Discontinuous Galerkin Time Domain Methods for Acoustics and Comparison with Finite Difference Time Domain Methods

Xin Wang

Trip Annual Meeting

Jan 29, 2010
Outline

1. Problems and methods

2. Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3. Low-storage curvilinear DGTD
 - Numerical experiments

4. Summary and future plan
Outline

1 Problems and methods

2 Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3 Low-storage curvilinear DGTD
 - Numerical experiments

4 Summary and future plan
Seismic wave equations

- **acoustic wave equations (pressure-velocity)** read

\[
\rho(x) \frac{\partial \mathbf{v}}{\partial t} + \nabla p = 0
\]

\[
\frac{1}{\kappa(x)} \frac{\partial p}{\partial t} + \nabla \cdot \mathbf{v} = f(x, t; x_s)
\]

- **elastic wave equations (pressure-stress)** read

\[
\rho \frac{\partial v_i}{\partial t} = \sum_j \frac{\partial \sigma_{ij}}{\partial x_j} + f_i \quad \Leftarrow \text{conservation of momentum}
\]

\[
\frac{\partial \sigma_{ij}}{\partial t} = \sum_{k, l} c_{ijkl} \left(\frac{\partial v_k}{\partial x_l} + \frac{\partial v_l}{\partial x_k} \right) \quad \Leftarrow \text{Hooke's law}
\]

\[p = \text{acoustic pressure}, \; \sigma_{ij} = \text{stress tensors}, \; \mathbf{v} = \{v_i\} = \text{particle velocity}, \; \rho(x) = \text{mass density}, \; \kappa(x) = \text{bulk modulus}, \; c_{ijkl}(x) = \text{elastic tensor coefficients}, \; f_i(x, t) = \text{body force} \]
2D acoustic wave equations (pressure-velocity)

\[
\frac{\partial q}{\partial t} + A \frac{\partial q}{\partial x} + B \frac{\partial q}{\partial z} = [0, 0, w(t)\delta(x - x_s)]^T (\text{+i.c.'s, b.c.'s})
\]

\[
q = \begin{bmatrix} u \\ v \\ p \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 1/\rho(x) \\ 0 & 0 & 0 \\ \kappa(x) & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1/\rho(x) \\ 0 & \kappa(x) & 0 \end{bmatrix}
\]

- easy to prepare parameters \((\rho, \kappa)\)
- analytic solutions for convergence tests are accessible, e.g., homogeneous medium, two-layer media
- fewer implementation issues \(\Rightarrow\) objective comparison
Numerical methods (time domain wave-field)

FDTD methods

✓ industry standard
✓ easy implementation
✓ desirable balance: efficiency and accuracy

two approaches:
- conventional-grid: lead to numerical instabilities for material parameters with high contrast discontinuities
 reference: Alford et al., ‘74
- staggered-grid: better numerical performance and widely used recently; may lead to interface error
 reference: Virieux, ‘84, ‘86
 e.g., 4 grids for 3D pressure-velocity acoustic wave equations
Numerical methods (time domain wave-field)

DGTD methods

- specialize in hyperbolic PDEs
- capable of handling complex geometries (boundaries and interfaces)
- explicit semi-discrete form for time dependent PDEs
- high order accuracy: \(o(h^{p+1}) \) for Cartesian grids, \(o(h^{p+1/2}) \) for general grid

reference: Lesaint and Raviart, ‘74; Johnson and Pitkaranta, ‘86

- very active in computational electromagnetic and fluid dynamics communities

reference: Cockburn and Shu, ‘89; Warburton, ‘99; Käser and Dumbser, ‘06
goal of this project

- apply FDTD and DGTD methods to seismic modeling problems
 - DGTD: implementation based on MIDG developed by Warburton
 - FDTD: staggered-grid FDTD code *iwave* by Terentyev, Vdovina and Symes

- make comparison as objective as possible: measure the CPU time and/or the number of floating point operations for two solutions to roughly have the same accuracy
1 Problems and methods

2 Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3 Low-storage curvilinear DGTD
 - Numerical experiments

4 Summary and future plan
Outline

1 Problems and methods

2 Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3 Low-storage curvilinear DGTD
 - Numerical experiments

4 Summary and future plan
DGTD and FDTD Comparison

true solutions not accessible ⇒ Richardson extrapolation for error estimation

- assuming the numerical solution $D(h)$ differs from the analytic solution \bar{D} by $E(h) = Ch^p + O(h^{p+1})$, then

$$E(h) \simeq \frac{D(2h) - D(h)}{2^p - 1}$$

- p can be estimated by having $E(2h)$,

$$p \simeq \log_2 \frac{E(2h)}{E(h)}$$

hardware and system (courtesy of Dr. Warburton)

- single precision floating point
- 2.66GHz Intel Core2 Quad Q9450 CPU
- Linux 2.6.18 kernel
- GNU C compiler version 4.1.2
Square-circle model

- computation domain: $[-500 \, \text{m}, 500 \, \text{m}] \times [-500 \, \text{m}, 500 \, \text{m}]$
- radius of the circle: 125 m
- inside the circle: $\rho = 1000 \, \text{kg/m}^3$, $c = 1000 \, \text{m/s}$
- outside the circle: $\rho = 1500 \, \text{kg/m}^3$, $c = 2000 \, \text{m/s}$
- a point source “▽” at $(0, 250 \, \text{m})$
- 41 receivers “△” at the depth $-250 \, \text{m}$, from $-400 \, \text{m}$ to $400 \, \text{m}$ at interval of $20 \, \text{m}$.
- time span: $[0, 2s]$, traces sampled at temporal interval of $5 \, \text{ms}$.

![Diagram of square-circle model with computation domain and point source and receivers marked.]
Comparison for square-circle model

2-4 staggered-grid FDTD

<table>
<thead>
<tr>
<th>recv location (m)</th>
<th>RMS error (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m</td>
<td>Grid size 5 m</td>
</tr>
<tr>
<td>2.5 m</td>
<td>Grid size 2.5 m</td>
</tr>
<tr>
<td>2.5</td>
<td>Grid size 2.5</td>
</tr>
</tbody>
</table>

- 33.2 GFLOP, 19 sec
- 2.5 m grid, CFL = 0.4
- 3% RMS error

DGTD, $N = 4$

<table>
<thead>
<tr>
<th>recv location (m)</th>
<th>RMS error (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 m ~ 28 m</td>
<td>Grid size 12 m ~ 28 m</td>
</tr>
<tr>
<td>6 m ~ 14 m</td>
<td>Grid size 6 m ~ 14 m</td>
</tr>
</tbody>
</table>

- 2465 GFLOP, 760 sec
- Grid size range 6 ~ 14 m, 12,572 eles
- 2% RMS error
2D dome model

- point source with Ricker pulse at (3300 m, 40 m)
- significant energy at 30 Hz or a wavelength of 50 m
- receiver at (2300, 20)m depth, 3 sec

Figure: material wave speed
Comparison for 2D dome model

<table>
<thead>
<tr>
<th>Grid size</th>
<th>2-4 staggered-grid FDTD</th>
<th>DGTD (N = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.25 m</td>
<td>0.625 m</td>
</tr>
<tr>
<td>0.7-1.1 s</td>
<td>4.64%</td>
<td>1.65%</td>
</tr>
<tr>
<td>1.1-1.3 s</td>
<td>12.30%</td>
<td>5.54%</td>
</tr>
<tr>
<td>1.5-1.7 s</td>
<td>20.06%</td>
<td>9.45%</td>
</tr>
<tr>
<td>1.9-2.1 s</td>
<td>28.64%</td>
<td>13.92%</td>
</tr>
<tr>
<td># GFLOP</td>
<td>1.03e+4</td>
<td>8.22e+4</td>
</tr>
<tr>
<td>Time</td>
<td>4125 s</td>
<td>32778 s</td>
</tr>
</tbody>
</table>

By extrapolation

- DGTD, N=2: 2.24e+4 GFLOP for 5% RMS error (2nd order)
- 2-4 staggered-grid FDTD: 1.65e+6 GFLOP on 0.23 m grid for the same accuracy (1st order)
Outline

1 Problems and methods

2 Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3 Low-storage curvilinear DGTD
 - Numerical experiments

4 Summary and future plan
Interface error

Symes & Terentyev & Vdovina ’08 report, using staggered FDTD

- Richardson extrapolation estimates of relative RMS errors for
 3D dome model ($\Delta x = 5$ m) in various window:
 - 0.7-1.1 s: 20%
 - 1.1-1.3 s: 51%
 - 1.5-1.7 s: 88%
 - 1.9-2.1 s: 120%(!)

E.g., Brown ’84, Symes & Vdovina ’09

Numerical error associated with staggered-grid FDTD of wave propagation in heterogeneous media

- Higher order component corresponding to the truncation error
- A first-order error due to the misalignment between numerical grids and material interfaces (time shift)
Interface error

high order convergence rate are expected for DGTD by

- fitting grid points with the interfaces, i.e., interfaces approximated by segments
 - full order convergence for straight-line interfaces
 - 2nd order convergence for curved interfaces \((N > 1)\)

- local mesh refinement (h-adaptation) near the interfaces, i.e., decreasing the time shift effect

reference: *SPICE project*

interface fitting mesh for dome model
Plane Wave: Ricker’s wavelet

- two different material in \([0, 1800 \ m] \times [-15 \ m, 15 \ m]\)
- interface at \(x = 900 \ m\)
- misaligned mesh:

traces of the true and numerical solutions at 500 \(m \), \(h = 10 \ m \),

- first peak \(\rightarrow \) trace of the direct wave
- second peak \(\rightarrow \) trace of the reflected wave
Plane Wave: Ricker’s wavelet

traces of the true and numerical solutions at $500 \, m, h = 10 \, m$,

![Graph showing true and numerical solutions with traces of direct and reflected waves.](image)

$N = 4$
Interface fitting Mesh Example

- using interface fitting mesh

Traces of the true and numerical solutions at 500 m, \(h = 10 \) m

Trace of the direct wave

Trace of the reflected wave

\(N = 1 \)
Interface fitting Mesh Example

- using interface fitting mesh

traces of the true and numerical solutions at 500 m, \(h = 10 \) m

trace of the direct wave

trace of the reflected wave

\[N = 2 \]
Local Refined Mesh Example

- using local refined mesh grid

traces of the true and numerical solutions at 500 m, $h = 10$ m

trace of the direct wave

trace of the reflected wave

$N = 1$
Local Refined Mesh Example

- using local refined mesh grid

traces of the true and numerical solutions at 500 m, $h = 10$ m

trace of the direct wave

trace of the reflected wave

$N = 2$
Outline

1 Problems and methods

2 Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3 Low-storage curvilinear DGTD
 - Numerical experiments

4 Summary and future plan
Low-storage curvilinear DGTD

motivation

- DGTD on straight-sided eles ⇒ a sub optimal 2nd order convergence rate when geometry representation not complement the accuracy of schemes
- applications with curvilinear geometry, e.g., material interfaces, boundaries
- DGTD has the flexibility to go beyond straight-sided eles
Curvilinear element

- straight-sided triangle T: $\forall x \in T \Rightarrow$ the image of a point $(r, s) \in D = \{(r, s)| -1 \leq r, s; r + s \leq 0\}$ under the linear affine transform,

$$x = -\frac{(r + s)}{2}x_1 + \frac{(1 + r)}{2}x_2 + \frac{(1 + s)}{2}x_3$$

$x_i, i = 1, 2, 3$: vertices of T

- curvilinear triangle \tilde{T}: $\forall x \in \tilde{T} \Rightarrow$ the image under an isoparametric transform

$$x = \sum_j x_jl_j(r, s)$$

$\{l_j\}$: interpolating Lagrange polynomials on D

$\{x_j\}$: interpolating points on \tilde{T}
Steps to form curvilinear elements

reference: Hesthaven and Warburton, ‘08

- identify element edges that need to be curved
- reallocate the vertices and facial interpolating points on the curved material interfaces and/or boundaries
- blend the facial deformation on edges into the interior interpolating points through Gordon-Hall blending of face node deformation

reference: Gordon and Hall, ‘73
CurviDG formulation

numerical solutions on curvilinear element \tilde{T}_k

$$v(x(r, s), t)|_{\tilde{T}_k} = \sum_j v_j^k(t) l_j(r, s)$$

$$p(x(r, s), t)|_{\tilde{T}_k} = \sum_j p_j^k(t) l_j(r, s)$$

symmetric DG variational equations read

$$\rho_k \sum_j (l_i, l_j) \tilde{T}_k \frac{\partial v_j^k}{\partial t} = \sum_j (\nabla_{x,z} l_i, l_j) \tilde{T}_k \ p_j^k - (l_i, \tilde{n} p^*) \frac{\partial \tilde{T}_k}{\partial t}$$

$$\frac{1}{\kappa_k} \sum_j (l_i, l_j) \tilde{T}_k \frac{\partial p_j^k}{\partial t} = - \sum_j (l_i, \nabla_{x,z} l_j) \tilde{T}_k \cdot v_j^k - (l_i, \tilde{n} \cdot (v^* - v^-)) \frac{\partial \tilde{T}_k}{\partial t}$$
Trouble for storage

the mass matrix M^k,

$$M_{ij}^k = \int_{\tilde{T}_k} l_i(r, s) l_j(r, s) \, dx \, dz = \int_D l_i(r, s) l_j(r, s) J^k(r, s) \, dr \, ds$$

the Jacobian $J^k(r, s) = \left| \frac{\partial \mathbf{x}}{\partial r} \times \frac{\partial \mathbf{x}}{\partial s} \right|$ is no longer constant,

- compute M_{ij}^k on the fly \Rightarrow slowdown

- store $M_{ij}^k \Rightarrow$ storage scaled as $K_c \frac{(N + 1)^2(N + 2)^2}{4}$

K_c: number of curvilinear elements

$\frac{(N + 1)(N + 2)}{2}$: number of interpolation points
Weighting the variational spaces

weighting approximation space proposed by Warburton

\[V_h^J = \bigoplus_k \text{span} \left\{ \frac{l_j(r, s)}{\sqrt{J^k(r, s)}} \right\} \]

numerical solution in \(V_h^J \)

\[
\begin{align*}
\mathbf{v}(\mathbf{x}(r, s), t)|_{\tilde{T}_k} &= \sum_j \tilde{v}_j^k(t) \frac{l_j(r, s)}{\sqrt{J^k(r, s)}} \\
p(\mathbf{x}(r, s), t)|_{\tilde{T}_k} &= \sum_j \tilde{p}_j^k(t) \frac{l_j(r, s)}{\sqrt{J^k(r, s)}}
\end{align*}
\]

the mass matrix

\[
M_{ij}^k = \int_D \frac{l_i(r, s)}{\sqrt{J^k}} \frac{l_j(r, s)}{\sqrt{J^k}} J^k(r, s) \, dr \, ds = \int_D l_i(r, s) l_j(r, s) \, dr \, ds = M_{ij}
\]

\[\Rightarrow \text{ without storage trouble}\]
\[
\rho_k \sum_j M_{ij} \frac{\partial \tilde{v}_j}{\partial t} = \sum_j \left(\nabla_{x,z} l_i, l_j \right)_D \tilde{p}_j^k - \sum_j \left(l_i, \frac{l_j}{2} \nabla_{x,z} \log(J^k) \right)_D \tilde{p}_j^k \\
- \left(\frac{l_i}{\sqrt{J^k}}, \mathbf{n} \tilde{p}^* \right) \partial \tilde{T}_k \\
\frac{1}{\kappa_k} \sum_j M_{ij} \frac{\partial \tilde{p}_j^k}{\partial t} = \sum_j \left(l_i, \nabla_{x,z} l_j \right)_D \cdot \tilde{v}_j^k + \sum_j \left(l_i, \frac{l_j}{2} \nabla_{x,z} \log(J^k) \right)_D \cdot \tilde{v}_j^k \\
- \left(\frac{l_i}{\sqrt{J^k}}, \mathbf{n} \cdot (\tilde{v}^* - \tilde{v}^-) \right) \partial \tilde{T}_k \\
e.g., \\
\left(l_i, \frac{l_j}{2} \nabla_{x,z} \log(J^k) \right)_D = \sum_n \omega_n^c l_i(r_n^c, s_n^c) l_j(r_n^c, s_n^c) \nabla_{x,z} \log(J^k)(\mathbf{x}(r_n^c, s_n^c))
\]
\[
\{(r_n^c, s_n^c)\}_n, \{\omega_n^c\}_n: \text{ cubature nodes and weights on the reference element } D
\]
Outline

1. Problems and methods

2. Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3. Low-storage curvilinear DGTD
 - Numerical experiments

4. Summary and future plan
Square-circle model

nodal distribution of curvi eles of degree 8 near the circular region
Square-circle model

- curvilinear DG, $N=8 \Rightarrow$ optimal convergence rate

<table>
<thead>
<tr>
<th>Grid Size Range</th>
<th>RMS Error (Percent)</th>
<th>Estimated Convergence Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 m ~ 56 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 m ~ 28 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid Size Range 25 m ~ 56 m

- RMS error (percent)
- Recv location (m)

Grid Size Range 12 m ~ 28 m

- RMS error (percent)
- Recv location (m)
2D dome model

- 301 receivers at the depth 20 m with offset 100 ∼ 6100 m at interval 20 m
- point source with Ricker pulse at (3300 m, 40 m)
- curvilinear DG, N=5 ⇒ almost optimal convergence rate except the boundary and the source nearby
Outline

1 Problems and methods

2 Numerical results
 - DGTD and FDTD Comparison
 - Interface error

3 Low-storage curvilinear DGTD
 - Numerical experiments

4 Summary and future plan
Summary

general realization:

- staggered-grid FDTD + interface error \Rightarrow 1st order convergence rate

- DGTD, $N > 1 +$ 'good' mesh \Rightarrow 2nd convergence rate (sub-optimal)

- curviDG + 'perfect' mesh \Rightarrow optimal convergence rate
Summary

Comparison observation:

- FDTD for 'simple' models well resolves the interface error with less computation cost, e.g., square-circle model

- High order DGTD schemes have substantial advantage on 'complex' models and large time span, e.g., 2D dome model

- Realistic models: need to explore for DGTD with advanced techniques, e.g.,
 - Mesh generation from models defined on Cartesian grid
 - Local mesh refinement + local time stepping
Future plan

- linear elastic wave equations

- seismic interface problems, e.g., water (acoustic) and solid (elastic) interface

- effective and efficient numerical methods for these problems, e.g., FD, FEM/DG
Thank You
Q&A