B4

))

=
(
2π2f 2

max + 1.5
√

2πfmax + 0.75
) 0.022

24
≤ ε.

Second sufficient condition for discretization error smaller than 0.05 is fmax ≤ 10.1.

This maximum frequency fmax also satisfies the first sufficient condition 3.20. So if

peak frequency fp is less than 5.05Hz, I should be able to get relatively good NMO

correction. In this numerical example, I use eight different peak frequencies which

are 25Hz, 20Hz, 15Hz, 10Hz, 8Hz, 7Hz, 6Hz, and 5Hz. The offset sampling rate is



50

0.06 0.04 0.02 0 0.02 0.04 0.06
0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

Am
pl

itu
de

Figure 4.1: Source time function w(t): Ricker wavelet with peak frequency 80Hz

40m. The synthetic CMP gathers are shown in Figure 4.9 and 4.10. I computed

the final velocities using DS-CR and apply NMO correction to the original seismic

data with those final velocities. From NMO corrected data shown in 4.11 and 4.12,

it is required that fp to be smaller than 6Hz in order to get a flat NMO correction

which is consistent with the sufficient condition. In this experiment, the data can be

flattened if and only if the peak frequency is smaller than 6Hz.
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Figure 4.3: Synthetic seismic data for a single CMP gather. There are 311 traces and

offset sampling rate is 6.5 m. There are 1301 timing samples and time sampling rate

is 2 ms.
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Figure 4.4: Left: DS-CR objective function with respect to the convex velocity com-

bination parameter k. Right: DS-CV objective function with respect to the convex

velocity combination parameter k.
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Figure 4.5: Different synthetic CMP gathers generated using the same source wavelet

with peak frequency fp = 20Hz, and different offset sampling rate ∆x. For each

gather, there are 1301 timing samples and time sampling rate is 2 ms. Left:∆x = 40m;

Middle left:∆x = 30m; Middle right:∆x = 20m; Right:∆x = 15m
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Figure 4.6: Different synthetic CMP gathers generated using the same source wavelet

with peak frequency fp = 20Hz, and different offset sampling rate ∆x. For each

gather, there are 1301 timing samples and time sampling rate is 2 ms. Left:∆x = 13m;

Middle left:∆x = 12m; Middle right:∆x = 11m; Right:∆x = 10m
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Figure 4.7: NMO corrections for different synthetic CMP gathers (Figure 4.5) gen-

erated using the same source wavelet with peak frequency fp = 20Hz, and different

offset sampling rate ∆x. Velocities are computed by DS-CR. Left:∆x = 40m; Middle

left:∆x = 30m; Middle right:∆x = 20m; Right:∆x = 15m
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Figure 4.8: NMO corrections for different synthetic CMP gathers (Figure 4.6) gen-

erated using the same source wavelet with peak frequency fp = 20Hz, and different

offset sampling rate ∆x. Velocities are computed by DS-CR. Left:∆x = 13m; Middle

left:∆x = 12m; Middle right:∆x = 11m; Right:∆x = 10m
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Figure 4.9: Different synthetic CMP gathers generated using source wavelet with

different peak frequency fp, and the same offset sampling rate ∆x = 40m. For each

gather, there are 1301 timing samples and time sampling rate is 2 ms. Left:fp =

25Hz; Middle left:fp = 20Hz; Middle right:fp = 15Hz; Right:fp = 10Hz
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Figure 4.10: Different synthetic CMP gathers generated using source wavelet with

different peak frequency fp, and the same offset sampling rate ∆x = 40m. For each

gather, there are 1301 timing samples and time sampling rate is 2 ms. Left:fp = 8Hz;

Middle left:fp = 7Hz; Middle right:fp = 6Hz; Right:fp = 5Hz
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Figure 4.11: NMO corrections for different synthetic CMP gathers (Figure 4.9) gen-

erated using source wavelet with different peak frequency fp, and the same off-

set sampling rate ∆x = 40m. Left:fp = 25Hz; Middle left:fp = 20Hz; Middle

right:fp = 15Hz; Right:fp = 10Hz
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Figure 4.12: NMO corrections for different synthetic CMP gathers (Figure 4.10)

generated using source wavelet with different peak frequency fp, and the same offset

sampling rate ∆x = 40m. Left:fp = 8Hz; Middle left:fp = 7Hz; Middle right:fp =

6Hz; Right:fp = 5Hz



Chapter 5

Results for Real Data

The processed data in this example is 2D marine data recorded from the North Sea

released by Shell. This example presents the ability and deficiency of DS-CR to

deal with real seismic data, compared to CS and DS-CV. In this example, I use

the CMP gather displayed in Figure 5.1 as input data. Figure 5.1 is a single CMP

gather containing wiggle-line traces which are seismic signals recorded from multiple

hydrophones. Traces (vertical lines) are timing lines at 2 ms intervals. Each trace

represents one hydrophone’s response and has 1001 samples. 50 traces have been

recorded and offset ranges from 185 m to 1965 m.

5.1 Stability

As explained in section 3.4.1, I employ piecewise linear interpolation of the nodal val-

ues for velocity representation in order to produce relatively smooth velocity model.
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I define the fixed velocity nodes at 5 depths raging from 0 to 2 s, at intervals of 0.5

s, because 5 nodes representation is sufficient for this example to estimate relatively

smooth final velocity that satisfies the optimization criterion. I compare the sensi-

tivity of final velocity estimates to different initial velocity models between DS-CR

and DS-CV first. Given different initial velocities, DS-CR final estimates are very

close, particularly between the surface and t0 = 1.5 s. Figure 5.2 displays this result.

Figure 5.3 shows the estimated velocities by applying DS-CV for the same input data

with four different initial models. Those final velocities have obvious variations. Fig-

ure 5.2 and 5.3 illustrated the tendency of DS-CR to produce equivalent velocities

independent of initial velocity guess so that DS-CR tends to be more stable.

5.2 Flatness

Though the final velocities computed by DS-CR and DS-CV are different, the NMO-

corrected data are similarly flattened by those final velocities, shown in Figure 5.4 and

5.5. With careful comparison, it can be noticed that Figure 5.5 seems to be better cor-

rected. The reason is that DS-CR involves discretization error in the approximation

to its objective function in this example. DS-CR objective function value is almost

3 times larger than DS-CV objective function value for the same velocity model. As

explained in the previous chapter, the key idea of normal moveout based differential

semblance is to minimize the l2−norm of DS-CR moveout derivative
(
∂d
∂h + p∂d

∂t

)
(t, h)

or DS-CV moveout derivative ∂
∂hd(T (t0, h), h). I apply a change of variables map
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T0(t, h) for DS-CV moveout derivatives to transfer them from t0 − h domain to t− h

domain so that consistent with DS-CR moveout derivatives. In order to compare the

numerical error, I illustrates the moveout derivatives using two approach in Figure

5.6 and 5.7 with the same velocity (blue final estimate in Figure 5.3). Both of DS-CR

and DS-CV moveout derivatives should be close to zero since they are exactly the

same in the continuous form and the velocity model used to compute the moveout

derivatives is assumed to be a good estimate. But DS-CR exhibits more numerical

noise in the computation of moveout derivatives. They differ mostly in the shallow

and large offset panels in the domain. This phenomenon is consistent with the suffi-

cient condition 3.21 which describes that smaller t0 and larger h would increase the

error bound value. After observing the frequency spectrum shown in Figure 5.8, we

can find out that the peak frequency is about 33Hz. The offset sampling rate which

is around 38m is deficient according to condition 3.21 since it can only guarantee

that the discretization error to the half-offset derivative is smaller than 150%. This

discretization error pollutes DS-CR moveout derivatives and DS-CR objective func-

tion as well. As a consequence of wrong objective function estimation, the computed

gradient cannot provide the descending direction and causes premature termination

during iterative optimization. In the end of the optimization log, it records that the

line search failed, steepest descent restarted, and no smaller objective function value

could be found. DS-CR is not able to find the exact global (local) minimum in this

example. Therefore, DS-CR is not able to completely flatten the data with its final
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velocity estimate in this example and shallow panels are less flattened than deep pan-

els. I may conclude that the reason for which Figure 5.4 seems to be incompletely

flattened after NMO correction is the insufficient offset sampling issue, explained in

the previous synthetic example in detail. I might overcome this deficient sampling

issue by applying a lowpass filter in order to decrease the frequencies. Satisfactory

frequency should be less than 10Hz according to condition 3.21. But this idea cannot

be applied for this data set since there is no data for frequency under 10Hz shown in

Figure 5.8.

5.3 Global Minimum

In order to compare DS and CS, I use thin black initial velocity displayed in Figure

5.2 as the reference velocity v0 and the thick black final velocity as the target velocity

v1. Velocity vk is the linear combination of v0 and v1

vk = v0 + k × (v1 − v0),

where k ranges from 0 to 2. The increment ∆k is 0.002. Left figure in 5.9 is DS-CR

objective function JDS−CR[vk] with respect to k. It is a convex and smooth curve with

only one global minimizer where k = 0.94. Right Figure in 5.9 suggests that there

is no local minimizer no matter how much the Left figure in 5.9 has been magnified.

The final velocity estimated by DS-CR is v1, while the global minimizer is v0.94. The

optimization fails to find the exact global minimum, but ends up with some nearby
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velocity. This again explains why the data cannot be flattened completely in Figure

5.4 due to the premature termination. Compared to DS-CR, CS does not exhibit this

great property in terms of global convexity (concavity) of the objective function, which

has been mentioned in section 3.1. Figure 5.10 illustrates that classical semblance

has local maximizers.
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Figure 5.1: CMP number -11 from the 2D marine data released by Shell. There are

50 traces and offset sampling rate around 38 m. There are 1001 timing samples and

time sampling rate is 2 ms.
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Figure 5.2: Instability of DS-CR. Narrow solid lines: initial velocity estimates. Thick

solid lines: corresponding final velocity estimates. Input data: CMP -11
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Figure 5.3: Instability of DS-CV. Narrow solid lines: initial velocity estimates. Thick

solid lines: corresponding final velocity estimates. Input data: CMP -11
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Figure 5.4: CMP -11 after normal moveout correction using the final velocity esti-

mates shown in Figure 5.2
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Figure 5.5: CMP -11 after normal moveout correction using the final velocity esti-

mates shown in Figure 5.3
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Figure 5.6: DS-CR moveout derivatives using the thick blue velocity in Figure 5.3

(
∂d
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∂t
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(t, h)
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Figure 5.7: DS-CV moveout derivatives using the thick blue velocity in Figure 5.3

∂
∂hd(T (t0, h), h)|t0=T0(t,h)
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Figure 5.8: Frequency spectrum for CMP number -11 from the 2D marine data

released by Shell
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Figure 5.9: Left: DS-CR objective function JDS−CR[v0 + k(v1 − v0)] with respect to

the convex velocity combination parameter k. The parameter k ranges from 0 to 2.

The increment ∆k is 0.002. Reference velocity v0 is the thin black velocity model in

Figure 5.2. Target velocity v1 is DS-CR final velocity estimate with v0 as the initial

guess (thick black velocity model in 5.2). Right: zoomed DS-CR objective function

JDS−CR[v0 + k(v1 − v0)] with respect to the convex combination parameter k. The

parameter k ranges from 1.55 to 2.
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Figure 5.10: Left: CS objective function JCS[v0 + k(v1 − v0)] with respect to the

convex velocity combination parameter k. The parameter k ranges from 0 to 2.

The increment ∆k is 0.002. Reference velocity v0 is the thin black velocity model in

Figure 5.2. Target velocity v1 is CS final velocity estimate with v0 as the initial guess.

Right: zoomed CS objective function JCS[v0 + k(v1 − v0)] with respect to the convex

combination parameter k. The parameter k ranges from 1.816 to 1.826.



Chapter 6

Conclusions and Discussions

6.1 Conclusions

I have described a new NMO-based implementation of DSVA and shown 2D examples

of its use. The smoothness and convexity of DS-CR objective function has been shown

in the previous chapter, so my approach allows automatic velocity update by means of

local search methods. When the sufficient conditions 3.20 and 3.21 are satisfied, this

implementation has the capability to estimate 1D, 2D, or 3D velocity models within

the limits that the medium is mild lateral heterogeneous and the data are dominated

by primary events, which are the same model assumptions applied to DS-CV. DS-CR

and DS-CV have similar capacity of flattening the seismic data. DS-CR is able to

converge to a reasonable final velocity in a few iterations (O(10)), similar convergence

rate as DS-CV.
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The previous approach DS-CV [Li and Symes, 2007] involved the interpolation

of the oscillatory seismic data and as a result the interpolation error prevented the

gradient from descending after several iterations and led to some large variance in

the estimated interval velocities, which are local minimizers. This thesis develops an

alternative approach based on Li’s thesis. My approach employs a new discretiza-

tion method to approximate the same continuous DS objective function as DS-CV

and a new computation of the gradient. By applying chain rule, this alternative

computation of the objective function interpolates only smooth functions instead of

interpolating oscillatory data and the gradient has less interpolation error as well,

so that this approach has less numerical interpolation error than the previous im-

plementation and DS-CR objective function is always convex and smooth. DS-CR

is more stable than DS-CV since it is less sensitive to the initial velocity variations.

However, if the frequency is too high or the offset sampling rate is too big, DS-CR

will have larger discretization error to approximate the h partial derivative and lead

to premature termination during optimization. In order to overcome this defect,

one way is to increase to the offset sampling rate during acquisition of data. The

other way is to apply a low-pass filter before velocity analysis procedure. Although

both approaches are similarly good at flattening the hyperbola of primary events for

mild laterally heterogeneous medium, the insensitivity of DS-CR to a prior knowl-

edge about background velocity is its greatest strength compared to DS-CV when the

sufficient conditions are satisfied.
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6.2 Numerical Issue

The numerical issue revealed by this new implementation is the sampling issue. The

sampling rate is an important factor, because if the time sampling intervals are too

far apart, the true form of the signals is not preserved and the high frequencies

are lost. In practice, modern equipments have the capacity to record signals at

very small time sampling rates. Multiple hydrophones are arranged in an array in

order to generate different traces. In real seismic acquisition, the half offset h is

often undersampled due to the high cost of equipments. Notice that the distance

between neighboring traces is about 38 m, while the time sample rate is only 2

ms. The use of the cell centered difference to approximate the h partial derivative

is a likely source of relatively large discretization error due to deficient samples of

offset. Such error may prevent the gradient from finding the descending direction

after several iterations and lead to premature termination of iterative optimization.

As the synthetic example shown in the preceding chapter, the image after NMO

correction using DS-CR approach was not flat any more when I increased the offset

sampling rate. This issue can be overcome by applying a lowpass filter to decrease

the frequency as shown in the synthetic example. Thus in order to make DS-CR

effective, either small offset sampling rate or low frequency data is required for the

real seismic data.

A better algorithm should be employed here to compute the offset derivative. I

propose an alternative option in numerical implementation which might offer better
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performance. I split the single optimization problem into several sub-problems. Each

sub-problem is an optimization problem within certain velocity envelop. Use the

initial velocity estimate v0 of each velocity envelop and DS-CV method to compute

moveout derivative J0. Then estimate

∂d

∂h
= J0 − p0[v0]

∂d

∂t
.

More accurate velocity can be estimated by updating the velocity within each en-

velop using DS-CR. Once I get the optimal velocity for current envelop, ∂d
∂h can be

approximated more accurately using the current optimal velocity as the initial veloc-

ity guess, which is the beginning of the next envelop. This new idea seems can make

some improvement to overcome the undersampled problem occurred in DS-CR.

6.3 Coherent Noise

Another issue to be considered is the coherent noise. The consequence of inadequate

multiple suppression is shown in the example presented in the previous chapter, which

is a shortcoming of partial linearization. The presence of coherent noise degrades the

quality of velocity estimates. DSVA overcorrects the primaries and undercorrects the

multiples. One way to get rid of the coherent noise is to apply some demultiple filters

before DSVA. Another way is to develop another approach to velocity estimation

taking into account the nonlinear scattering. See [Symes, 2008] for an overview of

recent research on nonlinear waveform inversion and differential semblance.
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6.4 Layered Model Constraint

In reality, the media usually has complex subsurface structure with sharp lateral veloc-

ity variations. Due to the shortcomings of the convolution model and the hyperbolic

moveout approximation, the DSVA via NMO correction cannot handle multipathing

and complex geological structure. DSVA via Reverse Time Migration, should provide

the most accurate and reliable velocity estimation without dip limitation.
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APPENDIX A: Classical Semblance’s Equivalency

to Least Squares

Turn the linearized inverse problem into a Least Squares problem: given CMP data

d(t, h), find v(t0), r(t0) so that

min
v,r

JOL[v, r](t, h) = ‖F [v]r(t, h) − d(t, h)‖2 .

Assume the point source time function ω(t) = δ(t) shown in chapter 2, then

F [v]r(t, h) = r(T0(t, h)),

by equation 2.3.

‖r(T0(t, h)) − d(t, h)‖2 =

∫ ∫
dt dh (r(T0(t, h)) − d(t, h))2

= ‖d‖2 +

∫ ∫
dt0 dh

∂T

∂t0
(t0, h) × (r(t0)

2 − 2r(t0)d(T (t0, h), h))

= ‖d‖2 +

∫
dt0 w(t0)r(t0)

2 − 2

∫
dt0 r(t0)

∫
dh

∂T

∂t0
(t0, h)d(T (t0, h), h)

Then

J [v, r] = ‖ d ‖2 + < wr, r > − 2 < r, S >,

where S is the weighted stacking power

S[v](t0) =

∫
dh

∂T

∂t0
(t0, h)d(T (t0, h), h),

and

w[v](t0) =

∫
dh

∂T

∂t0
(t0, h).
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Since S, w only depend on v, then if v is fixed, we can get the optimal r = 1
wS

min
v,r

JOL[v, r] = ‖d‖2 − <
1

w
S, S >

⇐⇒ max
v

JCS[v] = <
1

w
S, S >

Then the classical semblance turns out to be equivalent to the Least Squares.
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APPENDIX B: Derivation of Analytic Expression

for the DS Gradient

In this appendix, I compute the analytic expression for the gradient. For a single

CMP, the objective function is

J [v] =
1

2

∫
dh

∫
dt

∣∣∣∣

(
p
∂d

∂t
+

∂d

∂h

)
(t, h)

∣∣∣∣
2

, (B-1)

where the slowness

p(t, h) =
4h

t
u(T0(t, h)). (B-2)

Denote the directional derivative of v-dependent quantities in the direction δv by the

prefix δ. Denote

I(t, h) =

(
p
∂d

∂t
+

∂d

∂h

)
(t, h).

Then

J =
1

2
〈I, I〉 .

δJ = 〈δI, I〉

= 〈DIδv, I〉

= 〈δv, (DI)∗I〉

Thus ∇vJ = (DI)∗I.

From equation B-1,

δJ [v] =

∫
dh

∫
dt δp(t, h)

∂d

∂t
(t, h)

(
p
∂d

∂t
+

∂d

∂h

)
(t, h). (B-3)
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From equation B-2, it follows that

δp(t, h) =
4h

t

(
δu(T0(t, h)) +

∂u

∂t0
(T0(t, h))δT0(t, h)

)
. (B-4)

Using the relation T (T0(t, h), h) = t and the definition of hyperbolic two-way travel

time,

δT0(t, h) = −δT (T0(t, h), h)
∂T
∂t0

(T0(t, h), h)
, (B-5)

δT (t0, h) = −2h2δu(t0))

T (t0, h)
.

Combining the above equation with equation B-2 and A-5 gives

δp(t, h) =
4hT0(t, h)δu(T0(t, h))

t2
∂T0

∂t
(t, h). (B-6)

Combine equation A-6 with A-3 to obtain

δJ [v] =

∫
dh

∫
dt

∂T0

∂t
(t, h)

4hT0(t, h)δu(T0(t, h))

t2
∂d

∂t
(t, h)

(
∂d

∂h
+ p

∂d

∂t

)
. (B-7)

Since

δu(t0) =
−2u2(t0)

t0

∫ t0

0

dτ0v(τ0)δv(τ0),

then the gradient is

∇J [v](τ) = −
∫

dh v(τ)

∫ tmax

T (τ,h)

dt

{
∂T0

∂t
(t, h)

p2(t, h)

2h

∂d

∂t
(t, h)

(
p
∂d

∂t
+

∂d

∂h

)
(t, h)

}
.

(B-8)
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