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Seismic wave equations

m acoustic wave equations (pressure-velocity) read

ov
()8t+Vp 0
1 8p

w(x) Ot + Vv ="1(xt;xs)

m elastic wave equations (pressure-stress) read

ov; BU,J
= f; < conservation of momentum
Pt Z ox;
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= Hooke's 1
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p = acoustic pressure, ojj = stress tensors, v = {v;} = particle
velocity, p(x) =mass density, x(x) =bulk modulus, cjy(x) =
elastic tensor coefficients, fj(x, t) = body force



2D acoustic wave equations (pressure-velocity)

0q dq Jq T, 1 ’
o + Aa + Ba =[0,0, w(t)d(x — xs)]" (+i.c.'s, b.c.'s)
u 0 0 1/p(x) 0 0 0
g=|v |, A= 0 O 0 , B=10 0 1/p(x)
p k(x) 0 0 0 r(x) 0
m easy to prepare parameters (p, k)

analytic solutions for convergence tests are accessible, e.g.,
homogeneous medium, two-layer media

fewer implementation issues = objective comparison



Numerical methods (time domain wave-field)

FDTD methods

v" industry standard
v easy implementation

v’ desirable balance: efficiency
and accuracy

two approaches:
m conventional-grid: lead to numerical instabilities for material
parameters with high contrast discontinuities
reference: Alford et al., ‘74

m staggered-grid: better numerical performance and widely used
recently; may lead to interface error
reference: Virieux, ‘84, ‘86
e.g., 4 grids for 3D pressure-velocity acoustic wave equations



Numerical methods (time domain wave-field)

DGTD methods

specialize in hyperbolic PDEs

capable of handling complex geometries (boundaries and
interfaces)

explicit semi-discrete form for time dependent PDEs

high order accuracy: o(hP*1) for Cartesian grids, o( hP+1/2)
for general grid

reference: Lesaint and Raviart, ‘74; Johnson and Pitkaranta,
‘86

very active in computational electromagnetic and fluid
dynamics communities

reference: Cockburn and Shu, ‘89; Warburton, ‘99; Kaser and
Dumbser, '06



goal of this project

m apply FDTD and DGTD methods to seismic modeling
problems
m DGTD: implementation based on MIDG developed by
Warburton
m FDTD: staggered-grid FDTD code iwave by Terentyev,
Vdovina and Symes

m make comparison as objective as possible: measure the CPU
time and/or the number of floating point operations for two
solutions to roughly have the same accuracy
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DGTD and FDTD Comparison

true solutions not accessible = Richardson extrapolation for

error estimation
m assuming the numerical solution D(h) differs from the analytic
solution D by E(h) = ChP + O(hPT1), then
E(h) ~ D(2h) — D(h)
2r —1

m p can be estimated by having E(2h),

E(2h)
E(h)

p =~ log,

hardware and system (courtesy of Dr. Warburton)
m single precision floating point
m 2.66GHz Intel Core2 Quad Q9450 CPU
m Linux 2.6.18 kernel
m GNU C compiler version 4.1.2
11



Square-circle model

computation domain: [—500 m, 500 m] x [-500 m, 500 m]
radius of the circle: 125 m

inside the circle: p = 1000 kg/m®3, c = 1000 m/s

outside the circle: p = 1500 kg/m?>, c = 2000 m/s

a point source “v7" at (0,250 m)

41 receivers “A" at the depth —250 m, from —400 m to
400 m at interval of 20 m.

time span: [0, 2s], traces sampled at temporal interval of

5 ms.
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Comparison for square-circle model
2-4 staggered-grid FDTD DGTD, N =4

grid size 5m 2-4 staggered—grid FDTD grid size range 12m ~28m  DGTD with basis functions of degree 4
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g
1 B .
5 | 26 g 1L 18/
210 k=3 [ ¢
5 el AR L
S s | ]
é | &2 W 210 © ’
f 2
T 8 ‘ o g 3
_Joo 200 0) 200 400 §» 22) ~do0 200 o 200 400 %’. ‘
recv location (m) 3 recv location (m) 2,4
grid size 25 m g || gridsizerange6m~14m 8
s 4 T 2
= ] \ I 19 14 ‘m‘ W g2
H £ T 1 £
8 \I\m\ | H & 818 NATRERL g
3 25 T AT 8 1e &7 ITRIRIRY 27
S0 VUV A s 1 [T
g LML B A ‘ [ Ml 1%
5 ot \alk| L A 5t 7| |\ %
S 21 M‘KY T)\u TR 16 @b/ Y RA! 25f
g #Ny [ Y 2l |
= / +
o + o 1.3
P
1 1 I T -
I = )
ooy location (m) Tecy location (m) recv location (m) recv location (m)

m 33.2 GFLOP, 19 sec m 2465 GFLOP, 760 sec
m 2.5 m grid, CFL = 0.4 m grid size range 6 ~ 14 m,

m 3% RMS error 12,572 eles
m 2% RMS error
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2D dome model

m point source with Ricker pulse at (3300 m, 40 m)
m significant energy at 30 Hz or a wavelength of 50 m
m receiver at (2300, 20)m depth, 3 sec

offset (km)
4

depth (km)

Figure: material wave speed
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Comparison for 2D dome model

2-4 staggered-grid FDTD DGTD (N =2)
grid size 125 m | 0.625m | 0.3125m || 5~ 15m | 2.7 ~ 7.3m
0.7-1.1s 4.64% 1.65% 0.82% 6.11% 0.31%
1.1-1.3s 12.30% 5.54% 2.76% 5.31% 0.60%
15-1.7s 20.06% 9.45% 4.70% 6.72% 0.79%
19215 28.64% | 13.92% 6.91% 7.23% 1.15%

# GFLOP || 1.03e+4 | 8.22e+4 | 6.57e+5 || 1.29e+4 1.03e+5
time 4125s | 32778 s | 261991 s 6457 s 52401 s

By extrapolation
m DGTD, N=2: 2.24e+4 GFLOP for 5% RMS error (2nd order)
m 2-4 staggered-grid FDTD: 1.65e+6 GFLOP on 0.23 m grid for

the same accuracy (1st order)
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Interface error

Symes & Terentyev & Vdovina '08 report, using staggered FDTD

m Richardson extrapolation estimates of relative RMS errors for
3D dome model (Ax =5 m) in various window:

m 0.7-1.1s: 20%
m 1.1-1.3s: 51%
m 1.5-1.7s: 88%

m 1.9-2.1s: 120%(!)

e.g., Brown '84, Symes & Vdovina '09
numerical error associated with staggered-grid FDTD of wave
propagation in heterogeneous media

m higher order component corresponding to the truncation error

m a first-order error due to the misalignment between numerical
grids and material interfaces (time shift)
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Interface error

high order convergence rate are expected for DGTD by

m fitting grid points with the interfaces, i.e., interfaces
approximated by segments
m full order convergence for straight-line interfaces

m 2nd order convergence for curved interfaces (N > 1)

local mesh refinement (h-adaptation) near the interfaces, i.e.,
decreasing the time shift effect
reference: SPICE project
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Plane Wave: Ricker's wavelet

m two different material in [0,1800 m| x [—15 m, 15 m]
m interface at x =900 m
m misaligned mesh:

traces of the true and numerical solutions at 500 m, h = 10 m,

200 400 600
time (ms)

m first peak  — trace of the direct wave
m second peak — trace of the reflected wave
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Plane Wave: Ricker's wavelet

traces of the true and numerical solutions at 500 m, h = 10 m,
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Interface fitting Mesh Example

m using interface fitting mesh

traces of the true and numerical solutions at 500 m, h =10 m

o

pressure (MPa)
e
ressure (MPa)

65 71

o 75 80 410 430 440
time (ms)

420
time (ms)
trace of the direct wave trace of the reflected wave
N=1
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Interface fitting Mesh Example

m using interface fitting mesh

traces of the true and numerical solutions at 500 m, h =10 m

o

pressure (MPa)
e
ressure (MPa)

65 71

o 75 80 410 430 440
time (ms)

420
time (ms)
trace of the direct wave trace of the reflected wave
N=2
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Local Refined Mesh Example

m using local refined mesh grid

traces of the true and numerical solutions at 500 m, h =10 m
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N=1
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Local Refined Mesh Example

m using local refined mesh grid

traces of the true and numerical solutions at 500 m, h =10 m
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Low-storage curvilinear DGTD

motivation

m DGTD on straight-sided eles = a sub optimal 2nd order
convergence rate when geometry representation not
complement the accuracy of schemes

m applications with curvilinear geometry, e.g., material
interfaces, boundaries

m DGTD has the flexibility to go beyond straight-sided eles
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Curvilinear element

m straight-sided triangle T: Vx € T = the image of a point
(r,s) € D={(r,s)| —1<r,s;r+s <0} under the linear
affine transform,

(r+s) (1+7r) (1+s)

X = — 5 X1 5 Xo + 5 X3

xi, i =1,2 3: vertices of T

m curvilinear triangle T:Vxe T = the image under an
isoparametric transform

X = Z xjli(r,s)
Jj

{I;}: interpolating Lagrange polynomials on D
{x;}: interpolating points on T
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Steps to form curvilinear elements

reference: Hesthaven and Warburton, ‘08
m identify element edges that need to be curved
m reallocate the vertices and facial interpolating points on the
curved material interfaces and/or boundaries

m blend the facial deformation on edges into the interior

interpolating points through Gordon-Hall blending of face
node deformation

reference: Gordon and Hall, ‘73
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CurviDG formulation

numerical solutions on curvilinear element T

v(x(r,s),t |T_ZV
p(x(r,s),t) ijk(t (r,s)

symmetric DG variational equations read

vk
Pk Z(/iv Ij)i—kaitj‘ - Z(vx,zlia I-/)i'k pjk - (Il'a np*)[);i'k
; -

J

1 op¥ L
D) g, gy = S V), v = (i (v =)y,
: .

J

26



Trouble for storage

the mass matrix MX,

I\/I,!J‘-:/? I,-(r,s)/j(r,s)dxdz:/DI,-(r,s)/j(r,s)Jk(r,s)drds
k

the Jacobian JX(r,s) = ’— X —‘ is no longer constant,

m compute M,-ﬂf on the fly = slowdown

(N +1)3(N +2)?
4

m store Mé‘- = storage scaled as K.

K.: number of curvi eles
(N+1)(N+2)

2

: number of interp pnts
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Weighting the variational spaces
weighting approximation space proposed by Warburton

s)|
Vh = @span{ \/Jkirzk)}

numerical solution in VhJ

B Ii(r,s

v(x(r,s), t)l5, = ;v}((t)JJ(k(f,)S)
~ / r

p(x(r,s), t)|5, = Zka(t)jJ(k(:,)S)

J
the mass matrix

k li(r,) (1, 5) (r,s)li(r,s)drds = M;
Mk = /D\ﬁ\ﬁJ(rs)drds_/D/,(,)/j(,)dd M

= without storage trouble
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Low-storage curviDG

ok .
Pk Z MU% = Z (Vzli, )p Bf — Z (Ih %Vx,z |Og(Jk)) pf
- . .

J J
A
a (ﬁ’"p )ah
op .
FTkZM pf :—Z(/,-,vxyz/j)D-"erZ(/,-,%vx,z |og(Jk))D-\7J.k
j

J
B (/71 n- (V- j)aﬁ

VK

<2

e.g.,

(13 ¥elo8l)) , = 3o ok si)h(r557) Ve g 59)

{(r5,55)}n, {wS}n: cubature nodes and weights on the reference

element D
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Square-circle model

nodal distribution of curvi eles of degree 8 near the circular region
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Square-ci

rcle model

m curvilinear DG, N=8 = optimal convergence rate

RMS error (percent)

RMS error (percent)

grid size range 25 m ~ 56 m
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curvilinear DG with basis functions of degree 8
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2D dome model

m 301 receivers at the depth 20 m with offset 100 ~ 6100 m at
interval 20 m

m point source with Ricker pulse at (3300 m, 40 m)

m curvilinear DG, N=5 =- almost optimal convergence rate
except the boundary and the source nearby

grid size range 10 m ~29 m curvilinear DG with basis functions of degree 5
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Summary

general realization:

m staggered-grid FDTD + interface error = 1st order
convergence rate

m DGTD, N > 1 + 'good’ mesh = 2nd convergence rate
(sub-optimal)

m curviDG + 'perfect’ mesh = optimal convergence rate
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Summary

comparison observation:

m FDTD for 'simple’ models well resolves the interface error
with less computation cost, e.g., square-circle model

m high order DGTD schemes have substantial advantage on
‘complex’ models and large time span, e.g., 2D dome model

m realistic models: need to explore for DGTD with advanced
techniques, e.g.,
m mesh generation from models defined on Cartesian grid
m local mesh refinement + local time stepping
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Future plan

m linear elastic wave equations

m seismic interface problems,
e.g., water (acoustic) and solid (elastic) interface

m effective and efficient numerical methods for these problems,
e.g., FD, FEM/DG
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